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ABSTRACT
Fractal dimension is an important feature of images, which is considered as a

basic concept in fractal geornetry used to measure the geometrical complexity of
fractal set. In fractal geometry theory, the fundamental definition of fractal
dimension have been based on Hausdorff dimension that is not easy to be
estimated in most cases. There are many approaches to estimate the fractal
dimension of an object, they compute inefficiently and the present of the local
features of image invalidly. This paper addresses this problem by presenting a new
estimated algorithm based on pixel covering method. The proposed approach will
serve as an important characteristic for several applications in medical, engineering,
and sciences, it helps to determine the local structure feature of image upon other
conventional approaches used to determine the fractal dimension for the whole
image. Experimental investigations indicate the efficiency of this approach
compared with a well known widely used approaches such as; the box counting
dimension, and the escape time dimension.

Keywords.' Fractal Dimension (FD), Attractor, Box Counting Dimension (BCD),
Escape Time Dimension (ETD), Pixel Covering Method (PCM).

l.Introduction
The description of irregular and random phenomenon in nature is

performed through ftactal that was established by B.B. Mandelbrot [1].
Fractal theory is a new system describe self-similarity, it has been
studied by many researchers and successfully applied in many fields.
Self-similarity could be also regarded as a measure of geometrical
complexity of an object under discussion. Mandelbrot was the first that
handled the irregularity of surfaces in an image through introducing the
concept of FD, and described an approach to calculate it that is when he
tried to estimate the length of the coastline. Although he did not give a
precise definition of fractal, one can understand why, depends on the
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object studied, for this reason he give several non equivalent definitions
of FD, that each problem should entail an appropriate notation of
dimension [2].

Mandelbrot singled out "Hausdorff dimension", because most of the
works of this subject was studied by Besicovitch, another type of
dimension is belonging to the Bouligand-Minkowski dimension
(Minkowski fractal dimension method) [3]. Some of them are
equivalent but others are not. The most celebrated one is the Hausdorff
(or Hausdorff-Besicovitch) dimension [ ]. The most popular one is the
box-counting dimension [4] a very similar method to Mandelbrot
approach that is given by the Box-Counting theorem. There exist
several equivalent definitions termed as a box-counting dimension. A
capacity dimension (due to the definition given by Kolmogorov) and the
Minkowski-Bouligand dimension are among them [4,5,6]. Although in
many cases the Hausdorff dimension equals the box-counting
dimension, in general the Hausdorff is used only in theoretical settings
and is too subtle for practitioners [1,6]. Popular methods for estimating
FD are also correlation dimensions [7] (Grassberger-Procaccia, Takens
estimators) and information (or entropy) dimensions [8]. Bernsley [5]
introduced the fractal interpolation method which applies iterated
function system (IFS) to produce a fractal with known FD through N+l
points. These methods generate graphs which is attractor ofthe IFS ofN
contractive affine transformations. In the thesis of A. J. Mohammed [9],
a new method to find the dimension of some fractals based on escape
time principle was proposed using the method of spreading of the points
inside a specific window with I:[-1,1]. In this paper a new estimated
approach based on pixel covering method (PCM) is proposed. The
proposed approach will serve as an important characteristic for several
applications in image classification, object modeling, texture analysis
and many other application in medical, engineering and sciences. It
helps to determine the local structure feature of image upon other
conventional approaches used to determine the FD for the whole image.
Many other researchers proposed new approaches that used to improve
the efficiency ofFD estimation [8,10,11,12].

The material of this paper is ananged into six sections. Section 2
deals with the theoretical background of FD with some known types of
fractal dimensions. Box-counting dimension with the proposed Box
counting algorithm based on PCM is described in section 3. The ETD
with the proposed escape time algorithm is presented in section 4.
Section 5 is devoted to present the algorithm implementation with the
numerical experiments. Finally, some conclusions are summarized in
section 6.
2. Theoretical Background
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Theory of fractal sets is a modern domain of research; whereas, the
complexity of fractal set can be reflected using fractal dimension. This
section presents an overview of major concepts and results that help to
understand the FD and their counting methods, a more detailed review
of the topics are as in [1,5,13,14].

Let(X,d)be a metric space, Yc.X.ThenY is called totally bounded
(precompact) if for each r ) 0, there exists a finite set of points

rぅんc4″ =rχ l,χ 2-,χ″,ノ    Such   that UEf*,,e)=Ywhere
j eJ,,

E1x,,e) - { x e X ; d(x,x, ) <e}.When Y is totally bounded. Let

N,(Y ) : min{lJl, l)81 *,,x) =Y } 
: min{ m, l)81*,,e) = Y } .

ブcノ ブCノ″

Let C(Y)be the Capacity(length,area,volume)ofthe subset Y of X.

Therefore, cryノ =Attryり 8グ rεノ.Then グrεノiS a function of e, where

グr8ノ =腸
rⅣε

`γ

〃_ルrCry〃 .If the ″
“
グ

`ε

ソexiStS,and equal to a real
腸r1/8ノ       ε→0

number d,then d is called the capacity dimension of Y.If the capacity

and d is caned adirnension d not integer,then Y is caned a fractal,

fractal diFnenSion.

Whenりr=R″ , and y⊂ χ=R″ . Leto<r<1, and ″″<ε≦r″+l for some

positive integer n.Thenグ =li覆 グ

`ε

り=:=“ グrr″ノ。
ε―
'0

Therefore グ=物
肋rttry〃 =物

腸

`Ⅳ

″ry〃 .Then dぉ called box
ε→0 腸(1/8ノ  ″→∞″腸(1/rノ

dirnension,and the way to calculate d is called box counting diinension.

Letχ =R″ ,andィχ,ノノ=rΣ
`χ

ブーップリ
2り 1/2is a metric mapping deined

ブCプЪi

on R″ .Then rχ ,の =`R“ ,の iS a metric space.The mapping/「 χ→χiS

caned   contraction   mapping   when   グ(/`χり,/rッ〃≦sグζχ,ッリ∀
χ,ッ∈χ,s∈ √0,1ノ ,WhiCh is a contract市 ity Of f and similarity mapping

when グ

`/rχ

ノ,/rノ〃=sグrχ,ッリfOr an χ,y∈χ,s≧ 0,when s=1,f is called
lsometry.

Let rR″ ,グノbe a complete rnetric space.Then〃 rR″ソdenOte the set of all

non―empty∞ mpact subsets of R″ and D is the Hausdorff metric on
〃rR″ノdeflned by

for   all五YИ,3り =″αr雀び
.留ィα,bり,電3.縫ツ

グ(α'リノ

И,3∈〃

`Rり

。

Then(〃(R"),D)iS a metric space.

／ヽ

ヽ
ア
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Let { f, }i.t nbe the set of contraction mappings on R' , with contractivity

s, for i eJr. ThenF(A)= l)f,{,1), for all AeH(R')is a contraction
jeJ x

mapping on the complete metric space (H(R'),D))with contractivity
s=mm{s,: j eJ*}.By the contraction mapping theorem, there exists a

fixed point A e H( R^ ) such that F( A) = A,and tim F'1 81 = tr for all

B e H( R^ ). These fixed point A is called the attractor set. Let

B=I', =[0,1]' eH(R'), F(I^ )= l)f,{t^ )cI^ and
jeJ -

I" ) F(Io')) F2(I^ )r...),,<. Then n= Q.r'rI')= !!*r"(r^ ).

When I is a family of affine transformation "fr(x)= s,Ri(x)+D, where

Rris an isometry and b,is a transformation on I^ for 7 eJy, and for all

xe I^. Then A= f(A) is called self similarity in I^, and d:dim A is the

solution of )sf =1, is called similarity dimension of A it is calculated
jeJ x

by y = lsf when 51.
jeJ N

Let (X,d)be a metric space, and 7 : X +X be a contraction mapping,

then ( X , f )is called dynamical system, when

f"(x):x,f"*^(x)= _f'(f"(x)),YxeXand n,m are positive integers. Let
xn+t = .f (x,) for all positive integer n.

Then x= lim xn+t= lim f (x,)= f( lim x,)= f (x).Let
″―)∞        "― )∞

Y ={ x e X : f(x) = x} cX.It is not easy to find Y, but

Y ={xeX ;)x"eXsuch that lim f"(x")=xl, when X = I^ and

f =("fr,"f2,...,"f^)where "f1(x) =xrfor alli e-I.. Then x=(xr,xz,...,x^)

implies f(x)=xeI'.Tofindthisx, let x,=(xi,xi, ,xi)and x]*t =-fi(xn)
. Therefore lim f,(x,) = xi = lim ( f' (x"). This will form the escape time

method.
3. Box Counting Dimension

Since the fractal dimension may be found by using the box counting
dimension which is used on totally bounded sets by means of PCM for
2D monochrome images, which means that it is useful when we deals
with fractals with dimension between I and 2, since we are aiming to
find the dimension for the 3-dimentional object, this requires these
images to be binarized in order to be estimated using pixel covering
method; this may cause loss of information, which is not acceptable in
many image processing applications, in addition, there is an underlying
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uncertainty accompanying of any estimation of FD according to the
truncated error accrued as a result of iterative process and to using a
sample of points for any object. To resolve this restriction the box
counting method needs some modification to be general and suitable for
all application based on 3- dimensional objects. Thus, a new approach is
introduced in this work.[15]
Also, For computer applications, the data is usually discretized, the
PCM is proposed to estimate the FD of fractal binarized images where
points are represented by i, while the background is represented by 0.
The image r is divided into squares with width r, where Nr(n
represents the minimum number of sets with radius less than or equals a
that covers )'. Hence, a group of data (-log 61, log lvar(I)) is obtained and
the FD is estimated by changing the value of d, it is the slop of the line
derived from these data using the least squares linear regression. This is
possible when the contraction mapping for the fractal )ris known, if not,
so, it is not easy to calculate the box dimensions of a locally bounded

ln( N,t 
,,{Y )

subset Yef , where 6(r" )= k--ia- . Hence, we proposed a new

estimation method to find 5, which is presented as follows:

3.1 The proposed algorithm to estimate FD
For a sufficiently large integer neN,let S,:{0, 1,2,. . .,2n-l),

, .0 I 2,-1 
,anopn={7,j....,2, }

Where pn c I = [O,tJ with ls,l:lp,l:2n.

