Tuning Structural and Optical Properties of WO3 NPs Thin Films by the Fluency of Laser Pulses

Authors

  • Ali Jaafar Hwaidi (1) Thin film laboratory, Department of Physics, College of Science, Mustansiriyah University, Baghadad, Iraq. (2) Ministry of Education, Directorate General of Education Rusafa 2, Baghdad, IRAQ.
  • Prof. Dr. Nadheer Jassim Mohammed Thin film laboratory, Department of Physics, College of Science, Mustansiriyah University, Baghdad, IRAQ.

DOI:

https://doi.org/10.23851/mjs.v33i3.1145

Keywords:

WO3, Thin films, pulsed laser deposition, vacuum , nanoparticles

Abstract

In this paper, tungsten oxide thin films were successfully synthesized by the laser pulse deposition (PLD) method using a pulsed laser (ND-YAG) and wavelength (1064 nm) on a glass substrate at different laser fluencies. The effect of increasing laser fluency, on the optical and structural properties of WO3 nanoparticle thin films, was investigated by UV-Visible spectrophotometer, X-Ray diffraction (XRD), atomic force microscope (AFM) and Scanning Electron Microscope (SEM). X-Ray measurements for all samples of WO3 NPs thin films have shown that by increasing the laser fluencies from 5.175 to 6.369 J/cm2, the intensity of the (2 01) diffraction peak increases due to the film continuing to grow with increased crystallization.

References

D. Zhang, Y. Cao, J. Wu and X. Zhang, Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application, Appl. Surf. Sci., 2020, 503, 144063.

CrossRef DOI: https://doi.org/10.1016/j.apsusc.2019.144063

X. Chang, S. Xu, S. Liu, N. Wang, S. Sun and X. Zhu, et al., Highly sensitive acetone sensor based on WO3 nanosheets derived from WS2 nanoparticles with inorganic fullerene-like structures, Sens. Actuators, B, 2021, 343, 130135.

CrossRef DOI: https://doi.org/10.1016/j.snb.2021.130135

A. Staerz, S. Somacescu, M. Epifani, T. Kida, U. Weimar and N. Barsan, WO3-based gas sensors: identifying inherent qualities and understanding the sensing mechanism, ACS Sens., 2020, 5, 1624-1633. DOI: https://doi.org/10.1021/acssensors.0c00113

CrossRef | PubMed

Q. Ding, Y. Wang, P. Guo, J. Li, C. Chen and T. Wang, et al., Cr-doped urchin-like WO3 hollow spheres: the cooperative modulation of crystal growth and energy-band structure for high-sensitive acetone detection, Sensors, 2020, 20, 3473. DOI: https://doi.org/10.3390/s20123473

CrossRef | PubMed

S. Liu, W. Zeng and Y. Li, Synthesis of spherical WO3·H2O network for ethanol sensing application, Mater. Lett., 2019, 253, 42-45.

CrossRef DOI: https://doi.org/10.1016/j.matlet.2019.06.037

C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang and Y. Wang, A review on WO3 based gas sensors: morphology control and enhanced sensing properties, J. Alloys Compd., 2020, 820, 153194.

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2019.153194

C.-H. Chang, T.-C. Chou, W.-C. Chen, J.-S. Niu, K.-W. Lin and S.-Y. Cheng, et al., Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles, Sens. Actuators, B, 2020, 317, 128145.

CrossRef DOI: https://doi.org/10.1016/j.snb.2020.128145

H.J. Chen, N.S. Xu, S.Z. Deng, D.Y. Lu, Z.L. Li, J. Zhou, J. Chen, Nanotechnology 18, (2007) 205701.

CrossRef DOI: https://doi.org/10.1088/0957-4484/18/20/205701

Y. Hattori, S. Nomura, S. Mukasa, H. Toyota, T. Inoue, T. Kasahara, J. Alloys, Comp. 560 (2013) 105-110.

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2013.01.137

Y.X. Qin, F. Wang, W.J. Shen, M. Hu, J. Alloys Comp. 540 (2012) 21-26.

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2012.06.058

L. Fang, S.J. Baik, K.S. Lim, S.H. Yoo, M.S. Seo, S.J. Kang, J.W. Seo, Appl. Phys. Lett. 96 (2010) 193501.

CrossRef DOI: https://doi.org/10.1063/1.3427396

P.J. Barczuk, A. Krolikowska, A. Lewera, K. Miecznikowski, R. Solarska, J. Augustynski, Electrochim. Acta 104 (2013) 282-288.

