Prevalence of Metallo β-Lactamase Genes Among MDR Pseudomonas Aeruginosa Isolated from Different Sources in Baghdad

Authors

DOI:

https://doi.org/10.23851/mjs.v35i3.1470

Keywords:

MβLs, MDR P. aeruginosa, Pairwise identity, Sequencing, 16s rDNA housekeeping

Abstract

Background: Pseudomonas aeruginosa is a gram-negative apportunistic pathogen that has ability to couse different type of infections and charecterised by their high resistance to commonly used antibiotics via different stratiges. Objective: The objective of this study is to detect the prevalence rate of MβL gene among MDR Pseudomonas aeruginosa. Methods: Forty clinical isolates of Pseudomonas aeruginosa were obtained from different hospitials in Baghdad/Iraq. Their identification was confirmed by using 16s rDNA as a housekeeping gene (reference gene). Specific primers were used to detect 3 types of Metallo β-lactamase (MβL) genes vim, spm1, and imp1 genes followed by sequencing the amplified fragment which was analyzed by Geneious software. Antibiotic sensitivity test for 15 antimicrobial agents was done using the Kirby-Bauer disc diffusion method. Results: The revealed resistance pattern was as following: 100% for the combination of Trimethoprim/Sulphamethoxazole and Nitrofurantoin, 95% for Tigecycline, 82.5% for Ciprofloxacin, 67.5% for Cefepime, 60% for Levofloxacin, 57.5% for Carbenicillin, 55% for Piperacillin, 50% for Amikacin, 47.5% for Tobramycin, 45% for both Imipenem and Ceftazidime, 27.5% for piperacillin/tazobactam, 22.5% for Aztreonam and 7.5% for Colistin. More than half (55%) of isolates were positive for MβL enzymes production during phenotypically assessed by combined disc test. The MIC of meropenem ranged from 16µg/ml to 32 µg/ml. The percentage of MβL genes among the total isolates during conventional PCR was as follows: 95% for vim, 25% of the isolates harbored both vim and imp1, while spm 1 are negative in all isolates. The result of the study explained that 10 isolates from the antibiotic susceptibility test were resistant to 10-14 antimicrobial agents that harbored both vim and imp1 genes. Conclusions: MβL gene could be used as a genetic marker to determine the degree of resistance in MDR P. aeruginosa which are more resistant than other isolates that have one gene of MβL responsible for break the β-lactam ring then inactivating the β-lactam antibiotic. 

Downloads

Download data is not yet available.

References

M. Tam, T. Thi, D. Wibowo, and B. H. A. Rehm, "Pseudomonas aeruginosa biofilms," International Journal of Molecular Sciences, vol. 21, no. 8671, pp. 1-25, 2020.

CrossRef | PubMed

M. Al-orphaly, A. Hadi, K. Eltayeb, H. Al-hail, G. Samuel, A. A. Sultan, and S. Skariah, "Epidemiology of multidrug-resistant pseudomonas aeruginosa in the middle east and north africa region," Msphere, vol. 6, no. 3, pp. 1-15, 2021.

CrossRef | PubMed

K. A. Glen and I. L. Lamont, "β -lactam resistance in pseudomonas aeruginosa : Current status , future prospects," Pathogens, vol. 10, no. 1638, pp. 1-23, 2021.

CrossRef | PubMed

K. M. Papp-Wallace, A. R. Mack, M. A. Taracila, and R. A. Bonomo, "Resistance to novel β-lactam-β-lactamase inhibitor combinations," The Price of Progress. Infectious Disease Clinics, vol. 34, no. 4, pp. 773-819, 2020.

CrossRef | PubMed

W. Eiamphungporn, N. Schaduangrat, A. A. Malik, and C. Nantasenamat, "Tackling the antibiotic resistance caused by class a I2-lactamases through the use of I2-lactamase inhibitory protein," International Journal of Molecular Sciences, vol. 19, no. 8, p. 2222, 2018.

CrossRef | PubMed

R. V. Goering, H. M. Dockrell, M. Zuckerman, and P. L. Chiodini, Mims' Medical Microbiology And Immunology, 6th. Elsevier Health Sciences, 2018.

S. Riedel, S. A. Morse, T. Mietzner, and S. Miller, Jawetz Melnick & Adelbergs Medical Microbiology 28 ed. McGraw Hill Professional, 2019.

K. Bush, G. A. Jacoby, and A. A. Medeiros, "A functional classification scheme for beta-lactamases and its correlation with molecular structure," Antimicrobial agents and chemotherapy, vol. 39, no. 6, pp. 1211-1233, 1995.