Let xi =l,r*r-rl" *,-)!t' +...+ ,-!.1'" ,, whereTie {0,1}.2'2222n
ThenT':f r j2,.. j,):jizj2+...t2njn, is apermutation of ^1,

and xr = (*i, ,xrz, ,...,x1; ) el* is a permutation of pr.
Then i* :1*i =(*lr,*r2r,...,xt;, );j,isapermutionof pn), then we have

li^l:z'*pixels, and these pixels will form partition of I as a small box
region, where their vertices are these pixels.

Let ? y = { *, ey }be the set of pixels in ye H(p), since

N,,,rr*,(Y ) = min{ m , l) a1*', ,f *f.' =-y } = Nr,,rru(y )
j eJ,,

Therefore ,6 =Nr"')'u(Y 
) 

=Nr"'fu(Y 
) io 

rntn2 ,fu- is an approximate box

dimension of YeH(I*).

ヤ

″
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The number of pixels in r Pcan be calculated through the scanning
way to all of these pixels in a given space, and as follows:
For each *i ei^ , factorize *i =(*i,,x'z,r..,rr,,f ) into m collections of
subsets, each has 2'pixels that represent the value of x:(x1,x2,.-.,x).
This can be performed using the recursive sequence of points ti-

;2nti*ki, and x=(k/2')e10,1] that scans all i^ pixels. Hence, it is easy

to count the number of pixels N,(Y ) in r. Then 6=ALrl′ノ  that
″′η2

represents the box dimension of the set y∈ Ц ″),aS in the following

algorithm.

PCMDl Algorithm
lnput″,′∈♪t where r is a large positive integer

′=2197″ -1

1nput`0∈乏%
Input y

Factor(′0)=(た 1,お,…協)∈ろ
″

For`0=0:2″″-1

For′=1:m

`′

_1=′′+た 1

χ戸たノン
End j

lfχ=01/2,…・/″)∈ 4 then A4ο =No+1

Endぬ

Output o1/2,一 /″ )∈″

Output 8=71ウぢ
Then S δ is a bOx dimension of 4 and if/is a fractal,then S is called
box dirnension ofthe fractalヱ

Example l
Lct 
“
=2, ″=6, let y is the given set as follows, wherc

Dim(り =0・ 6813.
】生{(0.15625,0),(0・ 03125,0.03125),(0。 125,0.5),(0,0.75),(0.5,0

.03125),(0.28125,0.0635),(0.25,0.25),(0.96875,0。 0625),

(0。 78125,0.09375),(0.5,0.125)(0.375,0.25),(0.25,0.3125),

(0.25,0.4375),(0。 375,0.5635),

(0。 875,0。 625),(0.125,0.953125),

｀ヽヽ

(0.859357,0.156625)}.

For″=2,6=」堕望L=0.5

For η=4,S=」堕畳L=0。 7925

Thcn for large n, δ=06813.

For″=3,8=」型1=0.8617

For″5,6=三型1=0,7814

Figure‐ 1:A given set

r in f2

6
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4. Escape Time Dimension (ETD)
In this section, a new ETD is proposed, it is considered as a general

algorithm whih is applicable for fractals generated using "Escape Time
Algorithm", [5]. These fractals are generated by repeatedly applying a

transformation to a given point in the plane, using an initial point; the

resulted series of the transformed points is called the orbit of this point.
The orbit is called diverges when its points grow further apart without
bounds. In this case, a fractal can be defined as; "the set of points whose

orbit does not diverge". With the existence of the same restriction
mentioned in section 3, the proposed algorithm is considered useful, and

also it is more efficient than the one proposed by [9], as we will show in
the next section.
4.lFractal generated by ETA

Let (X,d) be a metric space, for f:X-+X, .f 
o(*):*, and f (x):J(f-'(r)),

for all xeX. The sequence { *,ff, in X is generated as, xFflxs),

xz:/(xr),.../n:flxn-1), where x,-f(xo), for all neN, and xoeX. The
convergence of the sequence {x,} in Xis called the attractor of f in X,
where {* = ll*r, e X } :Y : { x e X . .f(x) = x} c X .

4.2The Proposed Escape Time Dimension (ETD)
Let(R*,d') is a complete metric space where d'is the usual metric

and YeH(R') where I'is closed and totally bounded (i.e there exist
M>0, such that D(x,y)3M, for all x,yen. Now if M>1, then the
dimension of the attractor Y can be calculated by

6 = titn 6(x) = timk!ry:(:Y l) , where Y=f:l)jf*c.R*, and d(x,y):(llM
e --+* ' ' c--+o ln( I / t, )

d' (x,y)<|.
Hence 6 is the ETD of the attractor in the set I'and it can be calculated
using the same proposed algorithm, and as follows.
PCMD2 Algorithm
Input m,n€N, where n ts a large positive integer

P:2n, q:P'-l
Input ts€Zq,Sel/
Factor (t 6):(fu ,k2,. . . k^) e Zr*

For /o:0 :2'*-l
For I:l: m

ti-ftip*ki
x-k/p

End 1
For 7:0: S
If fi(x)eI

ｒ
ヤ

＾
，

Ｆ^
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End」 i

lfJi>S,then χ=o1/2,一 /″)∈ 4 and A4ο=No+1
End`0

0utput lt S=;f夕
ぢ

Then Sδ isthe ETD of 4 and if/is a fractal,thenS is called ETD

ofthe fractal F

5。 Experilnental results and lmplementation

The PCNIIDl and PCMID2 algorithrns with their graphic user

interface(Figure 2)are carried out using Visual Basic.The results have

been obtained by using a computer with the speciflcations 2.O GHz

lntelCORi5 CPU and 2 GB RAM.

k=

ffx) bdong b th?

x bdo.tg b Y?

t-Fdr.--.l

A. General BCD using PCM   B.General ETD using PCM

Figure-2:Userinterface to calculatc FD using PCMDl and PCMD2

Table-1:Fractal Dirnension comparison using the classical and proposcd methods

for some known fractal sets.

6.CONCLUSIONS
The fractal dimension is the basic concepts of fractal geometry and

seryes as an important feature of image. In many applications, the data

sets do not strictly follow the definition of fractal, but only follow a

certain range of scales. With the unavailability of a contraction mapping

一　

　

一

青
　
　
ｋ．　
　
　
　
´1__型さ__」

x belong to y,

1閥 晰 . :    Drn=

ヘ

く

Iterated
Function f

BCD ETD PC卜lDl PCR/1D2

Sierpinski
triansle

1.58496 1.58 1.58012

Filled Julia sets

c=(0.2.0.7)

1.520263 1.51973

Cantor set 0.63093 0.63 0.629456

Y=【z)=

z2_1.25

1.2845 1.27952

・ 宅 1‐ |
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for many fractal images, the conventional methods that based on the
using the coefficients in these mapping became useless, which
motivating the researchers to always search for new methods to
overcome these restrictions. In this paper, two new algorithms for the
estimation of the FD are proposed. They are considered as a

generahzation for the well known and widely used algorithms; "the box
counting dimension" and '1he escape time dimension". It seems that
from the experimental results, the proposed methods could be
particularly useful to be applicable for various real world applications
that based on gray scale and 3- dimensional levels in comparison with
the corresponding classical methods used to estimate fractal dimension.
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ABSTRACT
Thc Purposc of this papcr is to study the approxirnation of unbounded

functions in the spaces Lp,α [~1,1],0<p≦ ∞ by comonotone polynomials.We ind
the degree of bcst approxiination of unbounded hnctions in tellHs of the sccond

Ditizian― Totik modulus ofsmoothness.

1. INTRODUCTION
In recent year the approximation by comonotone polynomial has

been studied by [1] such that R.K.Beston and D.Leviatan obtain some
results on the approximation of commonotone polynomials and
N.M.Kassiml2l discussed approximation of bounded function by using
comonotone and monotone polynomials in Lr-spaces ( 0 < p < 1) in
terms modulus of smoothness.The main departure from these pervious
works is that we shall prove direct estimates for the error of polynomial
approximation in terms of the Ditizian Totick modules of smoothness .

2. Definition and notation
Let Pn denote the set of all algebraic polynomials of degree ( n and

Lp,"[- 1,1] the set of all functions on [-1, 1] such that,
.1lb' \

ll/11,.",=ljlr(x)e-o*loa*.Jo .*, 0<p<-

LetYrt: {yr, ...,yrl yo, :-l <yr <....yr( 1:iyr+r},r e N.
Denote by Al(V.) the set of all nondecreasing functions / on [y,- 2k,y,-
zr* r] and is nonincreasing on[y. -2k-t,yr-2kf, (keN) that is mean those
have r monotonicity changes at the points in Y, and are nondecreasing
near 1.

Let Al: : A(l)(Yo) denote the set of all nondecreasing functions on [-
1,1]. Function from the class A(')(Y.) are said to be comonotone with
one another, comonotone polynomial approximation is the
approximation of function / e A'(Y.) by polynomial which arc
comonotone with it.

