Screening of Aspergillus Niger for Lipase Production
Keywords:
Aspergillus niger, different sources, lipaseAbstract
The current study was intended to identify Aspergillus niger isolated from different sources oil, peanut (pistachios, ground nut, walnuts, almonds and cashew), dried milk and factory waste water. Traditional methods were used to investigate the ability of Aspergillus niger for lipase production using T80 and T80 with phenol red agar and calculate Aspergillus niger efficiency in this enzyme production. The results revealed that all isolates were able to produce lipase, and the efficiency of lipase production ranged between (0.90-2.21) mm. A50 isolate showed the highest efficiency in lipase production, which was isolated from factory waste water factory.
References
D. Guerrand.Lipases industrial applications: focus on food and agroindustries.OCL. 24:D403, 2017.
A. Bafkar. Kinetic and Equilibrium Studies of Adsorptive Removal of Sodium-Ion onto Wheat Straw and Rice Husk Wastes, Cent. Asian J. Environ. Sci. Technol. Innov., 1(6): PP308-325, 2020.
G.Mahmoud, M. Koutb, F. Morsy, M. Bagy. Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. European Journal of Biological Research. 5:PP70-77, 2015.
Y.Duan, Y.Liu, Z. Chen, D. Liu, E.Yu, X. Zhang, H. Fu., J. Fu, Zhan.,H. Du. Amorphous Molybdenum Sulfide Nanocatalysts Simultaneously Realizing Efficient Upgrading of Residue and Synergistic Synthesis of 2D MoS2 Nanosheets/Carbon Hierarchical Structures. Green Chem., 22(1): PP44-53,2020.
P-L.Show, T-C. Ling, JC-W. Lan, B-T. Tey, R.N. Ramanan, S-T .Yong S-T, et al. Review of microbial lipase purification using aqueous two-phase systems. Curr Org Chem. 19:PP19-29, 2015.
R.R.Maldonado,D.B.Lopes,E.Aguiar-Oliveira, E.S.Kamimura, G.A.Macedo. A review on Geotrichum lipases: production, purification, immobilization and applications. Chemical and Biochemical Engineering Quarterly, 30(4):PP439-454, 2016.
V. Narasimhan, B, Bhimba. Screening of microorganisms isolated from petroleum oil contaminated soil for vegetable oil conversion to bio diesel. International Journal of Pharma and Bio Sciences, 6:PP637-644, 2015.
H. Mukhtar, M. Hanif, A. Rehman. Studies on the lipase production by Aspergillus niger through solid state fermentation. Pakistan Journal of Botany, 47:PP351-354, 2015.
A.K.Sharma,V. Sharma, J.Saxena,A. Kuila A. Lipase production from a wild (LPF5) and a mutant (HN1) strain of Aspergillus niger. African Journal of Biotechnology, 15:PP2292-2300, 2016.
P.Esakkiraj, G. Prabakaran, T.Maruthia, G. Immanuel, A.Palavesam. Purification and Characterization of Halophilic Alkaline Lipase from Halobacillus sp., Proc. Nat. Acad. Sci. India Section B: Biol. Sci., 86(2): PP309-314, 2016.
F.J.Contesini, D.B.,Lopes , G.A. Macedo, M. da Graça Nascimento, ,P. de Oliveira Carvalho . Aspergillus sp. Lipase: Potential Biocatalyst for Industrial Use, J. Mol. Catal. B: Enzym., 67(3-4): PP163-171, 2010.
A.Nema, A., S.H. Patnala.,V. Mandari, et al. Production and optimization of lipase using Aspergillus niger MTCC 872 by solid-state fermentation. Bull Natl Res Cent , 43, 82, 2019.
W.Y.Huang, G.Q. Wang, W.H. Li., T.T. Li, G.J. Ji.,S.C. Ren., M Jiang, L.Yan, H.T. Tang., Y.M., Pan Y.M. and Y.J. Ding. Porous Ligand Creates New Reaction Route: Bifunctional Single-Atom Palladium Catalyst for Selective Distannylation of Terminal Alkynes. Chem, 6(9): PP2300-2313,2020.
R.C. Rodrigues, J.J. Virgen-Ortíz, J.C. Dos Santos, A. Berenguer Murcia, A.R.Alcantara, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions, Biotechnol. Adv. 37(5): PP746-770, 2019.
Aryal, Sagar."Potato Dextrose Agar (PDA)- Principle, Uses, Composition, Procedure and Colony Characteristics." Online Microbiology Notes, 15,August 2019. http://microbiologyinfo.com/potato-dextrose-agar-pda-principle-uses-composition
B. Rai, S. Ashish, S. Shishir, and J Jarina. Screening, Optimization and Process Scale up for Pilot Scale Production of Lipase by Aspergillus niger. Biomedicine and Biotechnology. 2(3): PP54-59, 2014.
J.I.Pitt and A.D. Hocking, A. D.Fungi and food spoilage. Cambridge, UK, Champman and Hall,1997.
Bullerman,L.B. Public health significant moulds and mycotoxin in fermented dairy products.J.Dairy Sci. 64: PP2439-2452,1981.
Klich M.A. Identification of Common Aspergillus Species. Utrecht: Centraalbureau voor Schimmel cultures, 2002.
Z.Abdul Razzaq, andK.A. Sami,K. A. Investigation of isolate producing enzyme lipase from developing fungi on olives. Education, science. 18(3): PP 57-65, 2006.
D.Bharathi and G. Rajalakshm. Microbial Lipases: An Overview of Screening, Production and Purification, J. Biosci. Bioeng. 22:101368, 2019.
N.Sarmah, D. Revathi., G. Sheelu,K. Yamuna Rani, S.Sridhar, V.Mehtab and C. Sumana. Recent Advances on Sources and Industrial Applications of Lipases. Biotechnol. Progress, 34(1): PP5-28, 2018.
A. Mehta, U.Bodh and R. Gupta .Fungal Lipases: A Review. J. Biotech. Res. 8: PP 58-77, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Al-Mustansiriyah Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Articles accepted for publication in Al-Mustansiriyah Journal of Science (MJS) are protected under the Creative Commons Attribution 4.0 International License (CC-BY-NC). Authors of accepted articles are requested to sign a copyright release form prior to their article being published. All authors must agree to the submission, sign copyright release forms, and agree to be included in any correspondence between MJS and the authors before submitting a work to MJS. For personal or educational use, permission is given without charge to print or create digital copies of all or portions of a MJS article. However, copies must not be produced or distributed for monetary gain. It is necessary to respect the copyright of any parts of this work that are not owned by MJS.