Detection of Biofilm Formation and Antibiotics Resistance for Streptococcus Spp. Isolated from Some Dairy Products in Diwanyah City of Iraq
DOI:
https://doi.org/10.23851/mjs.v31i4.893Keywords:
Streptococcus, multidrug resistance, biofilm, dairy products, Diwanyah cityAbstract
Multidrug resistance and biofilm formation have increasingly become a leading human threat in particular dairy products, which become the primary source of essential nutrients word-wide. Biofilm formation is responsible for economic losses in the dairy industry. Therefore, in current study, the multi-drugs resistance and biofilm formation were investigated for Streptococcus spp. isolated different dairy products (milk, cheese, and cream) collected from various markets in Diwanyah city, Iraq. Bacteria were isolated and identified by morphological and biochemical characteristics using selective agar plates. Antibiotic resistance was tested using disc diffusion method, whereas biofilm formation was investigated using Microtiter plate method (MTP). The results showed that Streptococcus spp. isolates in milk (7 isolates), cheese (17isolates), and cream (18 strains) showed high resistance against novobiocin, Nalidixic acid, streptomycin, and cephalothin. However, all isolates showed high sensitivity to vancomycin. Streptococcus isolates showed a variant level of biofilm formation with high percentages (71.43%) of strong biofilm formation in milk isolates, 29.4% in cheese, and 50% in cream. These results suggested that multidrug resistance Streptococcus spp. has been observed in some dairy products with a high ability for biofilm formation and could affect the quality of dairy products and probable human threats.
Downloads
References
S.B. Levy, B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses, Nature Medicine 10(12) (2004) S122-S129.
A. Ebrahimi, A. Moatamedi, S. Lotfalian, P. Mirshokraei, Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran, Vet Res Forum 4(4) (2013) 269-272.
S. Rozenberg, J.-J. Body, O. Bruyère, P. Bergmann, M.L. Brandi, C. Cooper, J.-P. Devogelaer, E. Gielen, S. Goemaere, J.-M. Kaufman, R. Rizzoli, J.-Y. Reginster, Effects of Dairy Products Consumption on Health: Benefits and Beliefs-A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, Calcified Tissue International 98(1) (2016) 1-17.
C. Jans, T. de Wouters, B. Bonfoh, C. Lacroix, D.W. Kaindi, J. Anderegg, D. Bock, S. Vitali, T. Schmid, J. Isenring, F. Kurt, W. Kogi-Makau, L. Meile, Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme, BMC Microbiol 16(1) (2016) 117.
D.G. Cvitkovitch, Y.H. Li, R.P. Ellen, Quorum sensing and biofilm formation in Streptococcal infections, J Clin Invest 112(11) (2003) 1626-32.
J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, H.M. Lappin-Scott, Microbial biofilms, Annual review of microbiology 49 (1995) 711-45.
R.D. Wolcott, G.D. Ehrlich, Biofilms and chronic infections, Jama 299(22) (2008) 2682-4.
S.H. Flint, J.D. Brooks, P.J. Bremer, The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel, J Appl Microbiol 83(4) (1997) 508-17.
P. Bremer, B. Seale, S. Flint, J. Palmer, 15 - Biofilms in dairy processing, in: P.M. Fratamico, B.A. Annous, N.W. Gunther (Eds.), Biofilms in the Food and Beverage Industries, Woodhead Publishing2009, pp. 396-431.
J.W. Austin, G. Bergeron, Development of bacterial biofilms in dairy processing lines, J Dairy Res 62(3) (1995) 509-19.
J.W. Austin, G. Bergeron, Development of bacterial biofilms in dairy processing lines, Journal of Dairy Research 62(3) (2009) 509-519.
S.A. Burgess, D. Lindsay, S.H. Flint, Biofilms of thermophilic bacilli isolated from dairy processing plants and efficacy of sanitizers, Methods Mol Biol 1147 (2014) 367-77.
L.F. Silva, T.N. Sunakozawa, D.M.F. Amaral, T. Casella, M.C.L. Nogueira, J. De Dea Lindner, B. Bottari, M. Gatti, A.L.B. Penna, Safety and technological application of autochthonous Streptococcus thermophilus cultures in the buffalo Mozzarella cheese, Food Microbiol 87 (2020) 103383.
B.H. Normark, S. Normark, Evolution and spread of antibiotic resistance, Journal of Internal Medicine 252(2) (2002) 91-106.
S. Mathur, R. Singh, Antibiotic resistance in food lactic acid bacteria-a review, International Journal of Food Microbiology 105(3) (2005) 281-295.
G. Maka, S. Shah, S. Bano, S.A. Tunio, Antibiotic Susceptibility Profiling of Gram-Negative Bacteria Causing Upper Respiratory Tract Infections in Hyderabad, Sindh., Journal of Life and Bio Sciences Research 1(1) (2020) 12-15.
L.M. Prescott, J. Harley, D.A. Klein, Microbiolog?a, 5? ed ed., McGraw-Hill Interamericana, Madrid, Spain, 2004.
Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, e.a. Rainey FA, Bergey's manual of systematic bacteriology, Springer Science & Business Media2009.
A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method, American journal of clinical pathology 45(4) (1966) 493-6.