　^
宙

●
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For f e Lo,"[-l,11 let us define the degree of comonotone polynomial
approximation of/by

EPび ,I)p,α・
pn c」嘔lに )1/~pnlp,α ,fexist

….(2.3)

… (2.1)

The m-th order Ditizian-Totik modulus of smoothness ro'y"(f ,5)o,o is

given by

.,y."(f , 6)o,o,= 
;g, llCk r 

(/, -)"*. 
llo,

where q(x)=..ffi und

Al",,-,ff ,.',=ilt-'),",(TI(,.-;n+in)' Xrln'[-r'r]

[o ,o.w

Define d(r) by,
d(r): :min{y1,y2-yr,...,y.-y,-r, I -y, }
Now, in [3] for sufficiently large p: p(r), there exists polynomials v"(x)
and wn(x) of degree < c(r) n such that the polynomial

pKメ):=(qn(X)一 qn(yl))Vn(x)+qn(yl)Wn(X)
…。(2.2)

is comonotone with f , and the following inequalities are satisfied

lsgn(x - yr ) - ," (*)l < c(r)ryf (x),

lsgn(x - yr) - *" (*)l < c(r)ryf (x),

Where V,(x) = 
-: - " 

(recall that y1 e [x;,x.;- rJ).
lx - xjl+ nj

3-The Main Results
It is found that the degree of approximation of a comonotone

polynomial are in stages. In the first approximant f e Le,"I-l,l] n
l'(y,) by continuous piecewise linear spline s e Al1Y,) that is

1/―可し,α≦Cω3び ,n~1)p,α '

ω9び ,n・ )卜瀧陥(⇒び,う
e‐
Xlp

Then the study shows how to approximate s by a polynomial in
Ar(Y,),use [a] for formation the partition of the interval [-l,l] by the
nodes xk,k : 0, ..., n with Y, then delete xi and xi-1 for which there is a
yj, j: l, ..., r such that x1- r S y.i < xi and end up a new partition which
denote Zr,nbyl.

〕ヽ
・

つ
４



．一　
胃

Al- Mustansiriyah J. Sci. Vol.24,No5,2013

Z,,nt=Y.rl({xk}l=o\{x,,x;-1 rXi-r (Y1 3x' for some j=1,.'.,r}) (3.1)

And can be chose 5 for every interval [-1,1] of the partition Zr,n the
restriction of s to I is a near-best linear approximantto f in Lo,,(!.

Let y e [xi- 1,xi], say and suppose that p1 is non decreasing and pz

is non increasing.
Now define s in [x;- 3,Xi- 2] as the piecewise linear continuous spline

s(x):-(x) for x € (xi -2,xi+ 1) and sf$=plff), if p2(x; -) < p1(xi*1) or

s(y) : pzfD if pz(xi- z) > pr(xi *r). A continuous piecewise linear spline s

e A'1Y.; is obtained [4].
Lemma (3.1):

Let afunction f e Lp,n Al1Y,;, 0 < p ( @, then for every n >
c(r)/d(r) (d(r)10)there exists a continuous piecewise linear spline s €
A'(Y.) on the knot sequ ence Z,.nsatisfying

1/一可lp,α≦Cω9び ,n~1)p,α … (3.2)

and

ωS(S,n-1)p,α ≦Cωりび,n~1)p,α                    …(3.3)

Proo■

First proof(3.3)by using(3.2)

ω:(S,n-1)p,α =ω:(S /4/,n-1)p,α

≦%ω,(S/,n-1)p,α ttC2ω9び 'n~1)p,α
ωS(S,n・ )pβ =Cトザ雌,α tt C2ω :び 'n・ )pp

.              ≦C3ω:び ,n~1)p,α +C2(r)① 3び ,n-1)P,α
Hence,

ω3(S,n-1)p,α ≦Cω3び ,n~1)p,α
Now to prove(3.2)construct a spline S which satisfles the condition

for each n>c(r)/d(r)suCh that

El)び ,I)p,α ≦C(r)ω9び ,n-1)p,α
Consider the case where p2(Xi-2)≦ pl(Xi+1),the Other case is analogous,

all are shows as follows:

レ
ー
釧l可移 刀

=牌 一p2+p2~ザ
鵡
"刀

ぽ
―
《 鵡 期

≦
牌
―p2憾

,可移 刃
+IS― p2暉

,嚇ル列

To estimate the term‖ s― p2111,α
[、 _2,ア ]・
Indeed

,
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ll s - nr llr,.,r*,.,,y1 - lt(Y) - p, (v)l - lp, (v) - p, (v)l

= ll 
t - Pz llp,o1*,.,,r, - ls(v) - pz (v) - pr (v) + p, (v)l

=IS~p2鵬可移コ
~陣
)― Rσ】

IS~p2鵬可b]~Ю―p201~いlσ )― p201
<CIS(ア

)一 p2~S(ア )+pl(ア )|

=C卜1~p2雌 ,可
…]Therefore,

IS~p2鵬 ,可、 ル]一 陣
)一 p20】

~い
16D― p20】

≦chノ p卜1-p2L可、デ%卜1-p2L可b]
where hi=lxi_l― xil
Then from(3.4)

…。(3.4)
ヽ

レ
ー
釧l可移 ギ

Cレ ーR暉
轟 トコ
+炉 一p2隔

移 河

Now in this part, prove that f is going to be a continuous
piecewise linear function on the Knot sequence Z,,n which belongs to \
A'(Y,) and satisffing/(y1) : 0.

Lemma (3.2)z

Letyl e I1 i: [x.;-1,x.;] andsethjt: ltrl :xj-xj-1 . Showthat

lltll, h; n, ="rr(f ,h,,J1)p,o
p.aty, -;t,v, +;tl

where
J.i : [xi -2,x1+z)
Proof:

In the first , take L to be the straight line such that

Llt.r-r,yt =f l1*12.tt, and get

牌―酬l可ゎ刃≦牌―p2脂ゎ刀+IS― p2暉 ,可移司
≦
炉
―R暉 ,可移 列

+IR~p2暉
,可移 刃

≦‖/―R脂、.刷 +1/―/+R― p2暉可、⊇冽
≦
牌
―R脂 移 コ

+q牌 ―R帽 ,可移 刃
+%レ ーp2暉

,嚇か]
Hence

14
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・
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一

1/ILp,α

〔yl―与,yl〕
≦1/~L‖ι

P,α[yl―与,yl]

=レ 0-Ц⇒+2Ц⇒-2Ц⇒++―キ
|,可h>]

=牌 o― Ц ⇒ 十Ц→ +Ц⇒ -2Ц⇒ +二
:L一
二

:=|,可
L_》 ]

=レo…う2LKx→世可中
= ll^, ,ll

ll r 11,,,,,_|,,,r

: ,", llol ,ll'r,,ll 11 ll h
0<r'<r ll 6 llp,a[1,, ]r,r, t

llrll. rr; <caz(f,hj,Ij)o,o
p,atyr -;t.yr l

Similarly, can show that

ll/ ll. h; 
(c.oz V ,h:,J;)p,o

p,o[,y,.v, +;Ll

Then

llr ll, h: n, 
s c02 (f ,h j,Ji)o.o

p,crty, -f,r, +f I

And,while乃 ⊂島 have l島 |≦ CI島 |― chJ,and for n≧ c(r)/d(r),With

・         sufflciently large c(r)the result is:

ω2び ,hj,Jj)p,α ≦Cω9び ,n-1)p,α             (3.6)
And(3.5)become,

1/ILp,α
≦Cω:び ,hj,Jj)p,α

Noぃち to prove the follo、 ving theorem the following notations are
necessary.

Deine the function/0)by:

ノOF備)IEl

… (3.5)

‐

15



Approximation of unbounded Functions by comonotone polynomials 
Saheb and Israa 

1

The function f is continuous piecewise linear spline from the class

l'(y/{y,}) and (3.6) implies that for n =:9^ d(r)

crD\(f ,r-')o,o < col (f ,n-t)o,o ...(3.7)

Lemma (3.3): [31

Let qn be a polynomial which is comonotone with / such that

llr -r"ll, <",\(r ,,,-')o

Lemma (3.4):
Let f e Lo,o[-1,1],(0 < p S co) and gn be comonotone polynomial r

we have

lli - q,llo," ' "a\(f ,.-')o,o

Prooft

lli -0.11,,, =llf -q.)"-".llo

= l[ '-". - q,'-".llo

Let f e-o*: F and qn e-o* : p, where F is bounded function and pn

comonotone polynomial then by using lemma (3.3) ,

lli .-'- - en.-o*ll,: ll. - p, llo

< co!(F,n-')n
:"r\(f ,n-')0,,,

Lemma (3.5):
I

If cJ y{e(x)dx S ch; and that qn is monotone near y1 then
-l

I lo",r, r.-". lovYl*;dx 
< c @\(f, n-' )[,..

Proof: by using (3.7) and lemma (3.4) ,

] lo",r,r.-".lovf (*)dx < ch, le"o,)"-"- lo

≦Cttn暉
,α

≦CI/ギ +qnttβ

16
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≦Cω;び ,n-1):,α +C*ω2r,n~1):,α

Hence

Ilo,t ,l"-".loefl(*)dx < c @\(f ,n-rX,*

Lemma (3.Q:[ ]

Let i e Z,.n(y3x) and hr:=zr-r-2, then

lf '(r,*)-f '(r)l < sli(n+t)/n a\(f ,n-')o

Lemma (3.7):
Letfe Lr,o[-l,1] and0<p<m have

lV' {rr.) -f ' (r,-))"-". 
| = 

s fr (n+t)in, \(f , n-' ) o,o

Proof:

lV '{r,.) -f '(r,-)).-"* | 
= lf '{r,*)"-o* -f '(r,- ) "-"* |

Let
F',(zi) : f',(zi* en*)
F'(zr-) :7'(zi-en*)
where F' is bounded then by using lemma (3.6) ,

lV '{r,.) -f '(r,-))"-"* I 
= I F'(r,* ) - F'(r,-) 

I

< sfr(P+r)/Po,E(f ,n-t),

< s fr(P+l)/P @\(f ,n-')o,o

Lemma (3.8):
Let f e Ar1Y.; be a continuous piecewise linear spline on the Z,,n ,

yr e [x: - r,xj] and /(y1) : 0 then for all x e [- 1,1]

( l-_- I \2 -1

l.r{*).-".|="l r.ffi I 
u,,",*:) o .,y(f ,n-r)p,o

\ r.)

where
6n(x,{i): min{An(x),A,(1)}10 for all i
Proof:

SetZr,n: {- 1 :z^12*-t1...l-z,1.-20 1} andh, t:Zi-r-zr,Fix
*, y, (and similar case when x ( yr) and denote Zr,n(yyx)::{ilzie

rI Zr,ntyt S zi<x).
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Letf e A(r)1Y.; be a continuous piecewise spline then for each n l
c(r) ld(r) there is a polynomial pn € Pn such that

1/一 pnlp,α ≦C(r)ω9び ,n-1)p,α

Proo■

From(2.2),(2.3)get,

1/一
pnll:,α =‖ /一 (qn(x)一 qn(yl))Vn(X)+qnOA)Wn(X)||:,α

=1/― qn(x)vn(X)+qn(yl)Vn(X)一 qn(yl)Wn(X)||:,α

=ll.f -q,rgn(x-y,)+q,sgn(x-yr)-q,(y,)v,(x)+ q,(yr)v,(x)-q,(y,)*,(*)lll,.