CrossRef DOI: https://doi.org/10.1016/j.electacta.2013.04.107

M. Vasilopoulou, L.C. Palilis, D.G. Georgiadou, A.M. Douvas, P. Argitis, S. Kennou, L. Sygellou, G. Papadimitropoulos, I. Kostis, N.A. Stathopoulos, D. Davazoglou, Adv. Funct. Mater. 21 (2011) 1489-1497.

CrossRef DOI: https://doi.org/10.1002/adfm.201002171

J. Meyer, S. Hamwi, S. Schmale, T. Winkler, H.H. Johannes, T. Riedl, W. [29] W.L. Kwong, N. Savvides, C.C. Sorrell, Electrochim. Acta 75 (2012) 371-380.

CrossRef

S.M. Yong, T. Nikolay, B.T. Ahn, D.K. Kim, J. Alloys Comp. 547 (2013) 113-117.

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2012.08.124

N.S. Ramgir, C.P. Goyal, P.K. Sharma, U.K. Goutam, S. Bhattacharya, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sens. Actuators B - Chem. 188, (2013) 525-532.

CrossRef DOI: https://doi.org/10.1016/j.snb.2013.07.052

D.S. Lee, K.H. Nam, D.D. Lee, Thin Solid Films 375 (2000) 142-147. DOI: https://doi.org/10.1016/S0040-6090(00)01261-X

CrossRef DOI: https://doi.org/10.1016/S0040-6090(00)01255-4

D. Manno, A. Serra, M. DiGiulio, G. Micocci, A. Tepore, Thin Solid Films 324, (1998) 44-51.

CrossRef DOI: https://doi.org/10.1016/S0040-6090(97)01205-4

M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass, K. Abd El-Hady, Mater. Chem., Phys. 98 (2006) 401-405.

CrossRef DOI: https://doi.org/10.1016/j.matchemphys.2005.09.052

A. Rothschild, J. Sloan, R. Tenne, J. Am. Chem. Soc. 122 (2000) 5169-5179.

CrossRef DOI: https://doi.org/10.1021/ja994118v

R.S. Vemuri, G. Carbjal-Franco, D.A. Ferrer, M.H. Engelhard, C.V. Ramana, Appl., Surf. Sci. 259 (2012) 172-177.

CrossRef DOI: https://doi.org/10.1016/j.apsusc.2012.07.014

C. Zhang, A. Boudiba, P.D. Marco, R. Snyders, M.G. Olivier, M. Debliquy, Sens. Actuators B - Chem. 181 (2013) 395-401. DOI: https://doi.org/10.1016/j.snb.2013.01.082

CrossRef DOI: https://doi.org/10.1016/j.snb.2013.02.079

R. Sivakumar, A. Moses Ezhil Raj, B. Subramanian, M. Jayachandran Trivedi, C. Sanjeeviraja, Mater. Res. Bull. 39 (2004) 1479-1489.

CrossRef DOI: https://doi.org/10.1016/j.materresbull.2004.04.023

Z. Silvester Houweling, John W. Geus, Michiel de Jong, Peter-Paul R.M.L. Harks, Karine H.M. van der Werf, Ruud E.I. Schropp, Mater. Chem. Phys. 131 (2011), 375-386.

CrossRef DOI: https://doi.org/10.1016/j.matchemphys.2011.09.059

K.J. Lethy, D. Beena, R.V. Kumar, V.P.M. Pillai, V. Ganesan, V. Sathe, Appl. Surf. Sci. 254 (2008) 2369-2376.

CrossRef

S. Yamamoto, A. Inouye, M. Yoshikawa, Nucl. Instrum. Methods B 266 (2008), 802-806. DOI: https://doi.org/10.1016/j.nimb.2007.12.092

CrossRef DOI: https://doi.org/10.1016/j.nimb.2008.03.231

L.M. Bertus, C. Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, A. Duta, Mater. Chem. Phys. 140 (2013) 49-59.

CrossRef DOI: https://doi.org/10.1016/j.matchemphys.2013.02.047

P.M. Kadam, N.L. Tanwal, P.S. Shinde, S.S. Mali, R.S. Patil, A.K. Bhosale, H.P. Deshmukh, P.S. Patil, J. Alloys Comp. 509 (2011) 1729-1733.

