Different Mathematical Spectrophotometric Methods for Determination of Ampyrone in Presence of Its Acid Degradation Product





Area under curve, Ampyrone, simultaneous equation, modified simultaneous equation, Acidic product.


Three simple spectrophotometric methods namely; area under the curve, simultaneous equation method, and modified simultaneous equation method was developed and validated for the determination of Ampyrone with the presence of its acidic product using zero-order spectra without prior separation techniques. The linearity was found in the range of (10-50 mg/L) and (10-55 mg/L) for Ampyrone and its acidic product, respectively. The recovery percentage was found to be in the range from 99.6 to 100.65 for the area under curve method and 96.64 to 104.8 for the simultaneous equation method and its modified version which showed good accuracy and precision for three proposed methods.


S.S. Saleh, S.M. Riad. 2018. Analytical Investigation on Green Smart Spectrophotometric Methods Utilizing Unified Regression Equation, 2008, Analytical Chemistry Letters, 8 : 268-76,

CrossRef DOI: https://doi.org/10.1080/22297928.2018.1436003

A. Parmar, S. Sharma. 2016. Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review, TrAC Trends in Analytical Chemistry. 77: 44-53.

CrossRef DOI: https://doi.org/10.1016/j.trac.2015.12.004

M. M. Abdelrahman. 2013. Simultaneous determination of Cinnarizine and Domperidone by area under curve and dual wavelength spectrophotometric methods Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 113: 291-296. DOI: https://doi.org/10.1016/j.saa.2013.04.120

CrossRef | PubMed

I. H. Ibraheem, W.A. Mahmoud. 2014. Synthesis and Spectral Analysis of Mn (II), Cu (II), Ni (II) and Cd (II) Complexes with Mixed Ligands containing 1, 10-phenanthroline and Schiff base derived of 4-aminoantipyrine. Baghdad Science Journal. 1:1519-1527.

CrossRef DOI: https://doi.org/10.21123/bsj.11.4.1519-1527

R. K. Al-Shemary, A. L. Niseaf, A. J. Jarad. 2017. Synthesis, characterization and antibacterial Evaluation for mixed-ligand Complexes of Nickle (II), Manganese(II), Copper(II),Cobalt(II) and Mercury(II) with Tetradentate Schiff base and 1,10-phenanthroline . Al-Mustansiriyah Journal of Science. 28(2): 80-85.

CrossRef DOI: https://doi.org/10.23851/mjs.v28i2.503

J.J. Xiong, P.C. Huang, C.Y. Zhang, F.Y. Wu. 2016. Colorimetric detection of Cu2+ in aqueous solution and on the test kit by 4-aminoantipyrine derivatives. Sensors and Actuators B: Chemical. 226: 30-6.

CrossRef DOI: https://doi.org/10.1016/j.snb.2015.11.113

S. Manjula, S. Khan, A.A. Syed, S. Thanoi, C. Tocharus, S. Nudmamud-Thanoi, P. Sobhon, A.Samontha, W. Waiyawat, J. Shiowatana, R.G. McLaren. 2007. 4-Aminoantipyrine as a new electrophilic coupling reagent for spectrophotometric determination of iron (III) in water, industrial effluent and soil samples. Sci Asia. 33: 455-60.

J.M. Hong, J.K. Jun, H.Y. Kim, S. Ahn, S.K . Chang. 2015. Colorimetric signaling of Cu (II) ions by oxidative coupling of anilines with 4-aminoantipyrine. Tetrahedron letters, 56(40): 5393-5396.

CrossRef DOI: https://doi.org/10.1016/j.tetlet.2015.07.091

H.Y. Kim, H.J. Lee, S.K. Chang. 2015. Reaction-based colorimetric signaling of Cu2+ ions by oxidative coupling of phenols with 4-aminoantipyrine. Talanta, 132: 625-629 DOI: https://doi.org/10.1016/j.talanta.2014.09.048

CrossRef | PubMed

I. Nukatsuka, S.Nakamura, K. Watanabe, K. OHZEKI. 2000. Determination of phenol in tap water and river water samples by solid-phase spectrophotometry. Analytical sciences, 16(3): 269-273.