=卜 FSgnOく
_yl)一 qnSgnO【 ― yl)+qnSgn(x― yl)一 qn(yl)Vn(X)+qnOム )Vn(X)

―%01》nO暉
,α

= ll(/ - q" )ssr(x - yr ) + q" (sgr(x - yr ) - vn (x)) + q" (yr Xv" (x) - w" (*)ll',_

.llff -+Xs,,f*-r,)ll',, +llo,(ssn(x-yr)-v.(x))lli," +llq,(yrXv,(x)-*"(*))lll,,

= llr - o, lrsn(x - ,, )ll:,. - .1,1, 1*;.-"- lovfp 
(x)dx * . i lq. 

(r, ).-"' [rfl (r;a,

Using lemmas (3.2) ,(3.4) and (3.8) we get,

負dに輛 ti+糾 I｀
1切にめ脚爛 糾雌 め跳

伊―pnttβ≦C鍔び,nJttβ

ll/ -p"ll:,,.11fl-e"lrsn(x-r,)ll:,.-.i1r1,.;.-"-lovfp(x)dx*.ilq"(r,).-*-l'*f(,,)a,

Conclusions
Suppose that f is unbounded function and used moduli of smoothness
to found equivalence relation between the degree of best approximation
of this function and the moduli of smoothness in the weightLp,o- space

●
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ABSTRACT
In this work , Laurent series expansion compared with definition of rational function
is used to find rational solutions with N simple poles for some nonlinear partial
differential equations.

INTRODUCTION
During the last three decades, there has been a great deal of interest

in rational solution of integrable nonlinear evolution equations: This
began with studies of the rational solutions of the Korteweg-de vries
(KdV) and Kadomtsev-Petviashvilli (KP) equations, but soon similar
results were obtained concerning the Benjamin-ono equation and the
classical Boussinesq and AKNS systems, I | ,2l.

Rational solutions were found in the majority of the equations of
mathematical physic that possess a rich algebraic structure: an infinite
set of symmetries and related commuting flows. It was the rational
solutions of such equations are special limiting forms of exponential
"multisoliton" solutions and can be obtained from the latter once by
long-wave degeneration, [3].

Further applications of rational solutions to soliton equations
include the description of explode-decay waves and vortex solutions of
the complex sine-Gordon equation, [2].

The direct methods for the construction of rational solutions have
great importance in mathematical physics. For instance, such methods
are based on the transformation of various forms of the t function to the
equation of interest, or on the group theory, or on the analytic properties
of the Baker-Akhiezer function, [3].

The goal of this work is to present a method for finding rational
solutions with N simple poles for the nonlinear partial differential
equations.

βutt+αut=(/(u)uχ》+λu(1-un) … (1.1)

which has a lengthy history of analysis, both analytically and
numerically,

For various combinations of the parameterS tr, cr, B and 1., the
above class may respects many nonlinear PDEs:[4]

´́
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(D When n : 1, G : 1, 0 : 0 and .f: l,we have the fisher equation

which arises in the study of reaction-diffusion waves in biology.

(ii) The case n :2, d: 0, B 
: 1 and f: I gives the Qa model equation.

(iiDwith tr : 0, cr : 1 and B : 0, we have the nonlinear diffrrsion

equation.
(iv)When I:0, cr:0 and B: l, we have the nonlinear (1-l) wave

equation whose long wave speed is given by,f (u). In some studies, the

speed is assumed to be a function of u,, i.e.,/is replaced by g(uJ.

(v) In (iv) above, if ct is assumed to be nonzero but small, then the

wave equation is construed as a wave equation with a damping term.

(vi)The Telegraph equation is also obtained with n : 1 and ct, 0 + 0.

Description of the Method
Consider a given nonlinear PDE, say in two variables x and t

Ou du O2u d"u.
?:F(x,t,rr,},-,...,-),x€f ,tei ...(2.1)
dt ox ox- cx"

In order to apply this method, we need the following steps:

Step 1: We assume that u(x,t) is a rational solution of the equation (2.1)

with N simple poles, we use

u(x , t) 
Rr (t)t:;:ffi+ao(t)+a,(t)(x -x1(t)) (2.2)

where Rr(t) is the residue of u(x,t) nearxl(t) and
N R,. (t)ao(t):,37 , xr(t) +xr.(t)

a,(t)= i . -*uttl --,xr(t)*x1(t).
k=2 (r, (t) -x r. (t))-

Step 2: Letting x - xr to be e, then Substitute the following derivatives

of u(x,t) with respect the variables x and t in the equation

ヽ

針=¥+→ゴ+H0

21里 =昼二+2R:χ f+Rlχ「 +平 +G(ε )

器=Itギ +q(0

=  岬 …

∂
nu

(2.3a)

(2.3b)

∂χ
n
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Where H(8)and G(8)are analytic hnctions of ε:

H(8)=aOg+α「ε―qχ「

G(8)=イー2α「χ「+α詐―qχ F

Step 3: Equating the coefficients of ei to zero, to have a nonlinear
system of algebraic or differential equations and then solve the system.
Remarks.'
(i) Our method is based on the comparison of the usual assumption for
function with N simple poles

u(χ ,t)=瑳  Rk ,χ ∈£
k=lχ ~~χ k

and expand of functions by formal Laurent series near a specified pole
(say x1):

@

u(x,t) = Z an(, -rr)n
n=-l

Denote a-t by R1. We can see that
6 ,-S Ro(t)
)a,(t)(x -xr(t)) - L --- ^n=0 1=2 x -xp(t)

(ii) THe coefficients ag(t), a(t), ... in (2.6) carry information about the
poles 12, . . ., rN.

Vol.24,No5,2013

… (2.4)

… (2.5)

… (2.6)

… (2.7)

… (3.1)

一
●

(iii)The ansatz that we adopt,is:

u(χ ,t)=端 +呂 αn(t)(χ ―χk(t))n

and because of the difficulty of equating coefficients for (x - x1(t)) of
! the nonlinear from PDE. Hence we will write the form (2.7) as (2.2)

which we have directly in the first step of the method.

The $a-Model Equation and Rational Solution
In this section, we consider $a-model equation of mathematical

physts

∂
2u

∂
2u
‐一――十λu(1-u2)

∂t2~∂χ2

which arises in many contexts and is often used as a phenomenological
model, this equation is nonintegrable.
By substituting (2.2) and their derivatives (2.3) in equation(3.1) we
obtain the following identity:

‐
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2R「ド8~3+RJ卜
~2+2Rン
ト
~2+R詐 ~1+α
『―笏伊「―qχ F+α作=

2RIε
~3+λ
(R18~1+αO+α18)一 λ[RIε

~3+3α
OR『ε
~2+3α

lR子ε
~1+2α
:RIε

~1+6%α
lRl+3α子Rlc+

堵R子ε
~1+嘲
+3α:角ε+3aOα子82+α:83]

conecting an tel11ls with the powers in ε
l(1=-3,…

.,3)and setting

each ofthe obtained coefflcients of 81tO Zero yields the following set of

equations with respect to Rl(t),χ l(t),αo(t)and αl(t)

2RIχド=2RI―λR:

RIχ F+2R計「=-3 λαoR:
RF=λ RI-3λαlR『 -2λα:RI― λα:R子

α
『
-2α計「―qχ F=λα。-6λα。ORI―λイ

(e) aF : xar- 37'af R, -3t'ala,

(C光 )

(b)

(C)

(d)

(f)

(g)

-3t"aoal : g

-\tal = g

For which we have the following cases:

Case l:when λ=O then

χl(t)=± t+Cl
Rl(t)=C2

αO(t)==C3t2 . cs t. c6

αl(t)=C3t+C4
where q(i=1,… っ6)are arbitrary constants.

The solution will be ofthe fbm:

uO,t)=房
可冨li=こ「

+C3t2+cst tt c6+(C3t+C4)(χ  lnt― Cl)

Case 2:  when αl(t)=

ν =  
σ 2  .

χ 土 ′一σ2

0 : if do = 0 then )":0 and hence

if ao*0, from eq.b and c we get that R'(r)=
―B±

where

A =t31ao, B =!2a02 +3aoo, C =9(l-ho')
Notice that A,B and C depend on 2 and ao . Multiply eq. d by 

"oo 
to be

reduced to io' :l(ao'-:"oo)+consl.This eq. can be solved for

several values of )":

24
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λ=-2.Take const.to be l then  %=← Ъ
2_1)2 henCe

α
O(′ )=窟 .

E2
λ=2. Take const.to be -l then αO =― (α。

2_1)2 henCe

α。(`)=た
′
±2″ _1

λ=―(1+た
2),0くた2<1,rescale eq.d as αOo)=И″(′ )to get that

″ =(1_″
2)(1_た
%2)and 1/7=S″ α,力 )Jacobian elliptic function.

The Nonlinear Wave Equation
ln this section,we cOnsider the nOnlinear wave equation given by

弊=£びo分)     …o
where/(u)iS a p01ynomial,i.e

l   .