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2010.10.024

W.L. Kwong, N. Savvides, C.C. Sorrell, Electrochim. Acta 75 (2012) 371-380

CrossRef DOI: https://doi.org/10.1016/j.electacta.2012.05.019

B. Ingham, S.V. Chong, J.L. Tallon, Curr. Appl. Phys. 4 (2004) 202-205.

CrossRef DOI: https://doi.org/10.1016/j.cap.2003.11.009

N. Naseri, H. Kim, W. Choi, A.Z. Moshfegh, Int. J. Hydrogen Energy 38 (2013), 2117-2125.

CrossRef DOI: https://doi.org/10.1016/j.ijhydene.2012.11.132

R. Solarska, B.D. Alexander, A. Braun, R. Jurczakowski, G. Fortunato, M. Stiefel, T. Graule, J. Augustynski, Electrochim. Acta 55 (2010) 7780-7787.

CrossRef DOI: https://doi.org/10.1016/j.electacta.2009.12.016

C.V. Ramana, G. Baghmar, E.J. Rubio, M.J. Hernandez, ACS Appl. Mater. Int. 5, (2013) 4659-4666. DOI: https://doi.org/10.1021/am4006258

CrossRef | PubMed

H.H. Lu, J. Alloys Comp. 465 (2008) 429-435. DOI: https://doi.org/10.1016/j.jallcom.2007.10.105

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2007.10.101

S. Keshri, A. Kumar, D. Kabiraj, Thin Solid Films 526 (2012) 50-58.

CrossRef DOI: https://doi.org/10.1016/j.tsf.2012.10.101

K.J. Patel, C.J. Panchal, V.A. Kheraj, M.S. Desai, Mater. Chem. Phys. 114 (2009) 475-478.

CrossRef DOI: https://doi.org/10.1016/j.matchemphys.2008.09.071

R. Binions, C. Piccirillo, R.G. Palgrave, I.P. Parkin, Chem. Vapor Depos. 14 (2008) 33-39.

CrossRef DOI: https://doi.org/10.1002/cvde.200706641

A.Z. Mohammed, N.J. Mohammed, I.K. Khudhair, "Effect of the Number Shots of Laser on Structural Transformations and Optical Properties of ZnS Nanoparticles Thin Films," Arab J. Nucl. Sci. Appl., vol. 51, 4, pp. 108-117, 2018.

Lethy, K. J., Beena, D., Kumar, R. V., Pillai, V. M., Ganesan, V., & Sathe, V. (2008). Structural, optical and morphological studies on laser ablated nanostructured WO3 thin films. Applied Surface Science, 254(8), 2369-2376,

CrossRef DOI: https://doi.org/10.1016/j.apsusc.2007.09.068

Cullity, B. D. Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956.

N. J. Mohammed, H. A. Ahmed, "Effect of Laser Fluence on Structural Transformations and Photoluminescence Quenching of Zinc Selenide Nanoparticles Thin Films", Al-Mustansiriyah Journal of Science, Volume 29, Issue 4, PP 122-127, 2018.

CrossRef DOI: https://doi.org/10.23851/mjs.v29i4.441

Corona, S. A. M., Souza, A. E. D., Chinelatti, M. A., Borsatto, M. C., Pécora, J. D., & Palma-Dibb, R. G.' Effect of energy and pulse repetition rate of Er: YAG laser on dentin ablation ability and morphological analysis of the laser-irradiated substrate'. Photomedicine and Laser Therapy, 25(1), 26-33. (2007). DOI: https://doi.org/10.1089/pho.2006.1075

CrossRef | PubMed

Shaker, S. S. 'Preparation and Study the Characteristics of Tungsten Trioxide Thin Films for Gas Sensing Application', Engineering and Technology Journal, 34, (2016).

E. A. Davis, N. F. Mott, Phil. Mag. 22, 903, (1970). DOI: https://doi.org/10.2307/2712155

CrossRef DOI: https://doi.org/10.1080/14786437008221061

Díaz-Reyes, J., Castillo-Ojeda, R., Galván-Arellano, M., & Zaca-Moran, O. 'Characterization of WO3 thin films grown on silicon by HFMOD, Advances in Condensed Matter Physics, 2013.‏

CrossRef DOI: https://doi.org/10.1155/2013/591787

Zou, Y. S., Zhang, Y. C., Lou, D., Wang, H. P., Gu, L., Dong, Y. H., ... & Zeng, H. B.. Structural and optical properties of WO3 films deposited by pulsed laser deposition. Journal of alloys and compounds, 583, 465-470, 2014.

CrossRef DOI: https://doi.org/10.1016/j.jallcom.2013.08.166

Downloads

Published

2022-09-25

How to Cite

[1]
A. J. . Hwaidi and P. D. N. J. Mohammed, “Tuning Structural and Optical Properties of WO3 NPs Thin Films by the Fluency of Laser Pulses”, Al-Mustansiriyah Journal of Science, vol. 33, no. 3, pp. 94–100, Sep. 2022.

Issue

Section

Physical Sciences