Design and Simulation of Exhaust Pollution Monitoring Sensor Based on Photonic Crystal Fiber

Authors

  • Aseel I. Mahmood Laser and Electro-optic Research Center, Ministry of Science and Tecnology, IRAQ
  • Shehab A. Kadhim Laser and Electro-optic Research Center, Ministry of Science and Tecnology, IRAQ
  • Nadia F. Muhammad Laser and Electro-optic Research Center, Ministry of Science and Tecnology, IRAQ

DOI:

https://doi.org/10.23851/mjs.v29i3.615

Keywords:

Exhaust air pollution, Nitrogen oxides, Carbon oxides PCF sensors, FEM.

Abstract

Many critical issues appear due to the exhaust gases from transportations facilities, electric generators, industries, and so on. This lead to air pollution, which could be define as an introduction of biological materials or chemicals that’s causes harm to all living organism including humans. Also damaging the environment of earth. The principal gases that cause air pollution from these sources are nitrogen oxides (NO, NO2 and N2O) and carbon oxides (CO and CO2). There is a need to develop sensors that are characterized by highly-sensitive and miniaturize that capable of real-time analyses detection; optical fiber sensors agree with these needs. In this work, Large Mode Area- Polarization Maintaining Photonic Crystal Fiber (LMA-PM-PCF) for exhaust gases monitoring have been proposed to detect air-polluted gases over a wide transmission band covering (1µm) to (2µm) wavelength. Different guiding properties had been studied for the infiltrated PCFs. According to simulated results, the high relative sensitivity is obtained for sample infiltrated with CO gas; The higher sensitivity makes this fiber a potential candidate to detect CO that is commonly known as silent killer.

Downloads

Download data is not yet available.

References

A. Faiz, Ch. Weaver, and M. Walsh, "Air Pollution from Motor Vehicles Standards and Technologies for Controlling Emissions," report submitted to United Nation, 1996.

J. C. Yeo and C. T. Lim, "Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications," Microsystems & Nano-engineering, vol. 2, pp.1-16, 2016.

W. Ding, Y. Jiang, R. Gao, and Y. Liu, "High-Temperature Fiber-Optic Fabry-Perot Interferometric Sensors," Review of Scientific Instruments, vol. 86, Issue 5, 2015.

S. Asaduzzaman, B. K. Paul, and K. Ahmed, "Enhancement of Sensitivity and Birefringence of a Gas Sensor On Micro-Core Based Photonic Crystal Fiber," in 3rd International Conference in Electrical Engineering and Information Communication Technology , 2016.

P. Russell, "Photonic Crystal Fibers," Science, vol.24, no. Issue 12, pp. 4729-4749, 2005.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-Scalable Hollow Optical Fibers With Large Photonic Band Gaps For Co2 Laser Transmission," Nature, vol. 420, p. 650–653, 2002.

M. N. Petrovich, A. Brakel, F. Poletti, K. Mukasa, E. Austin, and V. Finazzi, "Microstructured Fibers For Sensing Applications," in The International Society for Optical Engineering, 2005.

S. Olyaee, and A. Naraghi, "Design and Optimization Of The Index-Guiding Photonic Crystal Fiber Gas Sensor," Photonic Sensors, vol. 3, p. 131–136, 2013.

M. Morshed, M.I. Hassan, T.K. Roy, M.S. Uddin, and S.A. Razzak, "Microstructure Core Photonic Crystal Fiber For Gas Sensing Applications," Appl. Opt. , vol. 54, p. 8637–8643, 2015.

S. Asaduzzaman, and K. Ahmed, "Proposal of a Gas Sensor with High Sensitivity, Birefringence And Nonlinearity For Air Pollution Monitoring," Sensing and Bio-Sensing Research, vol. 10, pp. 1-7, 2016.

Md. Ibadul Islam, K. Ahmed, Sh. Sen, S. Chowdhury, B. Kumar Paul, Md. Shadidul Islam, M. Badrul Alam Miah, and S. Asaduzzaman, "Design and Optimization of Photonic Crystal Fiber Based Sensor for Gas Condensate and Air Pollution Monitoring," Photonic Sensors , vol. 7, no. 3, pp.234‒245, 2017., vol. 7, no. 3, pp. 234-245, 2017.

G. Renversez, and B. Kuhlmey, "Dispersion Management with Microstructured Optical Fibers: Ultra flattened Chromatic Dispersion with Low Losses," Optics Letters, vol. 28, pp. 989-991, 2003.

Downloads

Key Dates

Published

10-03-2019

How to Cite

[1]
A. I. Mahmood, S. A. Kadhim, and N. F. Muhammad, “Design and Simulation of Exhaust Pollution Monitoring Sensor Based on Photonic Crystal Fiber”, Al-Mustansiriyah Journal of Science, vol. 29, no. 3, pp. 1–6, Mar. 2019, doi: 10.23851/mjs.v29i3.615.

Similar Articles

1-10 of 80

You may also start an advanced similarity search for this article.