A New Medical Dressing with Silver Nanoparticles to Treat Diabetic Foot Patient

Authors

  • Abdulrazaq Hammal department of Chemistry, Faculty of Science, Aleppo University, SYRIA.
  • Hiba ALhamed ALduihi department of Biology, Faculty of Science, Aleppo University, SYRIA.

DOI:

https://doi.org/10.23851/mjs.v33i1.1073

Keywords:

Silver, diabetic foot, Antibacterial activity

Abstract

In this study, we prepared medical dressings with silver nanoparticles to treat diabetic foot patient by photochemical reduction process of silver ions using sodium citrate and UV radiation. Antibacterial activity of dressing with silver nanoparticles against bacteria associated with diabetic foot was studied by disk diffusion method. It was observed that the bacteria did not grow on the culture medium where the medical gauze was impregnated with silver nanoparticles.

References

C. S. Mantzoros."obesity and diabetes" ,humana press, totowa, New Jersey, pp. 136-225, 2006.

CrossRef DOI: https://doi.org/10.1007/978-1-59259-985-1

Bauifan Ajm. The diabetic foot. Med. International: 21(7):271-274, 1993.

S. C. Mishra, K. C., A. Chhatbar, Kashikar and A. Mehndiratta. Diabetic foot. BMJ. 0116;359:j5064, 2017. DOI: https://doi.org/10.1136/bmj.j5064

CrossRef | PubMed

W.Jeffcoate and K. Bakker. World Diabetes Day: footing the bill. Lancet 2005 6736(05): 66437-9-9,2005.

P. A. Lazzarini, S. E. Hurn, M. E. Fernando, S.D. Jen, S. S. Kuys , M. C. Kamp and L. F. Reed. Prevalence of foot disease and risk factors in general inpatient populations: a systematic review and meta-analysis. BMJ Open. 23;5(11): e008 544, 2015. DOI: https://doi.org/10.1136/bmjopen-2015-008544

CrossRef | PubMed

S. Bhat, S. Mary, A. P. Giri, and M. J. Kulkarni. Advanced glycation end products indiabetic complications. In: Mechanisms of vascular defects in diabetes mellitus. Advances in Biochemistry in Health and Disease. Springer, Cham. 17:423-49,2017

CrossRef DOI: https://doi.org/10.1007/978-3-319-60324-7_19

L. C. Rogers, R. G. Frykberg, L. J. Sanders. The diabetic Charcot foot: recognition,evaluation and management. In: Armstrong DG, Lavery LA, eds. Clinical care of the diabetic foot. 3rd ed.99, 2016.

International Guidelines Team. National Institute for Health and Care Excellence clinical guideline 19. Diabetic foot problems: prevention and management. Updated 2016.

A. J. M. Boulton. The diabetic foot. Medical clinics of north AM. 72 (6) : 1513-1530,1988.

CrossRef DOI: https://doi.org/10.1016/S0025-7125(16)30719-2

D. M. Citron, E. J. C. Goldstein, Vreni Merriam C. V., B. A. Lipsky and M. A. Abramson Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. CL. Microbiol; 2819-2828, 2007. DOI: https://doi.org/10.1128/JCM.00551-07

CrossRef | PubMed

C. N. Dang, Y. D. Prasad, A. J. Boulton and E. B. Jude. Methicillin resistant Staphyloco- ccus aureus in the diabetic foot clinic: a worsening problem. Diabet. Med. 20: 159-161, 2003. DOI: https://doi.org/10.1046/j.1464-5491.2003.00860.x

CrossRef | PubMed

E. M. Shankar, V. Mohan, G. Premalatha, R. S. Srinivasan and A. R. Usha. Bacterial etiology of diabetic foot infections in South India.Eur. J. Intern. Med. 16: 567-570, 2005. DOI: https://doi.org/10.1016/j.ejim.2005.06.016

CrossRef | PubMed

C. G. Diaz, J. Altclas, A. Jasovich, G. Mikaelian, G. Fiks and E. Caro. Microbiology and conservative surgery of serious infections of the diabetic foot. Enferm. Infect. Microbiol. Clin. 10: 451-455, 1992.

