Biosynthesis and Characterization of Silver Nanoparticles From Pantoea agglomerans and Some of Their Antibacterial Activities

Authors

DOI:

https://doi.org/10.23851/mjs.v31i3.361

Keywords:

Pantoea agglumerance, silver nanoparticles, antibiofilm, hemolysin inhibition.

Abstract

Recently, the biosynthesis of nanoparticles from bacteria have attracted attention, this study has been made for biosynthesize and characterizes silver nanoparticles (AgNPs) from local clinical isolate Pantoea agglomerans. The ability of those particles to inhibit the virulence factors biofilm and hemolysin produced by some local clinical multidrug-resistant human pathogenes including Acinetobactor haemolyticus, Escherichia coli, Serratia marcescens and Staphylococcus aureus were investigated by treating all of the test isolates with sub-MIC(16 mg/ml) AgNPs. The AgNPs produced were characterized using Atomic Force Microscopy (AFM). Pantoea agglomerans were found to have the ability to synthesize AgNPs at room temperature within 24hrs and were spherical in shape as depicted by AFM. The AgNPs produced exhibited a potential antibiofilm and hemolysin inhibition activities against tested pathogens.

Author Biography

Layla Abdul-Hamid Said, Department of Biology, College of Science, Mustansiriyah university.

Biology department

References

M. Ahmad, Sara M, R. S. Hamid, J Hossein, N. Ashraf-Asadat N, Rapid synthesis of silver nanoparticles using culture supernatant of Enterobacteria: a novel biological approach. Process Biochem. 42:919-923, 2007.

CrossRef DOI: https://doi.org/10.1016/j.procbio.2007.02.005

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, G. Ning, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letter. 61: 3984-3987, 2007.

CrossRef DOI: https://doi.org/10.1016/j.matlet.2007.01.018

G. Singaravelu, J. S. Arockiamarcy, V.G. Kumar, K. G. Govindaraju, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wighlii Grevillc. Colloids and surface B. 57(1) 97-101, 2007. DOI: https://doi.org/10.1016/j.colsurfb.2007.01.010

CrossRef | PubMed

R. Y. Parikh, S. Singh, Prasad, and B LV. Patole, M. Sastry and Y. S. Schouche, Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp. Towards understanding biochemical synthesis mechanism. Chembiochem . 9: 1415 - 1422, 2008. DOI: https://doi.org/10.1002/cbic.200700592

CrossRef | PubMed

S. Gurunathan, K. Kalishwaralal, R. Vaidyanthan, D. Venkataraman, S. R. K. Pandian, J. Muniyandi N, Hariharan and S.H. Eom. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B . 74(1), 323-335, 2009. DOI: https://doi.org/10.1016/j.colsurfb.2009.07.048

CrossRef | PubMed

N. Samadi, D. Golkaran, A. Eslamifar, M. R. Fazeli, F. A. Mohseni, Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol. 5 (3): 247-253, 2009. DOI: https://doi.org/10.1166/jbn.2009.1029

CrossRef | PubMed

E. K. E Elbeshehy, A. M. Elazzaz, and G. Aggelis, Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticles characterization and their activity against Bean Yellow mosaic Virus and human pathogens Front. Microbiol. 6:453, 2015. DOI: https://doi.org/10.3389/fmicb.2015.00453

CrossRef | PubMed

A. M. Elgorban , A. N., Al- Rahman , S. R. Sayed, A. Hirad , A. A. Mostafa, and A. H. Bachkali, Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology & Biotechnological Equipment. 30 (2): 299-304, 2016.

CrossRef DOI: https://doi.org/10.1080/13102818.2015.1133255

N. Prabhusaran, A. R. Susethira, L. Radhakrishna, P. Revathi, S. T.Jeyasselan and PID Joesph, Extracellular biosynthesis of silver nanoparticles using bacterial sources and its pathogenic inhibition assay. Int. j. pharm. res. health sci..4 (2): 1080-85, 2016.

H. V. Rostenberghe, W. Ibrahim , R. Norada and H. Maimunah, The clinical picture of neonatal infection with Pantoea species. JPN J INFECT DIS. 2006, 59(2): 120-1, 2006.

