Detection of Biofilm Formation in Classical and Hypervirulent Klebsiella pneumoniae

Authors

  • Iman Mohammad Mahmood Alansary Biology Department, College of Science, Mustansiriyah University, 10052 Baghdad, IRAQ.
  • Nadal Abdulamer Al-Saryi Biology Department, College of Science, Mustansiriyah University, 10052 Baghdad, IRAQ.

DOI:

https://doi.org/10.23851/mjs.v33i5.1315

Keywords:

K. pneumoniae, Hypervirulent Klebsiella pneumoniae, congo red, Biofilm

Abstract

Klebsiella pneumoniae has considered as a relevant healthcare-associated pathogen, its risk of infections is increasing in the presence of medical devices. K. pneumoniae is known for its ability to form biofilm on biotic and abiotic surfaces. Biofilm of K. pneumoniae assists in bacterial protection from host immune responses and antibiotics. Hypervirulent Klebsiella pneumoniae (hvKp) emerges as a new pathotype, which first appeared in Asian Pacific Rim but spread globally. Thus, this study aimed to investigate the ability of K. pneumoniae including hvKp and potential hvKp isolates to form biofilm. One hundred isolates of K. pneumoniae were collected from different hospitals in Baghdad city. These isolates were identified by phenotypic characterization on selective agar plates, biochemical tests, VITEK II, and molecular identification. Biofilm formation was tested in these isolates by two methods, congo red and Tissue Culture Plate method. In congo red method, 33% of the isolates were biofilm producer and (63%) can form biofilm by TCP method divided as: 14% strong, 15 moderate, 34% weak, and 37% non-biofilm producer. The hvKp and potential hvKp isolates showed a variable ability to form biofilm as classical K. pneumoniae.

Downloads

Download data is not yet available.

References

R. Podschun and U. Ullmann, Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical microbiology reviews, 1995, 1(4) pp: 589-603.

CrossRef | PubMed

F. de Melo, C. do Nascimento, D. O. Souza, Jr. R. F de Albuquerque. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing. Clinical Oral Implants Research, 2017, 28(6) pp: 697-703.

CrossRef | PubMed

Y. He, X. Guo, S. Xiang, J. Li, X. Li, H. Xiang, J. He, D. Chen and J. Chen. Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae. Antonie van Leeuwenhoek, 2016, 109(7) pp:1029-1040.

CrossRef | PubMed

Y. C. Lai, G. T. Lin, S. L. Yang, H. Y. Chang and H. L. Peng, Identification and characterization of KvgAS, a two-component system in Klebsiella pneumoniae CG43. FEMS microbiology letters, 2003, 218(1) pp:121-126.

CrossRef | PubMed

L. Liu, M. Ye, X. Li, J., Li, Z. Deng, Y. F. Yao, and H.Y. Ou, Identification and characterization of an antibacterial type VI secretion system in the carbapenem-resistant strain Klebsiella pneumoniae HS11286. Frontiers in cellular and infection microbiology, 2017, pp; 7, 442.

CrossRef | PubMed

S. Brisse, F. Grimont, and P. A. Grimont, The genus Klebsiella. Prokaryotes, 6 (chapter 3.3. 8),2006, pp:159-196

CrossRef

B. Rossi, M. L. Gasperini, V. Leflon-Guibout, A. Gioanni, V. de Lastours, G. Rossi, S. Dokmak, M. Ronot, O. Roux, M. H. Nicolas-Chanoine, and B. Fantin, Hypervirulent Klebsiella pneumoniae in cryptogenic liver abscesses, Paris, France. Emerging infectious diseases, 2018, 24(2) pp:221.

CrossRef | PubMed

C. Liu and J. Guo, Hypervirulent Klebsiella pneumoniae (hypermuc-oviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Annals of clinical microbiology and antimicrobials, 2019,18(1) pp: 1-11.

CrossRef | PubMed

Y. T. Lin, L. K. Siu, J. C. Lin, T. L. Chen, C. P. Tseng, K. M. Yeh, F. Y. Chang, and C. P. Fung, Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries. BMC microbiology, 2012 ,12(1) pp: 1-7.

CrossRef | PubMed

J. E Choby, J. Howard‐Anderson, D. S. Weiss, Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives. Journal of internal medicine, 2020, 287(3) pp: 283-300.

CrossRef | PubMed

S. P. Dzul, M. M. Thornton, D. N. Hohne, E. J. Stewart, A. A. Shah, D. M. Bortz, M. J. Solomon, andJ.G. Younger, J. G., Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures. Applied and environmental microbiology, 2011, 77(5) pp: 1777-1782.

CrossRef | PubMed

M. C. Wu, T. L. Lin, P. F. Hsieh, H. C. Yang, and J. T. Wang. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PloS one, 2011, 6(8).

