The Bimodal Color Distribution of Galaxies at Redshift of z=0-0.15 from the Sloan Digital Sky Survey (SDSS)


  • Hareth Saad Mahdi Department of Astronomy and Space, College of Science, University of Baghdad



Classification of Galaxies, Formation and Evolution of Galaxies, Photometric Data


This work aims to use the color distribution of galaxies to differentiate between blue and red galaxies. The photometric data of 300000 galaxies at redshift of z = 0 – 0.15 were collected from the Sloan Digital Sky Survey (SDSS). Three redshift ranges were considered for the purpose of this work: 100000 galaxies at z = 0-0.05, 100000 galaxies at z = 0.05-0.1 and 100000 galaxies at z = 0.1-0.15. The color distributions for all redshift ranges were determined. The results have clearly shown that the color distributions for all redshift ranges are bimodal. One of the two peaks corresponds to the blue galaxies (young and star-forming galaxies), whereas the other peak corresponds to the red galaxies (old and non-star-forming galaxies). Therefore, the color distribution of galaxies can be considered as an efficient tool to distinguish between blue and red galaxies.


Roy J. Unveiling galaxies: The role of images in astronomical discovery. United Kingdom: Cambridge University Press; 2017. p. 196. [


Schneider P. Extragalactic astronomy and cosmology. 2nd ed. Bonn: Springer; (2015). 102 p. [


Strateva I, Ivezić Ž, Knapp GR, Narayanan VK, Strauss MA, Gunn JE, et al. Color separation of galaxy types in the Sloan Digital Sky Survey imaging data. AJ. 2001; 122: 1861-1874. [


Salimbeni S, Giallongo E, Menci N, Castellano M, Fontana A, Grazian A, et al. The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs. A&A. 2008; 477: 763-773. [


Menci N, Fontana A, Giallongo E, Salimbeni S. Bimodal color distribution in hierarchical galaxy formation. APJ. 2005; 632: 49-57. [


Nelson D, Pillepich A, Springel V, Weinberger R, Hernquist L, Pakmor R, et al. First results from the IllustrisTNG simulations: the galaxy color bimodality. MNRAS. 2018; 475: 624-647. [


Dieleman S, Willett KW, Dambre J. Rotation-invariant convolutional neural networks for galaxy morphology prediction. MNRAS. 2015; 450: 1441-1459. [


Huertas-Company M, Gravet R, Cabrera-Vives G, Pérez-González PG, Kartaltepe JS, Barro G, et al. A catalog of visual-like morphologies in the 5 CANDELS fields using deep learning. APJS. 2015; 221: 8-30. [


Kuminski E, Shamir L. A computer-generated visual morphology catalog of ~3000000 SDSS galaxies. APJS. 2016; 223: 20-29. [


Gunn JE, Siegmund WA, Mannery EJ, Owen RE, Hull CL, Leger RF et al. The 2.5 m telescope of the Sloan Digital Sky Survey. AJ. 2006; 131: 2332-2359. [


Abolfathi B, Aguado DS, Aguilar G, Prieto CA, Almeida A, Ananna TT, et al. The fourteenth data release of the Sloan Digital Sky Survey: first spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory galactic evolution experiment. Accepted by APJS on the 28th Nov. 2017; ArXiv e-prints.

Fukugita M, Ichikawa T, Gunn JE, Doi M, Shimasaku K, Schneider DP. The Sloan Digital Sky Survey photometric system. AJ. 1996; 111: 1748-1756. [


Li Z., Han Z. and Zhang F., Potential colors for studying stellar population, 2006, Proceedings IAU Symposium No. 241. [


Deng X., The environmental dependence of different colors in the CMASS sample of the SDSS DR9, Reseach in Astronomy and Astrophysics 2014; 14: 553-564. [


Baldry I., Glazebrook K., Brinkmann J., Ivezić Ž, and Lupton R., Quantifying the bimodal color-magnitude distribution of galaxies, APJ. 2004; 600: 681-694. [


Balogh M., Baldry I., Nichol R., Miller C., Bower R., and Glazebrook K., The bimodal galaxy color distribution: Dependence on luminosity and environment, APJ. 2004; 615: L101-L104. [Crossref]




How to Cite

H. S. Mahdi, “The Bimodal Color Distribution of Galaxies at Redshift of z=0-0.15 from the Sloan Digital Sky Survey (SDSS)”, MJS, vol. 30, no. 2, pp. 52–59, Sep. 2019.



Physical Sciences