Comparison Study on the Effect of Nano and Bulk Titanium Dioxide Particles on Seeds Germination, Growth and Chemical Composition of Wheat Invitro and Invivo

Authors

  • Raghad D. Alshybany Department of Biology, College of Science, Mustansiriyah University

DOI:

https://doi.org/10.23851/mjs.v28i3.548

Keywords:

TiO2 nanoparticles, bulk particles, wheat, chemical composition, germination in vitro and in vivo.

Abstract

The present study aimed to examine the effect of TiO2 nanoparticles (NPs) compared with bulk particles (BPs) on seed germination and growth of latefyha's cultivar wheat in vitro and in vivo and on chemical compositions with detecting the residuum of NPs in the plant. In the in vitro study, most concentrations of NPs and BPs have no effect on germination percentage, mean germination time, mean daily germination, promoter indicator, number of leaves, length and number of root and root tips viability but they reduced germination rate and germination value besides they induced shoot length and biomass. In the in vivo study, some parameters induced by most concentrations of NPs such as plant leaves area, leaf area index, length, of viability roots, height and total of plant length and biomass while no effect was seen on: mean daily germination, vigor index I and vigor index II, chlorophyll B, leaf area relative, in this regard, it reduced germination percentage, chlorophyll A, and carotene. There were some differences between the effect of NPs and those of BPs. There were increased in the total number of chemical compounds that identified in leaves of wheat plants treated with nanoparticles compared with control while the total numbers of compounds were decreased using bulk particles.

Downloads

Download data is not yet available.

References

M. Haghi, M. Hekmatafshar, M.B. Janipour, S.S. Gholizadeh, M. K. Faraz, F. Sayyadifar, and M. Ghaedi, Antibacterial effect of Tio2 nanoparticles onpathogenic strain of E. coli. Int. J. Adv. Biotech. and Res., 2012, 3(3), pp. 621-624.

T. Sun, L. Liu, Y. Sun, C. Tan, F. Yao, X. Liang, Y. Wang, Y. Yang, X. Hu, and J. Fan, Synthesis and characterization of TiO2 nanoparticles: applications in research on the interaction of colloidal TiO2 with human serum albumin by fluorescence spectroscopy. Anal. Sc., 2012, 28, pp. 491-496.

J.R. Gurra, A.S. Wangb, C.H. Chenb, and K.Y. Janb, Ultrafine titanium dioxide particle in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicol., 2005, 213: pp. 66–73.

S. Huang, P.J. Chueh, Y.W. Lin, T.S. Shih, and S.M. Chuang, Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol. and Appl. Pharmac., 2009, 241: pp.182-194.

M. Skocaj, M. Filipic, J. Petkovic, and S. Novak, Titanium dioxide in our everyday life, is it safe? Radiol. and Oncol., 2011, 45(4): pp. 227-247.

H. Shi, R. Magaye, V. Castranova, and J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data. Part. and Fib. Toxicol., 2013, 10:15.

H. Feizi, R. P. Moghaddam, N. Shahtahmassebi, and A. Fotovat, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trac. Elem. Res., 2012, 146: pp.101–106.

B. Nowack, and T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Env. Poll., 2007, 150: 5-22.

R.DH. Abdul Jalill, A.M. Yousef, Comparison the Phytotoxicity of TiO2 nanoparticles with bulk particles on Amber 33 variety of rice (Oryza sativa) in vitro. Sch. Acad. J. Biosci, 2015, 3(3): pp. 254-262.

P.G. Melendi, R.F. Pacheco, M. J. Coronado, E. Corredor, P.S. Testillano, M. C. Risueno, C. Marquina, M. R. Ibarra, D. Rubiales, and A.P. Luque, Nanoparticles as smart treatment-delivery systems in plants: assessment of dif-ferent techniques of microscopy for their visualization in plant tissues. Ann. Bota., 2008, 101(1): pp. 187-195.

P. Boonyanitipong, B. Kositsup, P. Kumar, S. Baruah, and J. Dutta, Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int. J. Bios. Bioch. and Bioinf., 2011, 1(4): pp. 282-285.

H. Feizi, M. Kamali, L. Jafari, and P.R. Moghaddam, Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 2013, 91: pp. 506–511.

W.A. AL-Kaisi, T.A.A. Muhsen, and A.S. Hamed, Effect of mycorrhiza (Glomus mosseae) and superphosphate on physiological characters of Hodeum vulgare. Colleg. Bas. Ed. J., 2011, 72: pp. 765-784.

M. Bouslamo, and W.T. Schapangh, Stress tolerance in soybean. I. Evolution of three screening techniques for heat and drought tolerance. Crop Scienc., 1984, 24: pp. 933-937.

T. Shaymurat, J. Gu, C. Xu, Z. Yang, Q. Zhao, Y. Liu, and Y. Liu, Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nano toxicol., 2011, pp.1–8.

P. Mahajan, S.K. Dhoke, and A. S. Khanna, Effect of nano-Zno particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotech., 2011, p. 7.

D. I. Arnon, Copper enzyme in isolated chloroplastes polyphenol oxidase in Beta vulgaris. Plant Physiol, 1949, 24: pp.1-15.

K. Kodama, Methods of quantitive inorganic analysis. John wiley and sons, 1963, New York, London.

Z. Marczenko, Spectrophotometric determination of elements. John wiley and sons. Inc. New York, 1976.

S. Arunkumar, and M. Muthuselvam, Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. Wor. J. Agr. Scien., 2009, 5(5): pp. 572-576.