/(u)=Σ‰ul,1≧ 1               .… (4.2)
i=0

When(2.2)and(2.3)are subStituted in(4.1)we have the following
identity:

R〆浄
~2+2Rン
ト
~2+2R/ドε~3+R詐~1+ィー2αル「+α詐―qχ F=

[γO+γ l(RIε
~1+%+α

lc)十 .¨ +γ l(RIc~1+%+RIc)1][2R18~3]+[γ l+2γ2(RIc~1+%十 q8)+.… +

lγl(R18~1+%+α 101~1][― RIε ttα l]2

‐        By[5],balancing the higher pOwers of ε leads to C=o
Collecting all terms with the pOwers.in ε

l(i=_3,…
,1)and se■ ing

each ofthe obtained cOefflcients of ε
ltO zero yields the fb■

owing set of
equations with respect to Rl(t),χ l(t),α00)and αl(t)
2Rlχ′=2γoRl
Rlχ F+2R計「 =0
RF=o
α♂-2αル「―αlχ仔=0
αF=0
For which we have the fol10wing:

じ

‐
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χl(t)=±√ Ot+Cl

Rl(t)=C2

ao (t) - +c3 J-Y ot'+ cst + c6

αl(t)=C3t tt C4

q(i=1,・・・,6)are arbitrary constants.
The solution will be ofthe foHll:

uO,t)=χ
 inマ野丁t一 Cl tt C3マ

50t2+c5t+C6+(C3t tt C4)(χ  rnJ70t― cl)

The Telegraph Equation
ln this section,we consider the telegraph equation is given by

β穿+α毛号=岳び0分 )十λu一λu2 _0
where/(u)iS as in(4.2).

when(2.2)and(2.3)are subStituted in(5.1)we have the following
identity:

β(RFル
~2+2R計

卜
2+2R「
ド8~3+R卜

~1+α

『
―笏計「 +αト ー角χF)+

α(Rlχ卜
~2+R計
卜
~1+α
;+αトーαlχ「)

=[γ O十 γl(RIε

~1+α
O+α 18)十 .¨ 十 γl(RIε

~1+aO+qε
)1][2RIε

~3]+

[γl(―Rlε
~2+α
l)+2γ 2(R18~1+α O+α18)+.¨

+γ l(RIε

~1+α
O+α lε)1~1]

1[― Rlε

~2+α

l]十
λ
(Rlε

~1+α

O+α lε )一
λ
(RIε

~1+α

O+α 18)2

By[4],balancing the higher powers of 8 1eadS to C=0

Collecting an terlns with the powers in 81(i=-3,_.,2)and setting

each ofthe obtained coefflcients of ε
ito zero yields the fo nowing Set of          

｀

equations with respect to Rl(t),χ l(t),αo(t)and αl(t)

(cx)   2β RIχド=2γORI

(b)   βRlχ F+2β RF「 +αRIχ「=―λR:

(c)   βRF+αR卜「=λRI-2λ%Rl

(d) β名『 -2βαルf―βらχF+α媚―αqχ「=λαO―
λ堵-2λttRI

o)  βα「 +ααf=λαl-2λ aOα l
(f)      一

'に

α『=0
For which we have the following:

Case l:When λ=O then

Ⅳlanoki,and A卜 Khairalla
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ao(t)=ff,lrs"#'

-d_t
a,(t)=sr.o *c+
where y0, cn (n: 1,. ..,4) are arbitrary constants.
The solution will be of the form:

Case 2: when a(t):0 then it is enough to solve the eq.
tr]1, I

Fao+ da = ),(ao-arz) i, = p(ao) then pp, + 1u : 4@"-anr)p/1
Upon the transformations p = !,ao: x the eq. becomes

v

y'-1y'=4@ -x')then let y(x)=--! we have" P' B\ / r \" '/ tx'(t)
)

t2x" =i*Q-x) let x(t)=tku(z), z =t' we can choose k, randp
other parameters so that we have the eq. in the form u" = Azu2 which

has the solution u(z 1= J-
Az'

CONCLUSION
In this method for obtaining rational solutions with simple poles

using Laurent series expansion, the exact solution for nonlinear pDE
using the whole Laurent series expansion may be difficult to be
evaluated especially in nonlinear term . We expect there is a relation
between the number of poles and the number of terms of using power
series expansion.

ヽ
）
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ABSTRACT
In this paper we present some fixed point theorems for single -valued self
contractive mappings satisflzing special conditions that are generalization of
Banachs contraction principle in complete cone metric space under the assumption

that the cone is regular .our results are new.

1- INTRODUCTION
It is well known that the classical contraction mapping principle

of Banach is a fundamental result in fixed point theory several

authors have obtained various extensions and generalizations of
Banachs theorem by considering contractive mapping on many different
metric spaces , see , [1],[2],[3],[4],[5],[6],[7],[8 ] and others .

Recently,Huang and zhang [9] generalized the notion of metric

spaces by replacing the real numbers by ordered Banach space and

define cone metric space . They have proved the Banach contraction

mapping theorem and some other fixed point theorems of contractive

type mappings in cone metric spaces . Sub sequantly , Rezapour and

Haml barani [1O],Hic and Rakocevic[11] studied fixed point theorems

for contractive type mappings in cone metric spaces.

The main purpose of this paper is to prove some fixed point theorems

for single -valued self contractive type mapping satisfying special

conditions which are generalization of Banach contraction principle in
complete cone metric space with the assumption that the cone is regular.

2- Preliminaries
Through out this paper , we denote the set of Banach space by

E , The set of positive integers by N and The set of real numbers by R

Definition (2.1):[9]
Let P be a subset of E , P is called a cone if and only if :

o p is closed , non empty and satisfies p l{0}.
o a,b eR, a,b )0, X,Y € p implies that ax+bY e P
o x e p &rtd -xe p then x:0
Given a cone p 

-c 
E, we define apartialordering " ( " with respect to

p by xSy ifandonlyif Y-xeP,woshallwrite x<yif x<yand
x ry and x <<y if y-x e int p ,where int p is the interior points of p .

ヽ
）
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Definition (2.2):[101
The cone p is called normal if there is a number k > 0 such that for all

X,) eE,0Sx5y implies ll.ll s t llvll , the least positive number

satis$ing the previous inequality is then called the normal constant of p

Definition (2.3):[10]
The cone p is called regular if every increasing sequence which is

bounded from above is convergent, That is if < X, ),>r is a sequence

suchthat x,sxrS......!Y forsomeY. E, then

there is x. E such that lg ll *, -* ll 
: 0 equivalently , The cone p is

regular if and only if every decreasing sequence which is bounded from

below is convergent.
The following lemma shows the relation between normal cone and *
regular cone ,this lemma was mentioned in [9] , but it was proved in

[10].
Lemma Q.$z Every regular cone is normal cone . For the proof ,we
can see lemma (1.1)[0]
Remark (2.5)t The converse of lemma (2.2) is not true in general , the

following example shows that :

Example (2.6)[10]:Let E: C^([0,1]) which is the set of all real

continous function define on [0,1] with the supremum norm and p:
{feE:f(x)>0}

Then , p is normal cone with normal constant of k:1 ,but p is
not regular cone .

Example(2.7):
Let k> 1 be given . considerthe real vector space E : {ax +b : qb € R ;

* . t1-i,11 )with the supremum norm and the cone p:{ax*b eE :a < 0 1

, b )o ) in E . We show that p is regular and so is normal.

Let (&,,x*b,),rr be an increasing sequence which is bounded from

above , that is , there is an element cx +d e E such that a, x*b r 
( a: x+b

,S....S a,,x*b,S....S cx*d, for all xe [1-],11, th.n. k, ',
(&, ),-, and <b,, >,>r are two sequences in R such

that : b,.b2<....<d, 4r) &r)....) g

Thus ,<ao) ,>rand <b, >,,1ttfe convergent ,

Let a, -+a and b, -+b, then ax+b e p and a,x + b, --+ax* b , there

for, p is regular .

Definition (2.8) [9] :

30
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] 
Let X be a non -empty set .Suppose that the mapping d :XxX -+E
satisfuing the following axioms for all x,y,zinx
o 0< d(x,y) and d(x,y):0 if and only if x:y
o d(x,y): d(y,x) (symmetry )
o d(x,y) < d(x,z) +d(z,y) (triangular inequality) .

Then d is called a cone metric on X and (X,d) is called a cone metric
space .

This definition is more general than that a metric space .

Example(2.9)l9l:
Let E:R', P:{(x,y) e E: x,y > 0} , X:R and d:XxX -+E defined by
d(x,y):( l"-y l,rl*-y | ), *h... r>0 is aconstant. Then (X,d) is a

cone metric space .

Definition (2.10) [9]:
= Let (X,d) be a cone metric space , A sequence (X, ),r, ifl X is said to

be:
o Aconvergentsequenceif foreveryc e E with01(c:thereisn
o eN such that for all n ) fl,, d(x,,,x)<< c for some x in X .We

denote this by lgr,: * or x,, -+x as (n-+ -) or

':*nu';o;^l.nr 
r"ouence if for every c e E with 0<< c, there is n, e

N such that for all tr,ffi ) n, , d(x, ,x, )(( c . We denote this by

,l*_d(r,,*.) = o

o A cone metric space (X,d) is said to be complete if every Cauchy

sequence is convergent in X.

3- Main result
In this section , we give some generalizations of Banach contractioni principle in complete cone metric space with the assumption that the

cone p is regular .

Theorem (3.1):
Let (X,d) be a complete cone metric space with regular cone p such that
d(x,y) E pforx,y €X. let T:X-+X beamappingonX, satisffthe
following condition
d(T(x),T(y)) < kd(x,y) (3.1) forallx,yinX,wherek e[0, 1)
is a constant .

Ihen T has a unique fixed point .

Proof :

Fix xeX and let x,:T'(x) ,n:1,2,...... to showthat <x,> is a

Cauchy sequence .

