Assessment of Some Platelet Activating Markers and Secretory Status with Clinical Manifestations in Multiple Sclerosis Iraqi Patients

Authors

  • Khalid M. Salih Department of Biology, College of Science, Mustansiriyah University, Bagdad, IRAQ.
  • Ali Hamdan Abdullah Department of Biology, College of Science, Mustansiriyah University, Bagdad, IRAQ.
  • Nawfal Madhi Sheaheed Baghdad Teaching Hospital, Medical City, Bagdad, IRAQ.

DOI:

https://doi.org/10.23851/mjs.v33i3.1130

Keywords:

multiple sclerosis platelet activating markers secretory status EDSS

Abstract

Patients with Multiple sclerosis (MS) are presented with different degree of disability based on Expanded disability status scale (EDSS). Several studies reported that ABH non-secretors have higher prevalence in different auto-immune diseases, also platelets have a multi-form participation in development of MS. Therefore, this study aimed to assess the correlation of clinical manifestations in patients with platelet-activating factor (PAF), P-Selectin, matrix metalloproteinase-9 (MMP-9) and ABH secretor status. Fifty Iraqi patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled and divided into two subgroups; 36 of them with no disability (D0), their EDSS score ranging between 0-1.5, and the rest 14 patients with different degrees of disability (D+), their EDSS score ≥ 2. Along with patients, 20 healthy subjects were involved to act as a control group. Results showed significant elevation of PAF, P-Selectin, and MMP-9 levels in patients compared with those in the control group. However, only PAF level in D+ patients is significantly higher than D0 and positively correlated with duration of disease and serum level of MMP-9. Moreover, the frequency of non-secretors among RRMS patients is significantly higher than those in the control group and have a higher level of MMP-9, so may act as a risk factor for getting MS disease via increasing the serum level of MMP-9.

References

Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS letters. 2011 Dec 1;585(23):3715-23. DOI: https://doi.org/10.1016/j.febslet.2011.08.004

CrossRef | PubMed

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, Wallin M. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Multiple Sclerosis Journal. 2020 Dec;26(14):1816-21. DOI: https://doi.org/10.1177/1352458520970841

CrossRef | PubMed

‏Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov 1;33(11):1444-52. DOI: https://doi.org/10.1212/WNL.33.11.1444

CrossRef | PubMed

Greer JP, Arber DA, Glader BE, List AF, Means RM, Rodgers GM. Wintrobe's clinical hematology. Lippincott Williams & Wilkins. 2018 Nov 19.

Campi C, Escovich L, Moreno A, Racca L, Racca A, Cotorruelo C, Biondi C. Expression of the gene encoding secretor type galactoside 2 α fucosyltransferase (FUT2) and ABH antigens in patients with oral lesions. Medicina oral, patologia oral y cirugia bucal. 2012 Jan;17(1):e63. DOI: https://doi.org/10.4317/medoral.17239

CrossRef | PubMed

Schleef M, Strobel E, Dick A, Frank J, Schramm W, Spannagl M. Relationship between ABO and Secretor genotype with plasma levels of factor VIII and von Willebrand factor in thrombosis patients and control individuals. British journal of haematology. 2005 Jan;128(1):100-7. DOI: https://doi.org/10.1111/j.1365-2141.2004.05249.x

CrossRef | PubMed

Wu O, Bayoumi N, Vickers MA, Clark PA. ABO (H) blood groups and vascular disease: a systematic review and meta‐analysis. Journal of thrombosis and haemostasis. 2008 Jan;6(1):62-9. DOI: https://doi.org/10.1111/j.1538-7836.2007.02818.x

CrossRef | PubMed

Akhter S, Kibria GM, Akhter NR, Habibullah MM, Islam SM, Zakariah M. ABO and Lewis blood grouping with ABH secretor and non-secretor status: a cross sectional study in Dhaka. Faridpur Medical College Journal. 2011;6(1):38-40.

CrossRef DOI: https://doi.org/10.3329/fmcj.v6i1.7409

Daniels G. Polyagglutination and cryptantigens. In Human blood groups 2013. Wiley‐Blackwell, Oxford, UK.

