Comparing study of CuO synthesized by biological and electrochemical methods for biological activity


  • shaimaa hamed jaber Department of Chemistry, College of Science, Mustansiriyah University
  • Ahmed M. Rheima Department of Chemistry, College of Science, Wasit University
  • Dhia H. Hussain Department of Chemistry, College of Science, Mustansiriyah University
  • Mohammed F. Al-Marjani Department of Biology, College of Science, Mustansiriyah University



In the present work, copper oxide (CuO) nanoparticles have been synthesized by two methods (electro chemical and biological method).The synthesized nanoparticles characterized by x-ray diffraction (XRD), Scanning Electron Microscopy(SEM) and transmission Electron Microscopy(TEM). results show that to copper oxide (CuO) nanoparticle have average size of (11-15)nm of electrochemical method and (6-12 ) nm of biological method by different technique CuO nanoparticles were applied to study the inhibition of bacterial using (staphylococcus and pseudomonas). The antibacterial activity of CuO nanoparticles show a higher inhibition of pseudomonas bacteria when a compared with staphylococcus bacteria.


Download data is not yet available.


G. Shobha, M. Vinuthaand S. Ananda. (IJPSI). 2014, 3, 8:06-28-38.

D.V.Fernando, K.D. Gautom, A. Aamir, M.K. Ian and K.Dietmar. PLOS ONE. 2014, 9, 2:e88723.

M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y. Yeh, and C. Yeh. (JPC). 1999, 103, 33:6851-6857.


Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, and Y.S. Kang. Colloids and Surfaces A. 2006, 284-285:364-368.


J. Hambrock, R. Becker, A. Birkner, J. Wei, and R.A. Fischer. Chemical Communications. 2002, 1:68-69.



K.J. Ziegler, R.C. Doty, K.P. Johnston, and B.A. Korgel. (JACS). 2001, 123, 32:7797-7803.



S.K. Haram, A.R. Mahadeshwar and S. G. Dixit. (JPC). 1996, 100, 14:5868-5873.


I. Lisiecki, M. Björling, L. Motte, B. Ninham, and M. P. Pileni. Langmuir. 1995, 11, 7: 2385-2392.


A.A. Ponce and K.J. Klabunde. (JMC).2005, 225, 1: 1-6.


I. Haas, S. Shanmugam, and A. Gedanken. (JPC). 2006, 110, 34:16947-16952.



E.K. Athanassiou, R.N. Grass, and W.J. Stark; Nanotechnology. 2006, 17, 6:1668-1673.



L. Chen, D. Zhang, J. Chen, H. Zhou, and H. Wan, Materials Science and Engineering A. 2006, 415, 1-2: 156-161.


A.A. Athawale, P.P. Katre, M. Kumar, and M.B. Majumdar. Materials Chemistry and Physics. 2005, 91, 2-3:507-512.


A. Ameer, S.A. Arham, O. Mohammad, S.K. Mohammad, S.H. Sami and M. Adnan. (IJN). 2012, 7: 6003-6009.

V. Vinod, P. Thekkae and C. Miroslav. Int J Nanomedicine. 2013, 8: 889-898.

K. Phiwdang, S. Suphankij, W. Mekprasart and W. Pecharapa. Energy Procedia. 2013, 34:740 - 745 .


Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane and B. Ihssane. Appl. Nanosci. 2014, 4:571-57.



Key Dates





Original Article

How to Cite

shaimaa hamed jaber, A. M. Rheima, D. H. Hussain, and M. F. Al-Marjani, “Comparing study of CuO synthesized by biological and electrochemical methods for biological activity”, Al-Mustansiriyah Journal of Science, vol. 30, no. 1, pp. 94–98, Aug. 2019, doi: 10.23851/mjs.v30i1.389.