Optical Enhancement by Gold Nanoring-Nanodisk Plasmonic Structures for Light Sensing Applications
DOI:
https://doi.org/10.23851/mjs.v33i4.1160Keywords:
Nanoring-Nanodisk, Plasmonic, Optical Enhancement.Abstract
We design and numerically model a 3D nanoring-nanodisk structure and evaluate the effect of the ring and the disk radii size within the presented structure on optical enhancement. Nanoring-nanodisk is a powerful structure for enhancing the local electric field for photo-sensing applications. We present an enhanced local electric field from the UV to IR wavelength range using the proposed structure with a fixed nanogap. It shows a strong dependence on the disk radius of the structure. In addition, two distinct peaks have different plasmonic vibrational modes appearing in the spectrum. These modes are revealed by 3D surface charge and local electric field distributions. Moreover, our calculations reveal that a smaller disk radius with a larger ring radius can generate more optical enhancement.
Downloads
References
P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, "Surface-enhanced Raman spectroscopy," Annu Rev Anal Chem (Palo Alto Calif) 1, 601-626 (2008).
B. N. Khlebtsov and N. G. Khlebtsov, "Multipole Plasmons in Metal Nanorods: Scaling Properties and Dependence on Particle Size, Shape, Orientation, and Dielectric Environment," J. Phys. Chem. C 111, 11516-11527 (2007).
C. Noguez, "Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment," J. Phys. Chem. C 111, 3806-3819 (2007).
S. J. Bauman, A. A. Darweesh, and J. B. Herzog, "Surface-enhanced Raman spectroscopy substrate fabricated via nanomasking technique for biological sensor applications," in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX (SPIE, 2016), Vol. 9759, pp. 170-177.
A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, "Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries," Nano Lett. 9, 1651-1658 (2009).
E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, "Multipole Plasmon Resonances in Gold Nanorods," J. Phys. Chem. B 110, 2150-2154 (2006).
X. Wang, Y. Wu, X. Wen, J. Zhu, X. Bai, Y. Qi, and H. Yang, "Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure," Opt Quant Electron 52, 238 (2020).
M. S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M. J. Nine, A. Dinovitser, C. M. B. Cordeiro, B. W.-H. Ng, and D. Abbott, "Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing," Carbon 158, 559-567 (2020).
Y. Liu and F. Luo, "Spatial Raman mapping investigation of SERS performance related to localized surface plasmons," Nano Res. 13, 138-144 (2020).
F. A. A. Nugroho, D. Albinsson, T. J. Antosiewicz, and C. Langhammer, "Plasmonic Metasurface for Spatially Resolved Optical Sensing in Three Dimensions," ACS Nano 14, 2345-2353 (2020).
D. T. Debu, D. T. Debu, D. T. Debu, Q. Yan, Q. Yan, Q. Yan, A. A. Darweesh, M. Benamara, and G. Salamo, "Broad range electric field enhancement of a plasmonic nanosphere heterodimer," Opt. Mater. Express, OME 10, 1704-1713 (2020).
A. A. Darweesh, D. T. Debu, S. J. Bauman, and J. B. Herzog, "Near- and Far-Field Plasmonic Enhancement by Asymmetric Nanosphere Heterodimers," Plasmonics (2022).
P. Zhao, Y. Chen, Y. Chen, S. Hu, H. Chen, W. Xiao, G. Liu, Y. Tang, J. Shi, Z. He, Y. Luo, and Z. Chen, "A MoS2 nanoflower and gold nanoparticle-modified surface plasmon resonance biosensor for a sensitivity-improved immunoassay," J. Mater. Chem. C 8, 6861-6868 (2020).
B. Sun, Z. Wang, Z. Liu, X. Tan, X. Liu, T. Shi, J. Zhou, and G. Liao, "Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector," Advanced Functional Materials 29, 1900541 (2019).
X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, "Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube," Results in Physics 12, 1866-1870 (2019).
I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, "Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms," ACS Nano 5, 2535-2546 (2011).
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2004).
H.-P. Liang, L.-J. Wan, C.-L. Bai, and L. Jiang, "Gold Hollow Nanospheres: Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
D. W. Brandl, N. A. Mirin, and P. Nordlander, "Plasmon Modes of Nanosphere Trimers and Quadrumers," J. Phys. Chem. B 110, 12302-12310 (2006).
L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, "Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer," Nano Lett. 15, 6419-6428 (2015).
E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, "Multipole Plasmon Resonances in Gold Nanorods," J. Phys. Chem. B 110, 2150-2154 (2006).
A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, "Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries," Nano Lett. 9, 1651-1658 (2009).
P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
Downloads
Key Dates
Published
Issue
Section
License
Copyright (c) 2022 Al-Mustansiriyah Journal of Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
(Starting May 5, 2024) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.