CrossRef | PubMed

X. Tan, H. S. Kim, K. Baugh, Y. Huang, N. Kadiyala, M. Wences, N. Singh, E. Wenzler, and Z. P. Bulman, "Therapeutic options for metallo-β-lactamase-producing enterobacterales," Infection and Drug Resistance, pp. 125-142, 2021.

CrossRef | PubMed

C. Gonzalez-Bello, D. Rodrı́guez, M. Pernas, A. Rodriguez, and E. Colchon, "β-lactamase inhibitors to restore the efficacy of antibiotics against superbugs," Journal of Medicinal Chemistry, vol. 63, no. 5, pp. 1859-1881, 2019.

CrossRef | PubMed

M. M. Sfeir, J. A. Hayden, K. A. Fauntleroy, C. Mazur, J. K. Johnson, P. J. Simner, and L. F. Westblade, "Edta modified carbapenem inactivation method: A phenotypic method for detecting metallo-β-lactamase-producing enterobacteriaceae," Journal of Clinical Microbiology, vol. 57, no. 5, e01757-18, 2019.

CrossRef | PubMed

G. De Angelis, P. Del Giacomo, B. Posteraro, M. Sanguinetti, and M. Tumbarello, "Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in enterobacteriaceae," International Journal of Molecular Sciences, vol. 21, no. 14, p. 5090, 2020.

CrossRef | PubMed

K. Bush and P. A. Bradford, "Interplay between β-lactamases and new β-lactamase inhibitors," Nature Reviews Microbiology, vol. 17, no. 5, pp. 295-306, 2019.

CrossRef | PubMed

T. J. Dougherty and M. J. Pucci, Antibiotic discovery and development. Springer Science & Business Media, 2011.

CrossRef

A. R. Palacios, M. A. Rossi, G. S. Mahler, and A. J. Vila, "Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism," Biomolecules, vol. 10, no. 6, p. 854, 2020.

CrossRef | PubMed

J. C. Sherris, K. J. Ryan, N. Ahmad, W. L. Alspaugh, P. Drew, L. B. Pottinger, M. E. Reller, J. M. Steinbrink, C. R. Sterling, G. Vedantam, and S. Weissman, Sherris and Ryans medical microbiology, 8th. McGraw-Hill Companies, 2022.

T. Spilker, T. Coenye, P. Vandamme, and J. J. Lipuma, "Pcr-based assay for differentiation of pseudomonas aeruginosa from other pseudomonas species recovered from cystic fibrosis patients," Journal of Clinical Microbiology, vol. 42, no. 5, pp. 2074-2079, 2004.

CrossRef | PubMed

M. E. Altaai, I. H. Aziz, and A. A. Marhoon, "Identification pseudomonas aeruginosa by 16s rrna gene for differentiation from other pseudomonas species that isolated from patients and environment," Baghdad Science Journal, vol. 11, no. 2, pp. 1028-1034, 2014.

CrossRef

M. Anuradha, K. H. Vasudevanaidu, and N. Suneetha, "Phenotypic and molecular characterisation of pseudomonas aeruginosa among hospital acquired infections in a tertiary care hospital, tirupathi," World Journal of Pharmaceutical Research, vol. 4, no. 12, pp. 931-941, 2015.

M. Ghamgosha, S. Shahrekizahedani, F. Kafilzadeh, Z. Bameri, R. A. Taheri, and G. Farnoosh, "Metallo-beta lactamase genes vim-1, spm-1 and imp-1 in pseudomonas aeruginosa isolated from zahedan hospitals," International Journal of Infection, vol. 8, no. 4, p. 17 489, 2014.

CrossRef | PubMed

Clinical and Laboratory Standards Institute : A CLSI supplement for global application, 31st. USA, 2021, vol. 40.

R. Sachdeva, B. Sharma, and R. Sharma, "Evaluation of different phenotypic tests for detection of metallo-β lactamases in imipenem-resistant pseudomonas aeruginosa," Journal of laboratory physicians, vol. 9, no. 4, pp. 249-253, 2017.

CrossRef | PubMed

L. H. Green and E. Goldman, Practical Handbook of Microbiology, 4th. CRC Press Taylor and Francis Group, 2021.

CrossRef

P. R. Murray, K. S. Rosenthal, and M. A. Pfaller, Medical microbiology, 9th. Elsevier Health Sciences, 2020.

R. J. Clifford, M. Milillo, J. Prestwood, R. Quintero, D. V. Zurawski, Y. I. Kwak, P. E. Waterman, E. P. Lesho, and P. Gann, "Detection of bacterial 16s rrna and identification of four clinically important bacteria by real-time pcr," PloS one, vol. 7, no. 1, p. 48 558, 2012.

CrossRef | PubMed

J. Yayan, B. Ghebremedhin, and K. Rasche, "Antibiotic resistance of pseudomonas aeruginosa in pneumonia at a single university hospital center in germany over a 10-year period," Plos one, vol. 10, no. 10, e0139836, 2015.