CrossRef DOI: https://doi.org/10.1002/9781118493595

Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Alexander JS, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. Journal of neuroinflammation. 2010 Dec;7(1):1-22. DOI: https://doi.org/10.1186/1742-2094-7-10

CrossRef | PubMed

Von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circulation research. 2007 Jan 5;100(1):27-40. DOI: https://doi.org/10.1161/01.RES.0000252802.25497.b7

CrossRef | PubMed

Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. Journal of cellular and molecular medicine. 2009 Jul;13(7):1211-20. DOI: https://doi.org/10.1111/j.1582-4934.2009.00811.x

CrossRef | PubMed

Langer HF, Chavakis T. Platelets and neurovascular inflammation. Thrombosis and haemostasis. 2013;110(11):888-93. DOI: https://doi.org/10.1160/TH13-02-0096

CrossRef | PubMed

Nurden AT. Platelets, inflammation and tissue regeneration. Thrombosis and haemostasis. 2011;105(S 06):S13-33. DOI: https://doi.org/10.1160/THS10-11-0720

CrossRef | PubMed

Wu GF, Alvarez E. The immunopatho-physiology of multiple sclerosis. Neurologic clinics. 2011 May 1;29(2):257-78. DOI: https://doi.org/10.1016/j.ncl.2010.12.009

CrossRef | PubMed

Buzzard, K. A., Broadley, S. A., & Butzkueven, H. What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis?. International journal of molecular sciences. 2012. 13(10), 12665-12709.‏ DOI: https://doi.org/10.3390/ijms131012665

CrossRef | PubMed

Saboor M, Ullah A, Qamar K, Mir A. Frequency of ABH secretors and non secretors: A cross sectional study in Karachi. Pakistan journal of medical sciences. 2014 Jan;30(1):189. DOI: https://doi.org/10.12669/pjms.301.4194

CrossRef | PubMed

Bercher, M. E. American Association of Blood Banks Edition. Technical Manual. 15th ed. Bethesda, Maryland: AABB, 2005. 289-313.

Crowther JR. ELISA: theory and practice. Springer Science & Business Media; 1995. DOI: https://doi.org/10.1385/0896032795

CrossRef | PubMed

Al-Hamadani HA, Abdalla AS, Al-Saffar AJ. The course of early-onset multiple sclerosis in Iraqi children. World Journal of Pediatrics. 2012 Feb;8(1):47-51. DOI: https://doi.org/10.1007/s12519-011-0297-1

CrossRef | PubMed

Mohammed HA, Aboud HN, Hassan B. Multiple sclerosis clinic in Iraq, an endeavourforan unraveling database. American Journal of Clinical and Experimental Medicine. 2018 May 29;6(3):69.

CrossRef DOI: https://doi.org/10.11648/j.ajcem.20180603.12

Al-Hussainy SI, Hatem AK. The Prevalence of Restless Leg Syndrome in Iraqi Multiple Sclerosis Patients. Indian Journal of Public Health Research & Development. 2018 Jun 1;9(6).

CrossRef DOI: https://doi.org/10.5958/0976-5506.2018.00541.7

Mohammed MS, Sulaiman Alallaf AN. Profile of patients with Multiple sclerosis in Mosul City. Mosul Journal of Nursing. 2019 Dec 12;7(2):120-5.

Alzaidi N. N., Salih, K. M., & Sheaheed, N. M. Investigation of Neurofilament Light Chain, Vitamin D and Calcium in Iraqi Patients with Multiple Sclerosis. Biochemical and Cellular Archives. 2021. 21(Issue 1), In print.

Brochet B, Ruet A. Cognitive impairment in multiple sclerosis with regards to disease duration and clinical phenotypes. Frontiers in neurology. 2019 Mar 20;10:261. DOI: https://doi.org/10.3389/fneur.2019.00261

CrossRef | PubMed

Callea L, Arese M, Orlandini A, Bargnani C, Priori A, Bussolino F. Platelet activating factor is elevated in cerebral spinal fluid and plasma of patients with relapsing-remitting multiple sclerosis. Journal of neuroimmunology. 1999 Feb 1;94(1-2):212-21.