R. DH. Abdul Jalill, GC-MS analysis of Calendula officials and cytotoxic effects of its flower crud extract on human epidermoidlarynx (HEP-2). Worl. J. P. P. Sc ., 2014, 3(4): pp. 237-275.

H. M. H. Salama, Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotech., 2012, 3(10): pp. 190-197.

D. Lin, and B. Xing, Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Envir. Poll., 2007, 150: pp. 243-250.

L. Zheng, F. Hong, S. Lu, and C. Liu, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res., 2005, 105: pp. 83-91.

C. Lu, M., C.Y. Zhang, J.Q. Wen, G.R. Wu, and M.X. Tao, Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soya Bean Scien., 2002, 21: pp. 168–172.

Z. Lei, S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, H. Hao, Xiao-qing, L., and Fashui, H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res., 2008, 121: pp. 69-79.

H. Mahmoodzadeh, R. Aghili, and M. Nabavi, Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Techn. J. Eng. Appl. Scien., 2013, 3 (14): pp.1365-1370.

R. Azimi, H. Feizi, and M. K. Hosseini, Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyronde sertorum)? Notulae Scientia Biologicae., 2013, 5(3): pp. 325-331.

L. Clement, C. Hurel, and N. Marmier, Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants– Effects of size and crystalline structure. Chemosphere, 2013, 90: pp. 1083-1090.

R. DH. Abdul Jalill, R.S. Nuaman, and A.N. Abd, Biological synthesis of Titanium Dioxide nanoparticles by Curcuma longa plant extract and study its biological portieres. Wor. Scien. News, 2016, 49(2): pp. 204-222.

T. Adhikari, S. Kundu, A.K. Biswas, J.C. Tarafdar, and A.S. Rao, Effect of copper oxide nano particle on seed germination of selected crops. J. Agr. Scien. Techn., 2012, 2: pp. 815-823.

A.S. Foltête, and J.F.S. Masfaraud, Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Envir. Poll. 2011, 159 (10): pp. 2515 -22.

A. Varier, A.K. Vari, and M. Dadlani, The subcellular basis of seed priming. Current Scien., 2010, 99: pp. 450–456.

F. Chen, and K. J. Bradford, Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Phys., 2000, 124: pp. 1265–1274.

F., Li, X.Wu, E. Tsang, and A.J. Cutler, Transcriptional profiling of imbibed Brassica napus seed. Genomics, 2005, 86: pp. 718–730.

D. Lin, and B. Xing, Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Envir. Poll., 2007, 150: pp. 243-250.

S.G. Wu, L. Huang, J. Head, D.R. Chen, I.C. Kong, J. Yinjie, and Y.G. Tang, Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Petroleum and Envir. Biotech., 2012, 3(4): pp. 1-7.

N. Stoeva, and B. Tzvetanka, Oxidative changes and photosynthesis in oat plants grown in-contaminated soil. Bulg Journal Plant Physiol, 2003, 29(1-2): pp. 87-95.

S.T. Thul, B.K. Sarangi, and R.A. Pandey, Nanotechnology in agroeco system: implications on plant productivity and its soil environment. Expert. Opin. Environ. Biol. 2013, 2(1): pp. 2-7.

C.X. Shen, Q.F. Zhang, J. Li, F.C. Bi, and N. Yao, Induction of programmed cell death in arabidopsis and rice by single wall carbon nanotubes. American J. Bot., 2010, 97: pp. 1-8.

T. Adhikari, S. Kundu, A.K. Biswas, J.C. Tarafdar, and A.S. Rao, Effect of copper oxide nano particle on seed germination of selected crops. J. Agr. Scien. Techn., 2012, 2: pp. 815-823.

M. Ghosh, M. Bandyopadhyay, and A. Mukherjee, Genotoxicity 343 of titanium dioxide TiO2 nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 2010, 81: pp. 1253-1262.

E. Casals, S.V. Campos, N.G. Bastús, and V. Puntes, Distribution and potential toxicityof engineered inorganic nanoparticles and carbon nanostructures in biological systems. Trends in Analyt. Chem., 2008, 27 (8): pp. 672-683.

F. Gao, F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu, and P. Yang, Mechanism of nano. anatase Tio2 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Elem. Res., 2008, 111: pp. 239–253.

E. Morteza, P. Moaveni, H.A. Farahani, and M. Kiyani, Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. Springer plus: a Springer Open J., 2013, 2: p. 247.

N. Samadi, S. Yahyaabadi, and Z. Rezayatmand, Effect of tio2 and tio2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. Int. J. Plant and Soil Scien., 2014, 3(4): pp. 408-418.

R.J. Aitken, K.S. Creely, and C.L. Tran, Nanoparticles: An occupational hygiene review. Institute of Occupational Medicine Research. Park North. Riccarton Edinburgh, 2004, p. 102.

A. Aydin, H. Sipahi, and M. Charehsaz, Nanoparticles Toxicity and Their Routes of Exposures. In: Recent Advances in Novel Drug Carrier Systems. Chapter 18, 2012, p. 500.

Jr., J.F. Sargent Nanotechnology and Environmental, Health, and Safety: Issues for Consideration. CRS report for congress prepared for members and committees of congress, 2011, p. 37.

Downloads

Key Dates

Published

28-07-2018

Issue

Section

Original Article

How to Cite

[1]
R. D. Alshybany, “Comparison Study on the Effect of Nano and Bulk Titanium Dioxide Particles on Seeds Germination, Growth and Chemical Composition of Wheat Invitro and Invivo”, Al-Mustansiriyah Journal of Science, vol. 28, no. 3, pp. 85–101, Jul. 2018, doi: 10.23851/mjs.v28i3.548.

Similar Articles

1-10 of 110

You may also start an advanced similarity search for this article.