V. Mahar, D. Yadav, J. Sanghvi, N. Gupta, and K. Singh, Pantoea dispersa an unusual cause of neonatal sepsis. Braz J Infect Dis, 17:726-8, 2013. DOI: https://doi.org/10.1016/j.bjid.2013.05.013

CrossRef | PubMed

F. Otsuka and H. Hagiya. Pantoea dispersa bacteremia caused by central line-associated bloodstream infection. Braz J Infect Dis 18 (6), 2014. DOI: https://doi.org/10.1016/j.bjid.2014.06.006

CrossRef | PubMed

A. Cheng, CY. Liu, HY. Tsai, MS Hsu, CJ Yang, YT. Huang, CH. Liao and PR. Hsueh, Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000-2010. J Microbiol Immunol Infect 46:187-94, 2012. DOI: https://doi.org/10.1016/j.jmii.2012.05.005

CrossRef | PubMed

S. B. Almasaudi. Acinetobacter spp. as nosocomial pathogen: epidemiology and resistance features. Saudi J. Biol. Sci. 25(3): 586-596, 2018.

DOI: https://doi.org/10.1016/j.sjbs.2016.02.009

"> CrossRef | PubMed

S. L. Krein, C. P. Kowalski, T. P. Hofer, S. Saint, Preventing catheter-associated urinary tract infection in the United States: a national Survey of Practices Reported by United States Hospitals in 2005 and 2009. Int. J. Gen. Med 27 (7): 773-779, 2013. DOI: https://doi.org/10.1007/s11606-011-1935-y

CrossRef | PubMed

A. Khanna, M. Khanna, A. Aggarwal, Serratia marcescens- A rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. Clin Diag Res. 7 (2): 243-246, 2013. DOI: https://doi.org/10.7860/JCDR/2013/5010.2737

CrossRef | PubMed

H. Gossans. Susceptibility of multi-drug resistant Pseudomonas aeruginosa in intensive care units: results from European MYSTIC study group. Clin Microbiol Infect .9 (9): 980- 983. (2003) DOI: https://doi.org/10.1046/j.1469-0691.2003.00690.x

CrossRef | PubMed

R. Singh, S. Singh, and M. S. Smitha, The role of nanotechnology in combating multi drug resistant bacteria. . Nanosci. Nanotechnol. 14(7): 4745-56, 2016. DOI: https://doi.org/10.1166/jnn.2014.9527

CrossRef | PubMed

D. Moradiagara, C. T. Boinett, V. Martin, S. J. Peacock and J. Parkhill, Recent independent emergence of multidrug resistant Serratia marcescens clones within the United Kingdom and Ireland. Genome -c ship-org on July 19, 2016-published by Cold Spring Harbor Laboratory Press, 2016.

H. H. Lara, N. V. Ayala - Nunez, L. C. I. Turrent and C.R. Padilla, Bactericidal effect of silver nanoparticles against multidrug resistant bacteria, World J Microbiol, 26:615 -621, 2010.

CrossRef DOI: https://doi.org/10.1007/s11274-009-0211-3

N. K. Palanisamy, N. Ferina, A. N. Amirulhusni, Z. Nohd-Zain, L. J. Ping, and R. Durairaj, Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa J. Nanobiotechnology.(12) 2, 2014. DOI: https://doi.org/10.1186/1477-3155-12-2

CrossRef | PubMed

S. Sanyasi. Polysaccharide - capped silver nanoparticles inhibit formation and eliminate multidrug resistant bacteria by disrupting bacteria cytoskeleton with reduced cytotoxicity. Sci. Rep. 66 ,: 24929, 2016. DOI: https://doi.org/10.1038/srep24929

CrossRef | PubMed

K. Chaloupka, Y. Malam, and A. M. Seifalian. Nanosilver as a new generation of nanoproduct in biomedical application. Trend. Biotechnol. 28: 580-8, 2010. DOI: https://doi.org/10.1016/j.tibtech.2010.07.006

CrossRef | PubMed

W. Salem, D. R. Leitner, F. G. Zingl, G. Schatter, R. Prassl, W. Goessler, J. Reid and S. Schild. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxigenic Escherichia coli. Int J Med Microbiol 305, 85-95, 2015.