CrossRef DOI: https://doi.org/10.1016/S0165-5728(98)00246-X

Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Platelets exit venules by a transcellular pathway at sites of F-Met peptide-induced acute inflammation in guinea pigs. International archives of allergy and immunology. 1998;116(3):188-95. DOI: https://doi.org/10.1159/000023944

CrossRef | PubMed

Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature. 2008 Feb;451(7182):1076-81. DOI: https://doi.org/10.1038/nature06559

CrossRef | PubMed

Saluk-Bijak J, Dziedzic A, Bijak M. Pro-thrombotic activity of blood platelets in multiple sclerosis. Cells. 2019 Feb;8(2):110. DOI: https://doi.org/10.3390/cells8020110

CrossRef | PubMed

Dziedzic A, Saluk-Bijak J, Miller E, Bijak M. Metformin as a potential agent in the treatment of multiple sclerosis. International Journal of Molecular Sciences. 2020 Jan;21(17):5957. DOI: https://doi.org/10.3390/ijms21175957

CrossRef | PubMed

McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, Shields DC, Fitzgerald DJ. Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Molecular & Cellular Proteomics. 2004 Feb 1;3(2):133-44. DOI: https://doi.org/10.1074/mcp.M300063-MCP200

CrossRef | PubMed

Bidot CJ, Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS, Alexander JS, Gonzalez-Toledo E, Kelley RE, Minagar A. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study. BMC neurology. 2007 Dec;7(1):1-7. DOI: https://doi.org/10.1186/1471-2377-7-36

CrossRef | PubMed

Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A. Evidence of platelet activation in multiple sclerosis. Journal of neuroinflammation. 2008 Dec;5(1):1-6. DOI: https://doi.org/10.1186/1742-2094-5-27

CrossRef | PubMed

Marcos-Ramiro B, Nacarino PO, Serrano-Pertierra E, Blanco-Gelaz MÁ, Weksler BB, Romero IA, Couraud PO, Tuñón A, López-Larrea C, Millán J, Cernuda-Morollón E. Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC neuroscience. 2014 Dec;15(1):1-4. DOI: https://doi.org/10.1186/1471-2202-15-110

CrossRef | PubMed

Sáenz-Cuesta M, Irizar H, Castillo-Triviño T, Muñoz-Culla M, Osorio-Querejeta I, Prada A, Sepúlveda L, López-Mato MP, De Munain AL, Comabella M, Villar LM. Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomarkers in medicine. 2014 Jun;8(5):653-61. DOI: https://doi.org/10.2217/bmm.14.9

CrossRef | PubMed

Orian JM, D'Souza CS, Kocovski P, Krippner G, Hale MW, Wang X, Peter K. Platelets in Multiple Sclerosis: Early and Central Mediators of Inflammation and Neurodegeneration and Attractive Targets for Molecular Imaging and Site-Directed Therapy. Frontiers in Immunology. 2021 Feb 19;12:349. DOI: https://doi.org/10.3389/fimmu.2021.620963

CrossRef | PubMed

Ko HM, Back HK. Platelet-Activating Factor Enhances Experimental Pulmonary Metastasis of Murine Sarcoma Cells by Up-regulation of Matrix Metalloproteinases-9 Through NF-$kappa $ B-Dependent Pathway. Biomedical Science Letters. 2004;10(2):143-51.

Ko HM, Park YM, Jung B, Kim HA, Choi JH, Park SJ, Lee HK, Im SY. Involvement of matrix metalloproteinase-9 in platelet-activating factor-induced angiogenesis. FEBS letters. 2005 Apr 25;579(11):2369-75. DOI: https://doi.org/10.1016/j.febslet.2005.03.035

CrossRef | PubMed

Seizer P, May AE. Platelets and matrix metalloproteinases. Thrombosis and haemostasis. 2013;110(11):903-9. DOI: https://doi.org/10.1160/TH13-02-0113

CrossRef | PubMed

Larkin CM, Hante NK, Breen EP, Tomaszewski KA, Eisele S, Radomski MW, Ryan TA, Santos-Martinez MJ. Role of matrix metalloproteinases 2 and 9, toll-like receptor 4 and platelet-leukocyte aggregate formation in sepsis-associated thrombocytopenia. PLoS One. 2018 May 7;13(5):e0196478. DOI: https://doi.org/10.1371/journal.pone.0196478

CrossRef | PubMed

Mobarrez F, Svenungsson E, Pisetsky DS. Microparticles as autoantigens in systemic lupus erythematosus. European journal of clinical investigation. 2018 Dec;48(12):e13010. DOI: https://doi.org/10.1111/eci.13010

