Comparing study of CuO synthesized by biological and electrochemical methods for biological activity

Authors

  • shaimaa hamed jaber Department of Chemistry, College of Science, Mustansiriyah University
  • Ahmed M. Rheima Department of Chemistry, College of Science, Wasit University http://orcid.org/0000-0002-1072-1392
  • Dhia H. Hussain Department of Chemistry, College of Science, Mustansiriyah University
  • Mohammed F. Al-Marjani Department of Biology, College of Science, Mustansiriyah University http://orcid.org/0000-0002-1331-2201

DOI:

https://doi.org/10.23851/mjs.v30i1.389

Abstract

In the present work, copper oxide (CuO) nanoparticles have been synthesized by two methods (electro chemical and biological method).The synthesized nanoparticles characterized by x-ray diffraction (XRD), Scanning Electron Microscopy(SEM) and transmission Electron Microscopy(TEM). results show that to copper oxide (CuO) nanoparticle have average size of (11-15)nm of electrochemical method and (6-12 ) nm of biological method by different technique CuO nanoparticles were applied to study the inhibition of bacterial using (staphylococcus and pseudomonas). The antibacterial activity of CuO nanoparticles show a higher inhibition of pseudomonas bacteria when a compared with staphylococcus bacteria.

References

G. Shobha, M. Vinuthaand S. Ananda. (IJPSI). 2014, 3, 8:06-28-38.

D.V.Fernando, K.D. Gautom, A. Aamir, M.K. Ian and K.Dietmar. PLOS ONE. 2014, 9, 2:e88723.

M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y. Yeh, and C. Yeh. (JPC). 1999, 103, 33:6851-6857.

[Crossref]

Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, and Y.S. Kang. Colloids and Surfaces A. 2006, 284-285:364-368.

[Crossref]

J. Hambrock, R. Becker, A. Birkner, J. Wei, and R.A. Fischer. Chemical Communications. 2002, 1:68-69.

[Crossref]

PMid:12120314

K.J. Ziegler, R.C. Doty, K.P. Johnston, and B.A. Korgel. (JACS). 2001, 123, 32:7797-7803.

[Crossref]

PMid:11493053

S.K. Haram, A.R. Mahadeshwar and S. G. Dixit. (JPC). 1996, 100, 14:5868-5873.

[Crossref]

I. Lisiecki, M. Björling, L. Motte, B. Ninham, and M. P. Pileni. Langmuir. 1995, 11, 7: 2385-2392.

[Crossref]

A.A. Ponce and K.J. Klabunde. (JMC).2005, 225, 1: 1-6.

[Crossref]

I. Haas, S. Shanmugam, and A. Gedanken. (JPC). 2006, 110, 34:16947-16952.

[Crossref]

PMid:16927986

E.K. Athanassiou, R.N. Grass, and W.J. Stark; Nanotechnology. 2006, 17, 6:1668-1673.

[Crossref]

PMid:26558576

L. Chen, D. Zhang, J. Chen, H. Zhou, and H. Wan, Materials Science and Engineering A. 2006, 415, 1-2: 156-161.

[Crossref]

A.A. Athawale, P.P. Katre, M. Kumar, and M.B. Majumdar. Materials Chemistry and Physics. 2005, 91, 2-3:507-512.

[Crossref]

A. Ameer, S.A. Arham, O. Mohammad, S.K. Mohammad, S.H. Sami and M. Adnan. (IJN). 2012, 7: 6003-6009.

V. Vinod, P. Thekkae and C. Miroslav. Int J Nanomedicine. 2013, 8: 889-898.

K. Phiwdang, S. Suphankij, W. Mekprasart and W. Pecharapa. Energy Procedia. 2013, 34:740 - 745 .

[Crossref]

Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane and B. Ihssane. Appl. Nanosci. 2014, 4:571-57.

[Crossref]

Downloads

Published

2019-08-15

How to Cite

[1]
shaimaa hamed jaber, A. M. Rheima, D. H. Hussain, and M. F. Al-Marjani, “Comparing study of CuO synthesized by biological and electrochemical methods for biological activity”, MJS, vol. 30, no. 1, pp. 94–98, Aug. 2019.

Issue

Section

Chemical Science