CrossRef DOI: https://doi.org/10.2116/analsci.16.269

J. I. Gowda, A. T. Buddanavar, S. T. Nandibewoor2015. Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine. Journal of pharmaceutical analysis, 5(4): 231-238. DOI: https://doi.org/10.1016/j.jpha.2015.01.001

CrossRef | PubMed

J. I. Gowda, T. Sharanappa, Nandibewoor. 2012. Electrochemical behavior of 4-aminophenazone drug at a graphite pencil electrode and its application in real samples. Industrial & Engineering Chemistry Research, 51(49): 15936-15941.

CrossRef DOI: https://doi.org/10.1021/ie302501f

E. Dabek-Zlotorzynska.1997. Capillary electrophoresis in the determination of pollutants. Electrophoresis, 18(12-13): 2453-2464. DOI: https://doi.org/10.1002/elps.1150181235

CrossRef | PubMed

D. Puig, I. Silgoner, M. Grasserbauer, D. Barcelo. 1997. Part-per-trillion level determination of priority methyl-, nitro-, and chlorophenols in river water samples by automated on-line liquid/solid extraction followed by Liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and ion spray interfaces. Analytical Chemistry, 69(14): 2756-2761.

CrossRef DOI: https://doi.org/10.1021/ac961256j

R. F. Abbas. 2018. Two Derivative Spectrophotometric Methods for the Simultaneous Determination of 4-AminoAntipyrine in Presence of Its Acidic Products. Ibn AL-Haitham Journal For Pure and Applied Science, 31(2): 86-96.

CrossRef DOI: https://doi.org/10.30526/31.2.1960

K. A. Attia, N. M. Elabasawy, E. Abolmagd. 2017. Simultaneous equation and area under the curve spectrophotometric methods for estimation of cefaclor in presence of its acid induced degradation product; A comparative study. Future Journal of Pharmaceutical Sciences, 3(2): 163-167

CrossRef DOI: https://doi.org/10.1016/j.fjps.2017.06.001

M. A. Hegazy, A. M. Yehia, A.A. Mostafa. 2012. Stability-indicating methods for the determination of mosapride citrate in the presence of its degradation products according to ICH guidelines. Drug testing and analysis, 4(2): 104-115. DOI: https://doi.org/10.1002/dta.246

CrossRef | PubMed

19. H.M. Lotfy, Y.M. Fayez, S.M Tawakkol., N.M.Fahmy, M.A. Shehata2017. Spectrophotometric determination for the binary mixture of clotrimazole and dexamethasone in pharmaceutical dosage form. Analytical Chemistry Letters, 7(1): 30-42.

CrossRef DOI: https://doi.org/10.1080/22297928.2017.1279985

R.F. Abbas, H.A. Abbas, M.M. Rawa, D.A. Abdulabbas, M.A. Abed. 2017. Estimation of the Folic Acid Using Zero Order, Area Under Curve and First Derivative Spectrophotometric Methods in Pure and Marketed Tablet Formulations. Al-Nahrain Journal of Science, 20(3): 34-41.

CrossRef DOI: https://doi.org/10.22401/JUNS.20.3.07

B.M. Ayoub. 2016. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 168: 118-122. DOI: https://doi.org/10.1016/j.saa.2016.06.010

CrossRef | PubMed

L. Kalyani, C. V. Rao, 2018. Simultaneous spectrophotometric estimation of Salbutamol, Theophylline and Ambroxol three component tablet formulation using simultaneous equation methods. Karbala International Journal of Modern Science, 4(1): 171-179.

CrossRef DOI: https://doi.org/10.1016/j.kijoms.2018.01.004

N. Erk, F. Onur. 1997. Three new spectrophotometric methods for simultaneous determination of hydrochlorothiazide and amiloride hydrochloride in sugar-coated tablets. Analytical letters, 30(8): 1503-1515.

CrossRef DOI: https://doi.org/10.1080/00032719708001671

A. M. Al Alamein, H.M. Elwy, S.H.El-Din, 2019. Univariate and multivariate spectrophotometric methods for simultaneous determination of avobenzone and octinoxate in pure form and in cosmetic formulations: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206: 37-47. DOI: https://doi.org/10.1016/j.saa.2018.07.073

CrossRef | PubMed




How to Cite

R. F. Abbas, “Different Mathematical Spectrophotometric Methods for Determination of Ampyrone in Presence of Its Acid Degradation Product”, MJS, vol. 31, no. 3, pp. 72–77, Aug. 2020.



Chemical Science