CrossRef | PubMed

Ansari SA, Khan A, Khan TA, Raza Y, Syed SA, Akhtar SS, Kazmi SU. Correlation of ABH blood group antigens secretion with H elicobacter pylori infection in Pakistani patients. Tropical Medicine & International Health. 2015 Jan;20(1):115-9. DOI: https://doi.org/10.1111/tmi.12401

CrossRef | PubMed

Shaik P, Sekhar AC. A comparative study of ABO blood groups and secretor status in ischaemic heart disease patients in Kadapa city. Journal of evolution of medical and dental sciences-JEMDS. 2018 Oct 15;7(42):5345-9.

CrossRef DOI: https://doi.org/10.14260/jemds/2018/1014

Hu J, Wang Z, Pan Y, Ma J, Miao X, Qi X, Zhou H, Jia L. MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-κB signaling pathway. The international journal of biochemistry & cell biology. 2018 Jan 1;94:79-88. DOI: https://doi.org/10.1016/j.biocel.2017.12.003

CrossRef | PubMed

Xiao J, Wang R, Zhou W, Cai X, Ye Z. Circular RNA CSNK1G1 promotes the progression of osteoarthritis by targeting the miR-4428/FUT2 axis. International journal of molecular medicine. 2021 Jan 1;47(1):232-42. DOI: https://doi.org/10.3892/ijmm.2020.4772

CrossRef | PubMed

Hosokawa T, Nakajima H, Doi Y, Sugino M, Kimura F, Hanafusa T, Takahashi T. Increased serum matrix metalloproteinase-9 in neuromyelitis optica: Implication of disruption of blood-brain barrier. Journal of neuroimmunology. 2011 Jul 1;236(1-2):81-6. DOI: https://doi.org/10.1016/j.jneuroim.2011.04.009

CrossRef | PubMed

Brkic M, Balusu S, Libert C, Vandenbroucke RE. Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators of inflammation. 2015 Oct 11;2015. DOI: https://doi.org/10.1155/2015/620581

CrossRef | PubMed

Fernandes KS, Brum DG, Sandrim VC, Guerreiro CT, Barreira AA, Tanus-Santos JE. Matrix metalloproteinase-9 genotypes and haplotypes are associated with multiple sclerosis and with the degree of disability of the disease. Journal of neuroimmunology. 2009 Sep 29;214(1-2):128-31. DOI: https://doi.org/10.1016/j.jneuroim.2009.07.004

CrossRef | PubMed

La Russa A, Cittadella R, De Marco EV, Valentino P, Andreoli V, Trecroci F, Latorre V, Gambardella A, Quattrone A. Single nucleotide polymorphism in the MMP-9 gene is associated with susceptibility to develop multiple sclerosis in an Italian case-control study. Journal of neuroimmunology. 2010 Aug 25;225(1-2):175-9. DOI: https://doi.org/10.1016/j.jneuroim.2010.04.016

CrossRef | PubMed

Fernandes KS, Brum DG, Palei AC, Sandrim VC, Guerreiro CT, Tanus-Santos JE, Barreira AA. Functional MMP-9 polymorphisms modulate plasma MMP-9 levels in multiple sclerosis patients. Journal of Neuroimmunology. 2012 Aug 15;249(1-2):56-9. DOI: https://doi.org/10.1016/j.jneuroim.2012.04.001

CrossRef | PubMed

Mohammadhosayni M, Khosrojerdi A, Lorian K, Aslani S, Imani D, Razi B, Babaie F, Torkamandi S. Matrix metalloproteinases (MMPs) family gene polymorphisms and the risk of multiple sclerosis: systematic review and meta-analysis. BMC neurology. 2020 Dec;20:1-0. DOI: https://doi.org/10.1186/s12883-020-01804-2

CrossRef | PubMed

Downloads

Published

2022-09-25

How to Cite

[1]
K. M. Salih, A. H. . Abdullah, and N. M. . Sheaheed, “Assessment of Some Platelet Activating Markers and Secretory Status with Clinical Manifestations in Multiple Sclerosis Iraqi Patients”, Al-Mustansiriyah Journal of Science, vol. 33, no. 3, pp. 12–19, Sep. 2022.

Issue

Section

Biological Science