Relationship of Obesity to Serum Ferritin, Lipid Profile, uric acid and urea at Obesity Medical Center in Iraq
DOI:
https://doi.org/10.23851/mjs.v29i1.228Keywords:
Obesity, ferritin, lipid profile, Body Mass index, Obesity complications.Abstract
Obesity is a hyper assembly of energy in the form of adipose tissues which has worse effects on health. The major factors of obesity epidemic are: heavy mails which are rich in lipids, carbohydrates resulting in overweight and eventually obesity, decrease in physical activity that lead to defect in calories conception. In health care facilities ferritin assay is used as a screening test to detect iron deficiency; however, its reliability in obesity has been questioned. The aim of present study was to assess and compare the incidence of obesity, hyperferritinemia, hyperlipidemia and hypouricemia among middle-aged hypertensive patients in the local setting as well as, examined ferritin concentrations and other classical indices in obese males and females. This limited population study was conducted at Obesity Medical Center at Al-Kindy Teaching Hospital, Baghdad, Iraq from January to march 2016. One hindered and eight patients were enrolled in this study plus to participate of 61 subjects as healthy control. On the basis of body mass index (BMI), 169 participants were divided into two groups: BMI ≥ 18.5–25 kg/m2 non obese (control), BMI ≥ 30 kg/m2 obese subjects. The main demographic features data of the study population appears that systolic blood pressure and diastolic blood pressure were raised significantly in obese patients (P<0.05) compared with control. Serum hemoglobin level was decreased significantly in obese male when compared with the nonobese group and no difference in the female group was observed. In addition, the levels of lipid profile and other studied parameters according to gender showed the following results: A significant elevation in TG, LDL, VLDL, glucose, ferritin in obese (for both genders) compared with the non-obese group. While a significant decrease was noticed in HDL-c, uric acid and urea level in obsess group compared with the non-obese group in both genders. The comparison results between obese males and females concluded that a significant elevation in BMI with a significant decrease in VLDL and ferritin levels in obese females compared with obese males. The present study includes examined all types of correlation between parameters. In obese patients (n=108), stepwise linear regression analysis showed that, serum ferritin levels were independently correlated with LDL, VLDL levels and age, (P< 0.001).Downloads
References
- WHO, Obesity and Overweight Fact Sheet N°311, WHO, Geneva, Switzerland, 2015 .
- J. K. Dibaise and A. E. Foxx-Orenstein, “Role of the gastroenterologist in managing obesity,” Expert Review of Gastroenterology and Hepatology, vol. 7, no. 5, pp. 439–451, 2013.
- https://en.wikipedia.org/wiki/Obesity.
- D. W. Haslam and W. P. James, “Obesity,” The Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005.
- C. Hutchinson, “A review of iron studies in overweight and obese children and adolescents: a double burden in the young?” European Journal of Nutrition, vol. 55, no. 7, pp. 2179–2197, 2016.
- A. C. Cepeda-Lopez, A. Melse-Boonstra, M. B. Zimmermann, and I. Herter-Aeberli, “In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women,” The American Journal of Clinical Nutrition, vol. 102, no. 6, pp. 1389–1397, 2015.
- J. Baumgartner, C. M. Smuts, I. Aeberli, L. Malan, H. Tjalsma, and M. B. Zimmermann, “Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention,” International Journal of Obesity, vol. 37, no. 1, pp. 24–30, 2013.
- L. Zhao, X. Zhang, Y. Shen, X. Fang, Y. Wang, and F. Wang, “Obesity and iron deficiency: a quantitative meta-analysis,” Obesity Reviews, vol. 16, no. 12, pp. 1081–1093, 2015.
- H. L. Cheng, C. Bryant, R. Cook, H. O'Connor, K. Rooney, and K. Steinbeck, “The relationship between obesity and hypoferraemia in adults: a systematic review,” Obesity Reviews, vol. 13, no. 2, pp. 150–161, 2012.
-Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014; 384:766–781 .
- Gartner A, Berger J, Bour A, E Ati J, Traissac P, Landais E, et al. Assessment of iron deficiency in the context of the obesity epidemic: importance of correcting serum ferritin concentrations for inflammation. Am. J .Clin. Nutr. 2013; 98(3):821–826.
- Menzie CM, Yanoff LB, Denkinger BI, McHugh T, Sebring NG, Calis KA, et al. Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J Am Diet Assoc. 2008; 108(1):145–18.
- A. Vehapoglu, S. Turkmen, N. Goknar, and Ö. F. Özer, “Reduced antioxidant capacity and increased subclinical inflammation markers in prepubescent obese children and their relationship with nutritional markers and metabolic parameters,” Redox Report, vol. 21, no. 6, pp. 271–280, 2016.