A. Abdulrazak, Z. I. Bitar, A. A. Al-Shamali and L. A. Mobasher, Bacteriological study of diabetic foot infections,Journal of Diabetes and its Complications, 19( 3);138-141, 2005. DOI: https://doi.org/10.1016/j.jdiacomp.2004.06.001

CrossRef | PubMed

G. C. Schito. The importance of the development of antibiotic resistance in Staphylococcus aureus. clinical Microbiol infection, 1, 3-,2006. DOI: https://doi.org/10.1111/j.1469-0691.2006.01343.x

CrossRef | PubMed

S.H.Gillespie and P.M.Hawkey Principles and practice of clinical bacteriology. Chischester: John Wiley & Sons, 59-60 2006.

CrossRef DOI: https://doi.org/10.1002/9780470017968

G. F. Gad R. A. El-Domany, H. M Ashour., Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. Journal of antimicrobial chemotherapy, 60(5), 1010-1017, 2007 . DOI: https://doi.org/10.1093/jac/dkm348

CrossRef | PubMed

S. Mustafi S., N. Rivero, J. C. Olson, P. D. Stahl, Barbieri. Regulation of Rab5 function during phagocytosis of live Pseudomonas aeruginosa in macrophages. Infection and immunity, 81(7), 2426-2436,2013. DOI: https://doi.org/10.1128/IAI.00387-13

CrossRef | PubMed

R. Choudhury, S. Panda, S. and V. Singh. Emergence And Dissemination of Antibiotic Resistance: A Global Problem. Indian journal of medical microbiology, 30(4), 384,2012. DOI: https://doi.org/10.4103/0255-0857.103756

CrossRef | PubMed

H. Alhamed Alduihi. Antibacterial activity of Bacillus subtilis isolated from soiles from Aleppo city against some pathogenic bacteria, Master thesis,Aleppo university, faculty of science, 2016.

H. Y. Lee, H. K. Park, Y. M. Lee, K. Kim, S. B. Park. Apractical procedure for producing silver nanocoated fabric and itsantibacterial evaluation for biomedical applications. Chem. Commun. 2959-2961 2007. DOI: https://doi.org/10.1039/b703034g

CrossRef | PubMed

A. B. G Lansdown. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices, advances in pharmacological sciences. Adv. Pharmacol. Sci., 1-16,2010. DOI: https://doi.org/10.1155/2010/910686

CrossRef | PubMed

H. Bao, X. Yu, C. Xu, X. Li, Z. Li, D. Wei, Y. Liu. New Toxicity Mechanism of Silver Nanoparticles: Promoting Apoptosis and Inhibiting Proliferation. PLoS One, 10, e0122535, 2015. DOI: https://doi.org/10.1371/journal.pone.0122535

CrossRef | PubMed

A. Katsumiti, D. Gilliland, I. Arostegui, M. P. Cajaraville. Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS One 10, e0129039,2015. DOI: https://doi.org/10.1371/journal.pone.0129039

CrossRef | PubMed

G. A. Sotiriou, S. E. Pratsinis. Antibacterial activity of nanosilver Ions and particles. Environ. Sci. Technol. 44, 5649- 5654,2010. DOI: https://doi.org/10.1021/es101072s

CrossRef | PubMed

T. Maneerung, S. Tokura and R. Rujiravanit. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 72, 43-51,2008.

CrossRef DOI: https://doi.org/10.1016/j.carbpol.2007.07.025

R. J. B.Pinto, P. A. A. P. Marques, C. P. Neto, T. Trindade, S. Daina and P. Sadocco, Antibacterial Activity of Nanocomposites of Silver and Bacterial or Vegetable Cellulosic Fibers. Acta Biomater. 5, 2279-2289,2009. DOI: https://doi.org/10.1016/j.actbio.2009.02.003

CrossRef | PubMed

S. Pal, R. Nisi, M. Stoppa, M. and A. Licciulli. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS omega, 2, 3632-3639, 2017. DOI: https://doi.org/10.1021/acsomega.7b00442

CrossRef | PubMed

M. B. Coyle Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology, 39 pages, 2005.

Downloads

Published

2022-03-10

How to Cite

[1]
A. Hammal and H. ALhamed ALduihi, “A New Medical Dressing with Silver Nanoparticles to Treat Diabetic Foot Patient”, MJS, vol. 33, no. 1, pp. 1–5, Mar. 2022.

Issue

Section

Biological Science