CrossRef | PubMed

J. Dégi, O.-A. Moțco, D. M. Dégi, T. Suici, M. Mareș, K. Imre, and R. T. Cristina, "Antibiotic susceptibility profile of pseudomonas aeruginosa canine isolates from a multicentric study in romania," Antibiotics, vol. 10, no. 7, p. 846, 2021.

CrossRef | PubMed

R. B. Pal, M. Rodrigues, and S. Datta, "Role of pseudomonas in nosocomial infections and biological characterization of local strains," j Biosci Tech, vol. 1, no. 4, pp. 170-179, 2010.

A. Somily, M. Absar, M. Z. Arshad, and Z. Shakoor, "Antimicrobial susceptibility patterns of multidrug-resistant pseudomonas aeruginosa and acinetobacter baumannii against carbapenems, colistin, and tigecycline," Saudi Med J, vol. 33, no. 7, pp. 750-5, 2012.

F. Matyar, T. Akkan, . Uçak,, and B. Eraslan, "Aeromonas and pseudomonas: Antibiotic and heavy metal resistance species from iskenderun bay, turkey (northeast mediterranean sea)," Environmental monitoring and assessment, vol. 167, pp. 309-320, 2010.

CrossRef | PubMed

M. N. Almohammady, E. M. Eltahlawy, and N. M. Reda, "Pattern of bacterial profile and antibiotic susceptibility among neonatal sepsis cases at cairo university children hospital," Journal of Taibah University Medical Sciences, vol. 15, no. 1, pp. 39-47, 2020.

CrossRef | PubMed

A. Negi, M. Anand, A. Singh, A. Kumar, C. Sahu, and K. N. Prasad, "Assessment of doripenem, meropenem, and imipenem against respiratory isolates of pseudomonas aeroginosa in a tertiary care hospital of north india," Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, vol. 21, no. 10, p. 703, 2017.

CrossRef | PubMed

D. Esmaeili, S. F. Daymad, A. Neshani, S. Rashki, Z. Marzhoseyni, and A. Khaledi, "Alerting prevalence of mbls producing pseudomonas aeruginosa isolates," Gene Reports, vol. 16, p. 100 460, 2019.

CrossRef

A. Kaur and S. Singh, "Prevalence of extended spectrum betalactamase (esbl) and metallobetalactamase (mbl) producing pseudomonas aeruginosa and acinetobacter baumannii isolated from various clinical samples," Journal of pathogens, vol. 2018, pp. 1-7, 2018.

CrossRef | PubMed

K. Lee, W. G. Lee, Y. Uh, G. Y. Ha, J. Cho, Y. Chong, J. O. Kang, M. Y. Kim, N. Y. Lee, M.-N. Kim, M. Kim, K. S. Song, K. S. Hong, I. K. Paik, H. S. Lee, S.-J. Jang, A. J. Park, S. H. Kang, W. K. Song, I. Rheem, E.-C. Kim, Y. J. Park, J. H. Shin, M. Kang, Y.-K. Sun, H. J. Lee, H.-S. Lim, J. W. Lee, and B.-M. Shin, "Vim-and imp-type metallo-β-lactamase-producing pseudomonas spp. and acinetobacter spp. in korean hospitals," Emerging infectious diseases, vol. 9, no. 7, pp. 868-871, 2003.

CrossRef | PubMed

H. S. Sader, A. O. Reis, S. Silbert, and A. C. Gales, "Imps, vims and spms: The diversity of metalloa-β-alactamases produced by carbapenemaresistant pseudomonas aeruginosa in a brazilian hospital," Clinical Microbiology and Infection, vol. 11, no. 1, pp. 73-76, 2005. doi: 10.1111/j.1469-0691.2004.01031.x.

CrossRef | PubMed

W. Wang and X. Wang, "Prevalence of metallo-β-lactamase genes among pseudomonas aeruginosa isolated from various clinical samples in china," Journal of Laboratory Medicine, vol. 44, no. 4, pp. 197-203, 2020.

CrossRef

Downloads

Key Dates

Received

03-09-2023

Revised

12-11-2023

Accepted

06-12-2023

Published

30-09-2024

Data Availability Statement

None.

Issue

Section

Original Article

How to Cite

[1]
M. A. . Saidmurad, S. S. . Al-Jubori, and M. F. . Edbeib, “Prevalence of Metallo β-Lactamase Genes Among MDR Pseudomonas Aeruginosa Isolated from Different Sources in Baghdad”, Al-Mustansiriyah J. Sci., vol. 35, no. 3, pp. 48–57, Sep. 2024, doi: 10.23851/mjs.v35i3.1470.

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.