Optical Response of GaAs0.75Sb0.25 Nanosheet for Dependent Pressure
DOI:
https://doi.org/10.23851/mjs.v31i3.864Keywords:
GaAsSb, nanosheet, Optical response, high Pressure, DFT, GGAAbstract
The study analyzed the optical response of GaAs0.75Sb0.25 nanosheet under high pressure. It is the generalized gradient approximation (GGA) within the framework of density functional theory (DFT) was employed by means of a simulation program, which is called CASTEP. Under different pressure (P = 0, 2, and 4 GPa). Geometry optimized parameters were calculated for the nanosheet. The optical data alter in accordance with high pressure. The increase of pressure in the nanosheet led to a rise in p = 4 GPa and a decline in p = 2 GPa of the optical energy band gap, the static dielectric constant
Downloads
References
Othman, Mazin, Sabaz Salih, Matin Sedighi, and Ergun Kasap. "Impact of pressure and composition on the mechanical behavior of InxGa1-xAs1-yPy and AlxIn1? xSb1? yPy quaternary alloys." Results in Physics (2019): 102400.
Thambidurai, M., N. Muthukumarasamy, A. Ranjitha, and Dhayalan Velauthapillai. "Structural and optical properties of Ga-doped CdO nanocrystalline thin films." Superlattices and Microstructures 86 (2015): 559-563.
Othman, M., E. Kasap, and N. Korozlu. "Ab-initio investigation of structural, electronic and optical properties of InxGa1? xAs, GaAs1? yPy ternary and InxGa1? xAs1? yPy quaternary semiconductor alloys." Journal of Alloys and Compounds 496, no. 1-2 (2010): 226-233.
Othman, M., E. Kasap, and N. Korozlu. "The structural, electronic and optical properties of InxGa1? xP alloys." Physica B: Condensed Matter 405, no. 10 (2010): 2357-2361.
Ashrafi MJ, et al. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. J Mech Behav Biomed Mater 2015; 42:292-310.
Othman, et al. Structural and Optical Properties of GaAs0.5Sb0.5 and In0.5Ga0.5As0.5Sb0.5: Ab initio Calculations for Pure and Doped Materials. Chinese Phys Lett 2012; 29:037302.
Othman MS. Simulation mechanical properties of lead sulfur selenium under pressure. J Mod Phys 2015; 4:185.
Gorman BP, et al. Atomic ordering-induced band gap reductions in GaAsSb epilayers grown by molecular beam epitaxy. J Appl Phys 2005; 97:063701.
Jandow, N. N., M. S. Othman, N. F. Habubi, S. S. Chiad, Khudheir A. Mishjil, and I. A. Al-Baidhany. "Theoretical and experimental investigation of structural and optical properties of lithium doped cadmium oxide thin films." Materials Research Express 6, no. 11 (2019): 116434.
Hohenberg P and Kohn W. Inhomogeneous electron gas. Phys Rev 1964; 136:B864.
Sedighi, Matin, Borhan Arghavani Nia, Abubaker Hassan Hamad, and Mazin Sherzad Othman. "Electronic and optical properties of SrS nanosheet in 001 and 101 directions." Computational Condensed Matter 22 (2020): e00445.
Holzwarth, et al. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions. Comp Phys Commun 2001; 135:329-347.
Othman, et al. Ab-initio investigation of electronic and optical properties of InAs1-xPx alloys. Gazi Univ J Sci 2010; 23:149-153.
Othman, Mazin S., Samir M. Hamad, and Hewa Y. Abdullah. "Theoretical analysis of linear optical properties of PbSxSe1-x (X= 0.5)." journal of kerbala university 14, no. 2 (2016): 221-228.
Naser, Nabiel M., Saman Q. Mawlud, and Mazin S. Othman. "Effect of the Direct Current Modulation on the Relaxation Oscillation and Turn-on Delay for a QWL In0. 2Ga0. 8As/GaAs." Journal of College of Education 6 (2011): 478-488.
Liou BT, Lin CY, Yen SH, Kuo YK. First-principles calculation for bowing parameter of wurtzite InxGa1? xN. Optics Communications. 2005 May 1;249(1-3):217-23.
Akkus, Harun, and Amirullah M. Mamedov. "Ab initio calculations of the electronic structure and linear optical properties, including self-energy effects, for paraelectric SbSI." Journal of Physics: Condensed Matter 19, no. 11 (2007): 116207.
Liu, Tingyu, Jun Chen, and Feinan Yan. "Optical polarized properties related to the oxygen vacancy in the CaMoO4 crystal." Journal of luminescence 129, no. 2 (2009): 101-104.
Dammak, Hajer, Aymen Yangui, Smail Triki, Younes Abid, and Habib Feki. "Structural characterization, vibrational, optical properties and DFT investigation of a new luminescent organic-inorganic material :(C6H14N) 3Bi2I9." Journal of Luminescence 161 (2015): 214-220.
Lu, Jun, Eng-Hui Chew, and Arne Holmgren. "Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide." Proceedings of the national academy of sciences 104, no. 30 (2007): 12288-12293.
Almi, K., and S. Lakel. "Pressure Dependence of Structural, Electronic, and Optical Properties of Be 0.25 Zn 0.75 O Alloy." Physics of the Solid State 62, no. 2 (2020): 260-266.
Othman, M. S., Kh A. Mishjil, H. G. Rashid, S. S. Chiad, N. F. Habubi, and I. A. Al Baidhany. "Comparison of the structure, electronic, and optical behaviors of tin doped CdO alloys and thin films." Journal of Materials Science-Materials in Electronics (2020).
Wang, Hui, Yufang Wang, Xuewei Cao, Lei Zhang, Min Feng, and Guoxiang Lan. "Simulation of electronic density of states and optical properties of PbB4O7 by first?principles DFT method." physica status solidi (b) 246, no. 2 (2009): 437-443.
Downloads
Key Dates
Published
Issue
Section
License
(Starting May 5, 2024) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.