CrossRef | PubMed

J. P. O'Gara, and H. Humapheys, Staphylococcus epidermidis biofilms: Importance and applications, J Med Microbiol. 50:582-7, 2001. DOI: https://doi.org/10.1099/0022-1317-50-7-582

CrossRef | PubMed

M. R. Donald and W. Costeron, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin Mircobiol Rev.15:167-193, 2002. DOI: https://doi.org/10.1128/CMR.15.2.167-193.2002

CrossRef | PubMed

RLE. Castrillon, R. A. Palma and DMC. Padilla Interferencia de Las biopeliculas en el proceso de curacion de heridas. Dermatologia. Rev Mex 55: 127-139, 2011.

E. Ranganth, V. Rathod and A. Banu A, Screening of Lactobacillus spp. for the mediating of biosynthesis of silver nanoparticlesfrom silver nitrate. Journal of Pharmacy. 2(2);237-241, 2012.

CrossRef DOI: https://doi.org/10.9790/3013-0220237241

S. C. G. Kiruba Daniel, K. Nehru and M. Sivakumar, Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its antibacterial activity. Current Nanoscience 8:125-129, 2012.

CrossRef DOI: https://doi.org/10.2174/1573413711208010125

J. M. Andrew. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 49 (6) 1049, 2002.

CrossRef DOI: https://doi.org/10.1093/jac/dkf083

G. D. Christensen, W. A. Simpson, and E. H. Bisno Aland Beachey Adherance of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 37:318-26, 1982. DOI: https://doi.org/10.1128/iai.37.1.318-326.1982

CrossRef | PubMed

C.Malarkodi, K.M. Chitra and G. Annadurai. Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica. 4(3):59-66, 2013.

CrossRef DOI: https://doi.org/10.1186/2193-8865-3-30

M. Saravanan, A.K. Vemu and S.K. Barik. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multidrug resistant clinical pathogens. Coll Surf B. 88:325-331, 2011.

DOI: https://doi.org/10.1016/j.colsurfb.2011.07.009

"> CrossRef | PubMed

N. Duran, P.D. Marcato, O. Alves and G. Souza. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanotechnol, 3:8, 2005. DOI: https://doi.org/10.1186/1477-3155-3-8

R. Singh. Synthesis, optimization, and characterization of silver nano -particles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics'. Int. J. Nanomedicine, 8: 4277-90, 2013. DOI: https://doi.org/10.2147/IJN.S48913

CrossRef | PubMed

V.L Das, R. Thomas, R.T. Varghese, E.V. Soniya, J. Mathew and E.K. Radhakrishnan Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrial area. 3 Biotech 4:121-126, 2014.

DOI: https://doi.org/10.1007/s13205-013-0130-8

"> CrossRef | PubMed

M.A.Raza, Z. Kanwal, A. Rauf, A.N. Sabri, S.Riaz and S. Naseem. Size and Shape-Dependent antibacterial studies of silver nanoparticles synthesized by wet. Chemical routes. Nanomaterials 6,74,2, 2016. DOI: https://doi.org/10.3390/nano6040074

CrossRef | PubMed

K. Kalishwarall, S. Barathmanikanth, S. Pandian, V. Deepak, and S.Guruanthan Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces. 79(2): 340-344, 2010. DOI: https://doi.org/10.1016/j.colsurfb.2010.04.014

CrossRef | PubMed

S. Hendiai, A. Ahy Abdi, P. Mohammedi and S. Kharrazi Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocidales against biofilm producing Acinetobacter baumannii. Nanomed J 2, 291-298, 2015.

W. Salem Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol. 305(1): 85-95, 2015. DOI: https://doi.org/10.1016/j.ijmm.2014.11.005

CrossRef | PubMed

Downloads

Published

2020-08-20

How to Cite

[1]
L. A.-H. Said, “Biosynthesis and Characterization of Silver Nanoparticles From Pantoea agglomerans and Some of Their Antibacterial Activities”, MJS, vol. 31, no. 3, pp. 1–5, Aug. 2020.

Issue

Section

Biological Science