- .P. Gupta Bansal, G. Singh Toteja, N. Bhatia et al., “Deficiencies of serum ferritin and vitamin B12, but not folate, are common in adolescent girls residing in a slum in Delhi,” International Journal for Vitamin and Nutrition Research, vol. 85, no. 1-2, pp. 14–22, 2015.
- .H. T. O'Brien, R. Blanchet, D. Gagné, J. Lauzière, and C. Vézina, “Using soluble transferrin receptor and taking inflammation into account when defining serum ferritin cutoffs improved the diagnosis of iron deficiency in a group of Canadian preschool Inuit children from Nunavik,” Anemia, vol. 2016, Article ID 6430214, 10 pages, 2016.
- J.-W. Kim, D. H. Kim, Y. K. Roh et al., “Serum ferritin levels are positively associated with metabolically obese normal weight: a nationwide population-based study,” Medicine, vol. 94, no. 52, Article ID e2335, 2015.
-Y.-F. Huang, T.-S. Tok, C.-L. Lu, H.-C. Ko, M.-Y. Chen, and S. C. Chen, “Relationship between being overweight and iron deficiency in adolescents,” Pediatrics & Neonatology, vol. 56, no. 6, pp. 386–392, 2015.
- Oshang A, Bugge KH, Bjones CH, Borch-Iohnsen B, Neslein IL. Associations between serum ferritin and cardiovascular risk factors in healthy young men. A cross sectional study. Eur J Clin Nutr 1995; 49: 430–438. | PubMed |
- Jehn M, Clark JM, Guallar E. Serum ferritin and risk of the metabolic syndrome in US adults. Diabetes Care 2004; 27: 2422–2428. |
- Guillum RF. Association of serum ferritin and indices of body fat distribution and obesity in Mexican American men: the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord 2001; 25: 639–645. |
- Illouz F, Roulier V, Rod A, Gallois Y, Pellé CP, Aubé C et al. Distribution of adipose tissue: quantification and relationship with hepatic steatosis and vascular profiles of type 2 diabetic patients with metabolic syndrome. Diabetes Metab 2008; 34: 68–74. | |*
- Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448–454.|
- Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated c-reactive protein levels in overweight and obese adults. JAMA 1999; 282: 2131–2135. | |
- Fernández-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003; 24: 278–301. | |
- Hernández C, Lecube A, Carrera A, Simó R. Soluble transferrin receptors and ferritin in Type 2 diabetic patients. Diabet Med 2005; 22: 97–101. | |
- WHO, Obesity and Overweight Fact Sheet N°311, WHO, Geneva, Switzerland, 2015.
- D. Herrera-Covarrubias, G. A. Coria-Avila, C. Fernández-Pomares, G. E. Aranda-Abreu, J. Manzo Denes, and M. E. Hernández, “Obesity as a risk factor in the development of cancer,” Revista Peruana de Medicina Experimental y Salud Pública, vol. 32, no. 4, pp. 766–776, 2015.
- A. Kohlgruber and L. Lynch, “Adipose tissue inflammation in the pathogenesis of type 2 diabetes,” Current Diabetes Reports, vol. 15, no. 11, article 92, 2015.
- J.-P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006.
- Richard H. , Denise F ,Lippincotts illustrated reviews . Biochemistry. 5 th ed .Williams and Wilkins / Philadelphia, 2011, p,40 .
- Tamai H, Ohsako N, Takeno K, Fukino O, Takahashi H, Kuma K, et al. Changes in thyroid function in euthyroid subjects with a family history of Graves' disease: a follow-up study of 69 patients. J Clin Endocrinol Metab 1980; 51(5):1123-1127.
- Eftekhari MH, Eshraghian MR, Mozaffari-Khosravi H, Saadat N, Shidfar F. Effect of iron repletion and correction of iron deficiency on thyroid function in iron-deficient Iranian adolescent girls. Pak J Biol Sci 2007;10: 255-60.
- Dillman E, Johnson DG, Martin J, Mackler B, Finch CA. Catecholamine elevation in iron deficiency. Am. J. Physiol. 1979; 237: 927-930.
- Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int. J. Obes. Relat. Metab. Disord. 2003; 27:416–418.
- Moayeri H, Bidad K, Zadhoush S, Gholami N, Anari S. Increasing prevalence of iron deficiency in overweight and obese children and adolescents (tehran adolescent obesity study) Eur. J. Pediatr. 2006; 165:813–814.
- Shi Z, Lien N, Kumar BN, Dalen I, Holmboe-Ottesen G. The sociodemographic correlates of nutritional status of school adolescents in jiangsu province, china. J. Adolesc. Health. 2005; 37:313–322.
- Tussing-Humphreys LM, Liang H, Nemeth E, Freels S, Braunschweig CA. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J. Am. Diet. Assoc. 2009; 109:297–302.
- Sanad M, Osman M, Gharib A. Obesity modulate serum hepcidin and treatment outcome of iron deficiency anemia in children: a case control study. Ital J Pediatr. 2011;37 :34.