?
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グ(χ″,χ″+1)=グ (r"(χ ),r"+1(χ ))=グ(r(r″
-1(χ
)),7(「
″
(χ )))

≦たグ(r"1(χ),r"(χ ))

=たグ(χ″.,χ
")

SO,  グ(χ″,χ″+1)≦ たグ(χ
"_1,χ
″)<グ (χ

"_1,χ")

Therefore the sequence<d(χ ″,χ″J)> iS mOnotone decreasing and

bounded below,

but p is regular cone,so<d(ィ ″,χ″+1)>  iS COnvergent sequence and

there c対sts r∈ P such that<d(χ″,χ″J)> → r(aS n→ ∞ ),
limグ (χ

",χ
″‖)=r

Now,Assume r≠ 0,then by condition(3。 1)and taking η→ ∞ to both
sldes we have:

グ(ろJ,為 +2)≦ ″ (為 ,為 +1),″ =1,2,……

r≦ル⇒ r―ル≦0⇒ r(1-た )≦ 0⇒ r≦ 0・

So r=0,therefore limグ (χ
",χ
〃+1)=0

Now we willshow that<x"> is Cauchy sequence in X,since

limグ (χ
",χ
′,+1)=O and

P is closed hence for every c cint p then fL∈ int ρ for aH positive
″

integer溜 ≧1

So,There exists ′0∈
′V Such that;d(Xn,xn+1)<< : fOr ali n >,n0

hence by triangular inequality we have:d(χ″,χ
"+2)≦
d(X",X″+1)+d(X"J

,X″+2)

<<■ +■
2  2

=c,for ali n>n0

Sirnilarly by induction,d(xn,Xm)<<C fOr allln>n>n0

Hence <xn> is a Cauchy sequence,By completeness ofX,it inust be

convergent in X,

Hence lim χ″=夕 forsome u∈ X.

Now,we willshow that u is a flxed point of T.By traingular

inequality we have:

d(T(u),u)≦ グ(r(ν ),χ″.)+グ (為.,夕),by condition(3.1)we have:

d(T(u),Xn+1)=d(T(u),Tn+1(X))=d(T(u),T(Tn(X))

≦kd(u,Tn(x))

=kd(u,Xn)

Thus:d(T(u),u)≦ kd(u,Xn)+d(Xn+1,u)

Now,Taking n→ ∞ to both sides we have: d(T(u),u)-O and T(u)=
u.
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! Therefore , T has a fixed point .
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For the uniqueness of fixed point, suppose Z is another fixed point of
T;
(i.e) T(Z) : Z , so by condition (3.1) we have :

d(z,u): d(T(z),T(u)) < k d(z,u ) , so we have
d(z,u)-kd(z,u) <0 = (1-k)d(z,u) <0 =d(z,u) <0 andweobtain
that
d(z,u) :0 and then z:u
Therefore , T has a unique fixed point .

Now, As a consequence of theorem (3.1), we have the following
corollary :

y Corollary(3.2):
Let (X,d) be a complete cone metric space , with regular cone p such

thatd(x,y) €pforx,y €X. letT: X -+ X beamappingonX, Satisfy
the following condition for some n e N ; d(T'(x), T'(y)) < k d(x,y)
......(3.2) for all x,y in X, where k e [0,1) is aconstant . Then T has

a unique fixed point .

Proof :

By theorem (3.1), we conclude that Tn has a unique fixed point say x

(i.e) T"(x) : x for some positive integer n .

Now, Tn*l(x): T"(T(x)): T(x)
So , T(x) is also fixed point of Tn, but Tn has a unique fixed point
which is x, therefore T(x) :x so, T has a fixedpointwhich is x.
To show the uniqueness of x , suppose z is another fixed point of T ,

- (i.e) T(z) : z and T'(z) : z for some positive integer n .

t d(x,z) : d(T(x),T(z)): d(T'(x),Tn(z)) < k d(x,z)
So,d(x,z)-kd(x,z) <0 =(l-k)d(x,z) < 0 =d(x,z) <0
Thus , we get d(x,z): 0 and x: z .

Therefore , T has a unique fixed point .

Now, we generalize theorem (3.1) into following theorems which are

another generalizations of Banach contraction principle in complete
cone metric space by using some contractive conditions .

Theorem (3.3):
Let (X,d) be complete cone metric space with a regular cone p such that

i d(x,y) € p for x,y €X.let T:X-+X be a mapping on X , suppose there
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exists a e S which is the class of functions d:nt p- [0,]) satisfying the

simple condition (if
a(t,)-+l then tn +0 ), Such that for each x,y in X :

d(T(x),T(y)) s a (d(x,y)) d(x,y) ......(3.3) then , T has a unique fixed
point.

Proof :

Fix xeX andlet xn:Tn(x),fl:1,2,....... Toshowthat <xn> isa
Cauchy sequence .

d(xn, xn*1 ) : d(T'(x),T'*r(x)) : d(T(T"-r(x)),T(T"(x)))
< a (d(T"-r(x),T',(x))) d(T"-'(x),T"(x))
: a (d(xn-1 , xn)) d(xn-1 , xn)

< d(xn-1 , xn )
So , d(xn , Xn+r) . d(xn-, , Xn) .

Therefore the sequence < d(xn , Xn*r) > is monotone decreasing and
bounded below, but p is regular cone , so <d(xn ,Xn*r) )
is convergent sequence and there exist r € P such that d(x" , Xn+1 ) -+r
(as n-+-) or limd(x,,x,,*r)=r.

Now , Assume r + 0 , Then by condition (3.3) we have :

dl,{.,u'x,*r,) <a(d(x,,x,*r)),n =1,2,....... letting tt --+ oo , we see that
d (x, , x,*r) '

I <lim[a(d(x,,x,*,)]

So, By properties of a , we have !y1d(x,,x,*,) = 0

Now , To show that ( Xn ) is a Cauchy sequence , if not assume

,ljg;supd(x,,x^)>0 ,

By the triangular inequality and by the condition (3.3) we have :

d(xn,xn,) < d(xn,xn*l) + d(xn+I, Xm+r) * d(xr*r, xr)
< d(xn, Xn*r) + a(d(x", x,n)) .d(xn, xn,) + d(x**r, xr)

d(xn,x.) - a(d(x", x*)) .d(xn, x*) < d(xn,xn*1) + d(xn.,*r, Xn,)

d(xn,x*) < [ l-a(d(xn, x,)) ]-l [d(xn,xn*1) * d(xn,*r , x.) ] ,

under the assumption ,lim supd(xn,x^) > 0 , we have

lim sup[ -a(d(x,,x,))]-' = lim sup---l-= I 
=1=**n,m)@ n,m)@'l-A(d(X,,Xr)) l-l 0

From which,f,ig; sup a( d (x,, x,)) = |

By properties of , , ,l-T:sup 
d(x,,x,) = 0 which is again contradiction

Hence , ( Xn > is cauchy sequence in (X,d) , By completeness of X ,

It must be convergent in X , So lgr, =z for some zinX .

Now,we will show thatz is a fixed point of T .
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By triangular inequality we have : d(T(z) ,z) < d(T(z) , xn*r) * d(xn+r ,

z)
By condition (3.3) we have : d(T(z) , xn*r) : d(T(z) , Tn*r1x;) :
d(T(z) ,T(T'(x)))

<d
(d(2,T"(x))) d(2,T"(x))

:a
(d(2,x")) d(z,xn)
Thus , d(T(z) ,z) < a (d(2,x,)) d(z,xn) r d(xn*r , z)
Now, taking o-+co to both sides we have :

d(T(z),2) < l|lrn a (d (2, x,)). lim d (2, x,) + l,\7d (*,.r, r)

Thus , d(T(z) ,z) s 0 and we obtain d(T(z) ,z) :0 , So T(z) : z
Now , To show the uniqueness of fixed point of T , Suppose u is

another fixed point of T ,

So , T(u) : u , Thus by condition (3.3) we have :

d(z,u) : d(T(z),T(u)) < a (d(z,u)) d(z,u)
But a (d(z,u)) e [0,1) , So we get that a (d(z;t)) < d(z,u) and we
obtain that d(z,u) < d(z,u)
Which is a contradiction .

Therefore , T has a unique fixed point .

As a consequence of theorem (3.3) , we have the following corollary :

Corollary (3.4) :

If X, P, T as intheorem (3.3) and a:ttp+[0,]) defined by a(t)=7,

For all t , Then theorem (3.1) will be obtained .

Theorem (3.5):
Let (X,d) be complete cone metric space with a regular cone p such that

i d(x,y)e p for x,y€X. let T: X +X be a mapping on X satisfies :

d(r(x),r(y)) < p d(*,y)... ... (3.5)
foreachx,y inX, where q: {o}U intp - {0}U intp is continuos
and satisfies the following properties :

i. q(t) :0 if and only if t:0
ii. q(t)<t forallte intp.

Then T has a unique fixed point .