M. Hinton, A.J. Hedges, A.H. Linton, The ecology of Escherichia coli in market calves fed a milk-substitute diet, J Appl Bacteriol 58 (1985).
S. Stepanovic, D. Vukovic, V. Hola, G. Di Bonaventura, S. Djukic, I. Cirkovic, F. Ruzicka, Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci, APMIS 115(8) (2007) 891-9.
M. Elhadidy, A. Elsayyad, Uncommitted role of enterococcal surface protein, Esp, and origin of isolates on biofilm production by Enterococcus faecalis isolated from bovine mastitis, Journal of Microbiology, Immunology and Infection 46(2) (2013) 80-84.
R. Iyer, S.K. Tomar, T. Uma Maheswari, R. Singh, Streptococcus thermophilus strains: Multifunctional lactic acid bacteria, International Dairy Journal 20(3) (2010) 133-141.
R. Bennama, M. Fern?ndez, V. Ladero, M.A. Alvarez, N. Rechidi-Sidhoum, A. Bensoltane, Isolation of an exopolysaccharide-producing Streptococcus thermophilus from Algerian raw cow milk, European Food Research and Technology 234(1) (2012) 119-125.
M. Guélat-Brechbuehl, A. Thomann, S. Albini, S. Moret-Stalder, M. Reist, M. Bodmer, A. Michel, M.D. Niederberger, T. Kaufmann, Cross-sectional study of Streptococcus species in quarter milk samples of dairy cows in the canton of Bern, Switzerland, Veterinary Record 167(6) (2010) 211-215.
A.B. Wyder, R. Boss, J. Naskova, T. Kaufmann, A. Steiner, H.U. Graber, Streptococcus spp. and related bacteria: Their identification and their pathogenic potential for chronic mastitis - A molecular approach, Research in Veterinary Science 91(3) (2011) 349-357.
X.Y. Tian, N. Zheng, R.W. Han, H. Ho, J. Wang, Y.T. Wang, S.Q. Wang, H.G. Li, H.W. Liu, Z.N. Yu, Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China, Microbial Pathogenesis 131 (2019) 33-39.
L. Settanni, A. Di Grigoli, G. Tornambe, V. Bellina, N. Francesca, G. Moschetti, A. Bonanno, Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a traditional Caciocavallo type cheese, Int J Food Microbiol 155(1-2) (2012) 73-81.
J. Pega, S. Rizzo, C.D. Perez, L. Rossetti, G. Diaz, S.M. Ruzal, M. Nanni, A.M. Descalzo, Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR, Int J Food Microbiol 232 (2016) 117-25.
Z. Erginkaya, E.U. Turhan, D. Tatl?, Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products, Iran J Vet Res 19(1) (2018) 53-56.
I. Holko, V. Tan?in, M. Vr?kov?, K. Tvaro?kov?, Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia, Journal of Dairy Research 86(4) (2019) 436-439.
A.B. Fl?rez, B. Mayo, Antibiotic Resistance-Susceptibility Profiles of Streptococcus thermophilus Isolated from Raw Milk and Genome Analysis of the Genetic Basis of Acquired Resistances, Frontiers in Microbiology 8(2608) (2017).
S. Morandi, M. Brasca, Safety aspects, genetic diversity and technological characterisation of wild-type Streptococcus thermophilus strains isolated from north Italian traditional cheeses, Food Control 23(1) (2012) 203-209.
C. Thornsberry, P.J. Burton, Y.C. Yee, J.L. Watts, R.J. Yancey, The Activity of a Combination of Penicillin and Novobiocin Against Bovine Mastitis Pathogens: Development of a Disk Diffusion Test, Journal of Dairy Science 80(2) (1997) 413-421.
S.P. Oliver, B.E. Gillespie, S.J. Ivey, M.J. Lewis, D.L. Johnson, K.C. Lamar, H. Moorehead, H.H. Dowlen, S.T. Chester, J.W. Hallberg, Influence of Prepartum Pirlimycin Hydrochloride or Penicillin-Novobiocin Therapy on Mastitis in Heifers During Early Lactation, Journal of Dairy Science 87(6) (2004) 1727-1731.
P.L. Ruegg, L. Oliveira, W. Jin, O. Okwumabua, Phenotypic antimicrobial susceptibility and occurrence of selected resistance genes in gram-positive mastitis pathogens isolated from Wisconsin dairy cows, Journal of Dairy Science 98(7) (2015) 4521-4534.
B. Wang, X. Tan, R. Du, F. Zhao, L. Zhang, Y. Han, Z. Zhou, Bacterial composition of biofilms formed on dairy-processing equipment, Prep Biochem Biotechnol 49(5) (2019) 477-484.
D. Bassi, F. Cappa, S. Gazzola, L. Orrù, P.S. Cocconcelli, Biofilm Formation on Stainless Steel by Streptococcus thermophilus UC8547 in Milk Environments Is Mediated by the Proteinase PrtS, Applied and Environmental Microbiology 83(8) (2017) e02840-16.
G.C. Knight, R.S. Nicol, T.A. McMeekin, Temperature step changes: a novel approach to control biofilms of Streptococcus thermophilus in a pilot plant-scale cheese-milk pasteurisation plant, International Journal of Food Microbiology 93(3) (2004) 305-318.
Downloads
Key Dates
Published
Issue
Section
License
(Starting May 5, 2024) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.