- Aigner E, Hinz C, Steiner K, Rossmann B, Pfleger J, Hohla F, et al. Iron stores, liver transaminase levels and metabolic risk in healthy teenagers. Eur. J. Clin. Investig. 2010; 40:155–163.
- Ackerman, Z.; Oron-Herman, M.; Grozovski, M.; Rosenthal, T.; Pappo, O.; Link, G.; Sela, B.A. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction.
Hypertension 2005, 45, 1012–1018.
- Lanaspa, M.A.; Sanchez-Lozada, L.G.; Cicerchi, C.; Li, N.; Roncal-Jimenez, C.A.; Ishimoto, T.; Le, M.;Garcia, G.E.; Thomas, J.B.; Rivard, C.J.; et al. Uric acid stimulates fructokinase and accelerates fructose
metabolism in the development of fatty liver. PLoS ONE 2012, 7, e47948.
- Pagliassotti, M.J. Endoplasmic reticulum stress in nonalcoholic fatty liver disease. Annu. Rev. Nutr. 2012, 32,17–33.
- Zhang, C.; Chen, X.; Zhu, R.M.; Zhang, Y.; Yu, T.; Wang, H.; Zhao, H.; Zhao, M.; Ji, Y.L.; Chen, Y.H.; et al.Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in
fructose-fed mice. Toxicol. Lett. 2012, 212, 229–240.
- .De Oliveira, E.P.; Burini, R.C. High plasma uric acid concentration: causes and consequences.Diabetol. Metab. Syndr. 2012, 4, 12.
- Martinon, F.; Petrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241.
- Bugianesi, E.; Manzini, P.; D’Antico, S.; Vanni, E.; Longo, F.; Leone, N.; Massarenti, P.; Piga, A.; Marchesini, G.;Rizzetto, M. Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis innonalcoholic fatty liver. Hepatology 2004, 39, 179–187.
- Ford, E.S.; Cogswell, M.E. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 1999,22, 1978–1983.
- Salonen, J.T.; Tuomainen, T.P.; Nyyssonen, K.; Lakka, H.M.; Punnonen, K. Relation between iron stores and non-insulin dependent diabetes in men: Case-control study. BMJ 1998, 317, 727.
- Kim, C.W.; Chang, Y.; Sung, E.; Shin, H.; Ryu, S. Serum ferritin levels predict incident non-alcoholic fatty liver disease in healthy Korean men. Metabolism 2012, 61, 1182–1188.
- Gillum, R.F. Association of serum ferritin and indices of body fat distribution and obesity in Mexican American men—The third national health and nutrition examination survey. Int. J. Obes. Relat. Metab. Disord.2001, 25, 639–645.
- Piperno, A.; Trombini, P.; Gelosa, M.; Mauri, V.; Pecci, V.; Vergani, A.; Salvioni, A.; Mariani, R.; Mancia, G.Increased serum ferritin is common in men with essential hypertension. J. Hypertens. 2002, 20, 1513–1518.
- Williams, M.J.; Poulton, R.; Williams, S. Relationship of serum ferritin with cardiovascular risk factors and inflammation in young men and women. Atherosclerosis 2002, 165, 179–184.
- Iwasaki, T.; Nakajima, A.; Yoneda, M.; Yamada, Y.; Mukasa, K.; Fujita, K.; Fujisawa, N.; Wada, K.; Terauchi, Y.Serum ferritin is associated with visceral fat area and subcutaneous fat area. Diabetes Care 2005, 28, 2486–2491
- Alam, F.; Memon, A.S.; Fatima, S.S. Increased Body Mass Index may lead to Hyperferritinemia Irrespective of Body Iron Stores. Pak. J. Med. Sci. 2015, 31, 1521–1526.
- Ellervik, C.; Marott, J.L.; Tybjaerg-Hansen, A.; Schnohr, P.; Nordestgaard, B.G. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations: General population study and metaanalysis. Clin. Chem. 2014, 60, 1419–1428.
- Jian J, Pelle E, Huang X. Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxid Redox Signal. 2009; 11: 2939–2943.
- Sullivan JL. Is stored iron safe? J Lab Clin Med. 2004:144:280-284. PMID: 15614249.
- A. Lecube, C. Hernández, D. Pelegrí, and R. Simó, “Factors accounting for high ferritin levels in obesity,” International Journal of Obesity, vol. 32, no. 11, pp. 1665–1669, 2008.
- S.-B. Chen, Y.-C. Lee, K.-H. Ser et al., “Serum C-reactive protein and white blood cell count in morbidly obese surgical patients,” Obesity Surgery, vol. 19, no. 4, pp. 461–466, 2009.
Downloads
Key Dates
Published
Issue
Section
License
(Starting May 5, 2024) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.