Prooft
Fixx EX and let xn : Tn(x) , fl:1,2,...... , To showthat<Xr) is a
Cauchy sequence

ヽヽ
マ
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d(xn, xn*1) : d(T"(x), T"*r(x)) : d(T(T"-r(x)), T(T"(x))) s g(d(r-
t1x;,T"1x1;) : q(d(xn-r,xn))
So , By properties of g , (2) , we get that : d(xn, xn*r) S g(d(x"-r,xn)) <

d(xn-1,xn)

Thus , the sequence < d(xn, xn*1) > is monotone decreasing and

bounded below, but p is regular cone, so < d(xn, xn*r) > is

convergent sequence and there exists r € P such that d(xn, xn*1) ---* r (

45 n ---+o ) or l*a r* ,'x u*1) : 7

Now , Assume r +0 , then by condition (3.5) we have: d(xn+r,Xn+z) <

g(d(xr, Xn+r) ),fl:1,2,....
Now , letting n ---+co to both sides and by the continuity of g we

obtained that rS p(r), but by properties of q, (2), we have g(r) < r
forall r € intp, sowegetthat<p(r):r and byproperties of g,(2)

we obtain that r : 0 which is contradiction , So , lga(','x,*') = 0

Now , To show that < xn> is a Cauchy sequence , If not , suppose that

thereexists ceEwith
0 <<c suchthatforany k €N,there exists rnp) np)ksuchthat:
d(xmp, xnr) > c....(a)
Further more assume that for each k , rnk, is the smallest number greater

than np for which the inequalities (a) holds . In view of the first part of
proof , There exists ko such that k > ltu and that implies d(xs,xp+1) <<

! , For such k , we have by triangular inequality :2'
c S d(xm1, xnr) < d(xmp, xmr-t) + d(xmr-r , xnp)

< d(xr., xk-1) + d(xr.-r , xr,) (( l*7=, . So, c (
d(xmp, xnp) << c
This proved timalxmk,xnk)=c . on the other hand,

d(xmp, xnp) < d(xmp, xmr+l) + d(xmr.*r , xllr+r) * d(xnr*r , xnr)
< 2 d(xp,xr+r) * g (d(xmr,xnr.)) .Now, leffing k -rm to

both sides , we have that

c < q(c) , So we get by properties of g that c:0 which is a

contradiction with the inequality of (2) . So , ( Xn > is a Cauchy
sequence in (X,d) , Therefore by completeness of (X,d) we obtained

that <Xn) is aconvergentsequence, So there exists ze X suchthat

!,*, . =,
Now, we will show that z is a fixed point of T . By triangular
inequality we have :
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' d(T(z),2)< d(T(z),xn*r) + d(xn*r ,z) .By condition (3.5) we have :

d(T(z),xn*1) : d(T(z),T'*r(x)) < 9(d(2,T,(x))): tp (d(2,x,))
Thus , d(T(z),2) < rp (d(2,x")) + d(xn*r ,z) . Now , letting n ---)co to both
sides we have :

d(T(z),2) < g(0) , So by properties of g we obtain that d(T(z),2) < 0

and then d(T(z),2):0 ,

Thus T(z): z .To prove the uniqueness of fixed point , suppose u is
another fixed point of T ,

So,T(u):u, Thus; d(z,u):d(T(z),T(u))<q (d(z,u)) . So, by
properties of rp ,(2) , we have

rp (d(z,u )) < d(z,u) . Therefore we get d(z,u) < q (d(z,u )) < d(z,u) .

So , we obtain that g (d(z,u )) : d(z,u) .Thus , by property of
+ g ,(1) , we have d(z,u) :0 and z:n . Therefore , T has a

unique fixed point .
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ABSTRACT
This paper deals with solving the dircct probicm for partial differential equation of

hyperbolic type with initial conditions and boundary conditions using flnite element

method. Also it deals with the direct method for solving the inverse problenl to

detelllline thc initial condition、vhich associates the hyperbolic partial differential

equation when the solution ofthe equation is given at flnite number of points ofthe

domain that the solution is deflned.  This problern is transfolllled to a nonlinear

optirnization problenl which is solved by the unconstraint Hook and Jives inethod.

The results are given by tables and/or flgures and sho、v the efflcicncy of these

methods.

INTRODUCTION
During the last three decades, inverse problems have been studied from
many researchers. Warin S. and Suabsagun Y. used the iterative method

for Levenberg-Marquardt method to estimate the model parameters of
conductivity variation of the ground [1]. Liao W. applied TAMC tool to
solve the optimization problem which obtained from the formulation of
inverse problem to determine the unknown acoustic coefficient
(coefficient of 2D wave equation) [2]. Rashedi K. and Yousefi S.A.,

used a technique on the Ritz-Galrekin method to solve the inverse

problem to determine the coefficient of a parabolic equation [3]. Al-
Hawasy Ali, J. A. used the direct method to solve the inverse problem

to determine the unknown region that the equation is defined [4]. In fact

the differenence between the direct method which is used in [4] and

which is used here are , first the varational method is used there to

solve the direct problem while the finite elements method is used here ,

second the inverse problem is used there to find the region that the

equation is defined while here the inverse problem is used to find the

initial condition.
Since the inverse problems for hyperbolic partial differential equations

arise naturally in geophysics, oil prospecting, in the design of optical
devise, and in many other area. Hence our interest in this paper to study

ヤヽ
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the inverse problem of hyperbolic differentiat equations to determine an

initial condition.
The paper consists of two parts, in the first part, the direct problem is to
solve the hyperbolic partial differential equation when the initial and the
boundary conditions are given using the finite elements method. While
the second part deals with the direct method for solving the inverse
problem to determine the initial condition associated with hyperbolic
differential equation when the solution of this equation are given at

finite numbers of points of the domain that the equation is defined. This
inverse problem is transformed to a nonlinear optimization problem
which is solved by using the unconstraint Hook and Jives method. The
results for both direct and inverse problems are given in tables and/or
figures which show the efficiency ofboth methods.

STATEMENT OF THE DIRECT PROBLEM
Let O € Rd be an open and bounded region rvith Lipischitz boundary
f:dO and let I: (0, T) 0 < T < co and Q:C2xI. The hyperbolic
equation is given by:
yr, + A(t)y - f (i,t) in Q, i - (xr,x2,...,xa)
with the boundary condition
y(x,t) - 0, in X, whereE - I x I

and the initial conditions

!(x,0) - yo(x), in O
yt@,O) = y1(x), in O

...(l)

where A(t) is the 2nd order etliptic differential operator i.e.:

A(t\v --$q[" r,.,r4]'t\ert - ,1,a,1""'^'" a, )
Now, we denote by (,.) ,and .ll.ll1 the inner product and norm in
Sobolev space V:H[(Q) by <.,,> the duality bracket between Z and
its dual Z-and bV ll. llq the norm in L2(Q).
The weak form ofthe problem (1-4) is given by:
1ltt,u > +a(t,y,v) - U(t),v), almost everywhere on I
y(0) = yo ,in O
yt(0) = yr,in O
with

a(t,y,u) = i-",iA,OfiL
where the initial conditions make sense if yo eV, y0 e t21O;,and
a(t,.,.) is the usual bilinear form associated with A(t),we suppose
a(t,v,w) is symmetric and for some positive constants aya2,V v,w €
V &t e f , satisfies la(t,v,w)l S arllullrllwll z and a(t,v,w) >
ailvll?.

...(2)

... (3)

... (4)

...(5)

...(6)

.. .(7)

. . .(8)
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We can rewrite equation (5) by
l Zs,u > +o(t,y,v) - (f (t),u) , almost everywhere on ...(5a)
1 !*,v ):1 zs,u ) ...(5b)

DESCRTIZATION OF THE CONTINUOUS EQUATION
In this section we discrtize the weak form (5-7) by using the finite
elements method. We suppose for simplicity the operator a(t,.,.) it
independent of t, the domain O is polyhedron. For every integer n, let

tsi)[f) be an admissible regular triangulation of Q into closed

disimplicer [5],{1rr};=o be subdivision of the interval I into N (n)

intervals, where ti -fti,tlrl of equal lengths equal lengths At =
r/r. s.t Qtj : si x Ii, Let vncv - Ho1(ct) be the space of

continuous pricewise affine in Q .

Hence, the discrete state equations, for each v€Vn is written in the

(巧降1-ろ′υ)+Δ tα (乳「 1,υ)=△
ισ(げ ),υ),

ガ年1-ガ =△t41,ノ =0,1,…′Ⅳ-1
(y『′υ)=(y°′υ)
(Z『′υ)=(ソ

1′υ)
Where y° ∈ 1/′ yl∈ L2(Ω)are giVen, and γ芦
y fOrノ =0,1,..′Ⅳ

No、、ち suppose the function f is deflned on

continuous w.r.t.げ′竹.
form here and up and for brevity we will drop some times the agreement

げ Of dependent vanabbィ ,イ and any Others terms whに h∞■滅n
this independent variable.

SOLUT10N OF THE WAVE EQUAT10N BY FINITE
ELEMENT METHOD

To flnd the solution y・ =(y浄′yr′ …′yl)for flXed anyj(0≦ ノ≦N―

1),the prOcedure utilized here,can be described by using the following

steps: Step 1: for fixed any j,(0 < j S N - 1), let {vi,i -
1,2′ …M(■ )〕 be a inite basis of‰ (where 4(χ ),fOr i=1,2,… ′n are
continuous pricewisc afflne in Ω with υi(χ)are Zer0 0n the boundary

「),then equttbns(9-12)お
r any:=1,2,… M andガ ,ィ,■・,4・

∈
4,Can be written in the form:

(4陣 1-ろ′υ:)+△ tα (光「 .′
υι)=△∝∫←ヂ),υ二),ゴ =0,1,…′Ⅳ-1(13)

光「 1-ガ
=△ tζ降1,ノ =0,1′…′Ⅳ-1  .… (14)

(y『′υ二)=(yO′υl),                …・(15)
(Z『′υι)=(yl,υi)                       …・(16)

ヤヽ

ノ=0,1,… ′Ⅳ-1.… (9)

…。(10)

…
。
(11)

….(12)

=y(げ ),イ =Z(げ ),∈

S「×ヂ,(i=1,2′ …′m)

け
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Step2: Rewriting (la) in the form

41=幾〆

Jam‖ and Halah

… (17)

Substituting (17) in (13), we have:

(li*r-,vt) + L*a(vi*r,vi) - (vi-,vi) + Lt(z1n,u,) +
Ltz (f (ti),u,) .. . (18)

Step3: From the basis of Vn, using Galerkin method we write yt -
Σθ卜々
″=1

イ=Σθイツた,ンル1=Σ `rJνた
た=1                    1=l

,Z『 =Σ′fソた,イ =Σ 4ソ1,and
た=l                  力=l

41=Σグ/・ l171・
=々l

Where,εl=εた(げ),and,α l=dた (げ),are u鵬mowll conStants,お r
each

ノ=0,1′ …′Ⅳ・

Steptt Sub雛■■hgy『,ガ,堆 1,Z`,ィ and 41 h equatbns
(17,18,15,&16)we get the following linear system of ordinary
differential equations:

(A+(△ t)2B)ε
ブ+1=Aεブ+△ tADブ +(△ t)25(り ),ノ =0,1,… ,Ⅳ -1.。 (19)

i腱『i“
ブ+1~σ

),ノ =0,1…Ⅳ-1    ::::3
ADO=el                                      .… (22)
Where A=(α 二た)M× M,α :た =(υ た,υ:),B=(biた )M× M,biた =α (ι′υた,υ:)

嚇xl=(cI,c」 ′̈りσι)T,Dι xl=(df,d」′̈りdル),3=(bi)M× 1,bi=
び(り )′υι)
y= (υι)M× 1,θ O==(q′ )M× 1,θ l= (げ )Mx・ ,CP==(yO′υ:)and θ:=
(yl,υ二),fOr each i′ た=1,2,… ,M
The above linear system has a unique solution[6].To s01Ve the linear

systems(19)and(20),flrSt We solve the linear systerrls(21)and(22)to

getthe unhowns ε° and D° ,then we setノ =O in(19)and(20)to
get εl and Dl,then we repeatthis procedure to solve(19)and(20),

forノ =2′ …′Ⅳ-l to get the unk■ owns εノ and D′ (solutiOn Of the
direct problem).