CrossRef | PubMed

C. Schroll, K. B. Barken, K. A. Krogfelt, C. Struve, Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC microbiology, 2010, 10(1) pp: 1-10.

CrossRef | PubMed

Q. Kong, J.M. Beanan, R. Olson, U. MacDonald, A.S. Shon, D. J. Metzger, A. O. Pomakov and T. A. Russo. Biofilm formed by a hypervirulent (hyperm- ucoviscous) variant of Klebsiella pneumoniae does not enhance serum resistance or survival in an in vivo abscess model. Virulence, 2012, 3(3) pp:309-318.

CrossRef | PubMed

T. W. Huang, I. Lam, H. Y. Chang, S. F. Tsai, B. O. Palsson, and P. Charusanti. Capsule deletion via a λ-Red knockout system perturbs biofilm formation and fimbriae expression in Klebsiella pneumoniae MGH 78578. BMC research notes, 2014, 7(1) pp:1-8.

CrossRef | PubMed

M.K. Paczosa and J. Mecsas, Klebsiella pneumoniae: going on the offense with a strong defense. Microbiology and Molecular Biology Reviews, 2016, 80 pp:629-661.

CrossRef | PubMed

N. Grall, A. Andremont, and L. Armand-Lefèvre, Résistance aux carbapénèmes: vers une nouvelle impasse? Journal des Anti-infectieux, 2011, 13(2) pp: 87-102.

CrossRef

K. L. Wyres, K. E. Holt, Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Current opinion in microbiology, 2018, 45 pp: 131-139.

CrossRef | PubMed

E. Soto, M. M. Dennis, A. Beierschmitt, S. Francis, F. Sithole, I. Halliday-Simmons, and R. Palmour, Biofilm formation of hypermucoviscous and non-hypermu-coviscous Klebsiella pneumoniae recovered from clinically affected African green monkey (Chlorocebus aethiops sabaeus). Microbial pathogenesis, 2017, 107 pp:198-201.

CrossRef | PubMed

E. Goldman and L. H. Green, Practical handbook of microbiology. 2009, CRC press, (Second Eds.).

CrossRef

A. A. Dashti, M. M. Jadaon, A. M. Abdulsamad, H. M. Dashti, 'Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques', Kuwait Medical Journal, 2009, 41, (2) pp: 117-122.

Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, USA, 2022. pp; 1-362.

S. Niveditha, S. Pramodhini, S. Umadevi, S. Kumar and S.Stephen, The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). Journal of clinical and diagnostic research :2012 6(9) pp:1478.

CrossRef | PubMed

E. Babapour, A. Haddadi, R. Mirnejad, S. A. Angaji and N. Amirmozafari, Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(6) pp: 528-533.

CrossRef

R. M. Donlan, Biofilms: microbial life on surfaces. Emerging infectious diseases, 2002, 8(9) pp: 881.

CrossRef | PubMed

C. Vuotto, F. Longo, M. P. Balice, G. Donelli and P. E. Varaldo, Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens, 2014, 3(3) pp:743-758.

CrossRef | PubMed

T. F. CMah, and G. A. O' Toole, Mechanisms of biofilm resistance to antimicrobial agents. Trends in microbiology, 2001, 9(1) pp: 34-39.

CrossRef | PubMed

E. T. Piperaki, G.A. Syrogiannopoulos, L, S, Tzouvelekis and G.L. Daikos, Klebsiella pneumoniae: virulence, biofilm, and antimicrobial resistance. The Pediatric infectious disease journal, 2017, 36(10) pp: 1002-1005.

CrossRef | PubMed

Y. C. Zhang, Q. Zhao, X. Wang, H. Wang, H. Chen, F. Li, S. Zhang, R. Li, H. Wang, Wang High prevalence of hypervirulent Klebsiella pneumoniae infection in China: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrobial Agents Chemotherapy, 2016. 60, pp. 6115-6120.

CrossRef | PubMed

P. de Castro Melo, L. M. Ferreira, A. N. Filho, L. F. Zafalon, H. I. Vicente and V. de Souza, Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine. Brazilian journal of microbiology, 2013, 44(1) pp: 119-124.

CrossRef | PubMed

Harika, K., Shenoy, V. P., Narasim-haswamy, N., & Chawla, K. (2020). Detection of Biofilm Production and Its Impact on Antibiotic Resistance Profile of Bacterial Isolates from Chronic Wound Infections. Journal of global infectious diseases, 12(3), pp:129-134.

CrossRef | PubMed

Downloads

Key Dates

Published

25-02-2023

How to Cite

[1]
I. M. M. . Alansary and N. A. . Al-Saryi, “Detection of Biofilm Formation in Classical and Hypervirulent Klebsiella pneumoniae”, Al-Mustansiriyah Journal of Science, vol. 33, no. 5, pp. 65–71, Feb. 2023, doi: 10.23851/mjs.v33i5.1315.

Similar Articles

1-10 of 59

You may also start an advanced similarity search for this article.