The impact of Cobalt and Strontium radiation on Pseudomonas aeruginosa


  • Waleed Jabbar Mhana Department of Physics College of Science, Mustansiriyah University, Baghdad, IRAQ.



Irradiation, radiation, bacteria, cobalt, strontium


The research aims to study the effect of radiation emitted from different clinical sources, including cobalt and strontium.  The study was carried out using isolates of Pseudomonas bacteria isolated from Baghdad hospitals during the year 2021, about 20 isolates from the blood of patients infected with the bacteria. The results showed a lethal effect on Pseudomonas bacteria when exposed to radiation at different times during one hour, two hours and three hours. Different doses using cobalt with effective 1 mci and 10  mci in the presence and absence of aluminium, and the use of strontium in the presence and absence of aluminium.  Co60 (10Mci) without Alminium, with dose 12.48472106(1hr.), 24.96944212 (2hr.), 37.45416318 (3hr.) that emit Beta and Gamma; Co60 (10Mci) with aluminium with dose 0.023315312×10-7 (1hr.), 0.046630625×10-7 (2hr.), 0.069945936×10-7 (3hr.) that emit Beta ray; Co60 (1Mci) without Alminium with dose 3.4178394 (1hr.), 6.835678887 (2hr.), 10.2535182 (3hr.) that emit Beta and Gamma; Co60 (1Mci) with alminium with dose   0.155992856*10-4 (1hr.), 0.311985712*10-4 (2hr.), 0.467978568×10-4 (3hr.) that emit Beta ray and Sr90 with dose 0.73251×10-2 (1hr.) 1.4650×10-2 (2hr.), 2.19753×10-2 (3hr.)   The results showed that the killing rate of P. aeruginosa bacteria using cobalt 10 mCi without aluminium was 78%, and in the presence of aluminium 100%. In comparison, the killing rate of Pseudomonas bacteria with effective effectiveness of 1 mC without aluminium was 100% and in the presence of aluminium 98%, and the killing rate of Pseudomonas bacteria without aluminium was 83%  and in the presence of aluminium 96% compared with control.


Download data is not yet available.


H. Fazeli, R. Akbari, S. Moghim, T. Narimani, M. R. Arabestani, and A. R. Ghoddousi, "Pseudomonas aeruginosa in patients, hospitals means and personnel's specimens". J. Res. Med. Vol. 17, no. 4, pp:332-3372, (2012).

Tavares, W. (2000). Bactérias gram-positivas problemas: resistência do estafilococo, do enterococo edo pneumococo aos antimicrobianos. Rev Soc Bras Med Trop. 33; (3):281-301.

CrossRef | PubMed

Zarychanski, R.; Ariano, R.E.; Paunovic, B. and Bell, D.D. (2009). Historical perspectives in critical care medicine: blood transfusion, intravenous fluids, inotropes/vasopressors, and antibiotics. Crit Care Clin. (1):201-20.


"The Electromagnetic Spectrum". (2018). Centers for Disease Control and Prevention.

Kollef, M. H. (2013). Antibiotics for the critically ill: more than just selecting appropriate initial therapy. Crit Care. 2; 17 (3):146.

CrossRef | PubMed

Karen, B. (2007). Cancer Sourcebook. Detroit, MI: Omnigraphics. pp. 112-113. ISBN 978-0-7808-0947-5.

International Atomic Energy Agency. (2002) The Radiological Accident in Samut Prakarn, IAEA, Vienna.

Food and agriculture organization of the United Nations, international labour organization, OECD nuclear energy agency, pan American health organization, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No. 115, IAEA, Vienna (1996).

International Atomic Energy Agency. Investigation of an Accidental Exposure of Radiotherapy Patients in Panamá. IAEA, Vienna, (2001).

Collins, M.D. and Lawson, P.A. (2000). The genus A biotrophia (Kawamura et al.) is not monophiletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb.nov., Granulicatella elegans comb. nov.and Granulicatella balaenopterae comb. nov. Int. J. Syst. Evol. Microbiol. 50:365-369.

CrossRef | PubMed

Porta, M. (2014) "A dictionary of epidemiology", 6th edn, New York: Oxford University Press. ISBN 9780199976737.

Forbes, B. A.; Sahm, D.F. and Weissfeld, A. S. (2007). Baily and Scott's Diagnostic Microbiology. 11th edition. Mosby, Inc. Baltimore, USA., 384-398.

Holt, J. G.; Krieg, N. R.; Sneath, P. H. A.; Staley, J. T. and William, S. T. (1994). Berge's Manual of Determinative Bacteriology. 9th. ed. Williams&Wilkins, USA. P.532-551.

Biomeruex corporation. (2010). VITEK, USA.

Carlton, R.M.; Noordman, W.H.; Biswas, B.; de Meester, E.D. and Loessner, M. J. (2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43(3):301-12.

CrossRef | PubMed

Barros, R. R; Carvalho , G. S; Peralta, J. M.; Facklam, R. R. and Teixeira, L. M. (2001). Phenotypic and Genotypic Characterization of Pediococcus Strains Isolated from Human Clinical Sources. J. Clin. Microbiol. 39:1241-1246. 76.

CrossRef | PubMed

Chang, Y. H.; Han, J.; Chun ,J.; Lee, K. C.; Rhee, M.S.; Kim, Y.B. and Bae, K.S. (2002). Comamonas koreensis sp.nov., is a non-motile species from a wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol., 52:377-318.

CrossRef | PubMed

Ismail, M.C.H.; Waleed, S.; Jabbar, F. and Ibrahim, K. (2012). Effect of Diode Lazer (805) nm on alpha-toxin production and antibiotic sensitivity of Staphylococcus aureus. Iraqi J. Sci Vol 53. No. 2. Pp 755-759

SAS,(2020). Statistical Analysis System- SAS.

Mohammed, N. R.; Sabaa, H. S. and Sanaa R. (2021). Biological activity of Nd: YAG laser and Beta, Gamma radiation on Klebsiella pneumonia resistance Colistin. Sys Rev Pharm. 12 (1), 28-3.


Key Dates





Original Article

How to Cite

W. J. Mhana, “The impact of Cobalt and Strontium radiation on Pseudomonas aeruginosa”, Al-Mustansiriyah Journal of Science, vol. 33, no. 3, pp. 101–106, Sep. 2022, doi: 10.23851/mjs.v33i3.1157.

Similar Articles

1-10 of 104

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)