THEINVERSE PROBLEM OF THE WAVE EQUATION
DESCRIPTION OF THE INVERSE PROBLEM

The previous section is devoted to the solution ofthe direct problem for

the wave equation in c⊂ R3, in Which the solution of the problem

■
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; (discrete wave form) is found over the region Q , when the initial
condition y(xr,x2,0)is given, while the inverse problem is to determine

the initial condition !o(i,O)when the solution of the wave equation is

given on A (where A contains a finite number of the points of Q).
Where
L= {(xri,x2i):x1 : xto+ ih,xzi: xzo* ih,i - 0,1,... ,M,t - o.3 €
rj
In general the unknown initial condition can be expressed by the
polynomial

y(χ,0)=Σ %χ '

′=0

where α:(:=0,1,… ′ρ)are unknown constants)
、            MATHEMATICAL STATEMENT OF THEINVERSE

・                 PROBLEM FOR THE WAVE EQUATION
Before solving the inverse problem to flnd the unknowll initial

condition,the region of space variable Ω is assumed be a square,hence

the unknown initial condition(23)must be in the form:

y(χ,0)=(χl― α)(χ2~α )(χl― b)(χ2~b) … (24)

Therefore, our problem becomes to find the unknowns constants (a and
b). Now, to solve this problem by using the direct method to find these

unknowns the problem is transformed to the following discrete least-

Min″ (α′b)=洗レ(為′,χル7)_夕″(為′,χル7)F
,=0

where u(χ
lι ,χ 2ブ′D are the given vdues ofsolution ofthe discrete wave

equation at the point(χ l:,χ 2:′ D∈ △With可 =0.3 when an the initial
and boundary conditions are known(S01ution of the direct probleFn),

7ψ (χ l′ ,χ2,'r) are the values of the approxirnate solution of the same

・         problem but when y(ダ ,0)has the fOrm(24),i.e。 ,the problem becomes
to flnd the unknowns a and b which are in(24),the uncOnstrained Hook

and J市es method[7],used tO determine these values.

NUMERICAL EXAMPLES
EXAMPLE(1)
Consider the following wave equation:

ytt― △y=f(χ′ι),Whereダ =(χ .′χ2)
associated with the initial and boundary conditions

y(ダ′t)=0 0n Σ=「 ×I
y(ダ′0)=χ lχ2(χl~1)(χ2~1)
yt(ダ′0)==……2(χそ一χl)(χ,一χ2)

where
●

… (23)

…。(25)
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f(ダ′ι)=[4(χ f―χl)(χ:一χ2)~2(χそ一χl)-2(χ

`―
χ2)]θ
~21

The exact solution ofthis problem is:

y(χ l,χ2)=χ l χ2(χl~1)(χ2~1)θ
~2ι

By using the flnite element method fbr M=9,N=100,we get the results

which are showll in Table(1)and Figure(1)at ι=0.3,the table shows

the approximate solution uαρ(χ l:′χ2ブ ,D and the exact solution
u(χlルχ2」ip D and the absolute error at xl and x2・

Table-l: Comparison between exact and approximation soluti

Figure-l: (a) shows the exact solution (b) shows the approximation solution

EXAMPLE. (2)
Consider the following wave equation:

ltt - Ly - f (i,t),where i = (x1,x2)
associated with the initial and boundary conditions

Om ISOn DeIヽVeen cx xHnatlon solutlons

χl: χ2: F.xact solution Approximate solulion Absolule Error

0.2 02 0.0140 0.0136 4X10
0.4 02 0.0211 0.0208 3X10
0.6 0.2 0.0211 0.0211 104

0.8 0.2 00140 0.0141 lX10→

0.2 0.4 0.0211 0.0208 3X10
0.4 0.0316 0.0317 lX10

0.6 0.4 0.0316 0.0318 2X104
0.8 0.4 0.0211 0.0211 10→

0.2 0.6 00211 0.0211 10‐

0.4 0.6 0.0316 0.0318 2X104
0.6 0.6 0.0316 0.0317 IX104
ハ
υ 0.6 0.0211 0.0208 3X10・・

0.2 0.8 0.0140 0.0141 lx104
0.4 00211 0.0211 10→

0.6 0.0211 0.0208 3× 10

0.8 ハ
Ｖ 0.0140 0.0136 4X10

鮨
　
　
　
　
　
　
　
　
　
　
　
　
ヽ
田

ヽ
“

Q2
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y(ダ′ι)=0 0n Σ=「 ×I
y(ダ,0)=(χf-4χl+3)(χ:-4χ2+3)
yι (1,0)=― (χr-4χl+3)(χf-4χ2+3)

Where

f(ダ,t)=[(χf-4χl+3)(χ

`-4χ

2+3)-2(χそ-4χl+3)
-2(χ,-4χ2+3)]θ

~ι

The exact solution ofthis problem is:

y(χ l,χ 2)== (χそ-4χl■-3)(χ,-4χ2+3)θ  ι
By using the flnite elernents lnethod for M=19,N=100,we get the

results which are shown in Table(2)and Figure(2)at t~0.3,which

shows the appro対 mate results uαρ(χ l[′χ2:′ ι)and the exact solution
u(χ

l:′
χ2ブ ,D and the absolute error atthe values ofxl and x2 WhiCh are

given in the table.

Table-2: Comparison between exact and approximation soluti

贅

●

01■ lSOn DetWeCn cxac a Xllll lon solutlon

χl: χ2:
Exact

solntion
Approximate

solution
Absolute
Etor χl: χ2i

Exact
solution

Approximate
solution

Absolute
Error

4 00901 0089 1.1× 0」 2 0.1351 0.1345 0.6× 10‐
j

4 4 0.2418 0.2404 14× 4 う
４ 03627 03614 1.3X10

.6 4 0.3556 03558 0.2X う
４ 0.5334 0.5319 1.5× 10‐'

4 0.4315 0.4308 0.7X 0' う
ん
０
４ 0.6472 0.6452 2X10

2 4 0.4694 0.4684 lX10 う
ん 2.2 0.7041 0.7019 2.2X105

2.2 4 04694 0.4681 1.3X10‐
」 つ

４
う
４
う
４ 0,7041 0.7020 2.lX10‐

3

2.4 .4 0.4315 0.4301 1.4X105 2.4 2.2 0.6472 0.6455 1.7× 10‐
5

2.6 4 0.3556 03540 1.6X10‐
」 ０

４
う
４ 0.5334 0.5325 0.9X10~う

う
４ 4 02418 02417 lX10 2.8 2.2 0.3627 0.3612 1.5× 10」

8 0.1351 0.1344 0.7X10~ 26 0.0901 0.0902 0.lX10
.4 8 0.3627 0.3612 1.5× 10‐` 1.4 2.6 0.2418 0.2417 lX10'
6 8 0.5334 0.5325 0.9× 0‐

」
6 0.3556 0.3540 1.6× 10‐

8 8 0.6472 0.6455 1.7× 10‐
づ う

４ 0.4315 0.4301 1.4× 10づ

2 8 0.7041 0.7020 2.1× 10‐
づ
2 う

‘ 0.4694 0.4681 1.3× 10‐ '

22 8 0.7041 0.7019 2.2X105 2.2 2.6 0.4694 0.4684 lX10‐
」

24 8 0.6472 0.6452 う
Ｚ 2.4 2.6 0.4315 0.4305 lX10

2.6 8 0.5334 0.5319 1.5X10‐・ 2.6 2.6 0.3556 0.3558 0.2X10
う
ん 8 0.3627 0.3614 1.3× 10‐

J
26 0.2418 0.2404 1.4X10

"
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Figure-2: (a) shows the exact solution (b) shows the approximation solution

EXAMIPLE(3)
Consider the following hyperbolic equation:

ソιι~Δy=√ (',ι),Whereダ =(χl,χ2)
With the boundary condition

ソ(ダ′t)=00n「=I× OΩ
And the initial conditions

y(ダ,0)=(χl― α)(χ2~α )(χl― b)(χ2~b)
yt(1,0)=-2(χ f―χl)(χ

`―

χ2)
Where

f(χ′t)=[4(χf一χl)(χ:一χ2)~2(χf一χl)-2(χ:一
χ2)]θ

~2ι

ln this example the inverse problem is to flnd the uttown(a and b)

using the method of Hook and Jives when the solution of the direct

method is given at the points of the set Δ.By using the unconstraint

Hook and Jives method with step length k=0.5,l and diα brent initial

values of(a and b).the results are shown in table(3)。

Table… 3:Different initial values ofunknowns(a and b)and their flnal values

κ=θ.ユ f

Iηノ′′α′

レ♭′
“
ιs

Z:ZT@pproximate -
exact)2

Final
Values

Z:ZT@pproximate -
exact)z

a b a b

-2 3 0.0424 1 0 1× 10‐

2 5 1.5245 1 0 1× 10~ソ

3 6 10.3975 1 0 lX10‐
ソ

4 8 94.1536 1 0 1× 10‐
ソ
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EXAMPLE(4)
Consider the fbHowing hyperbolic equation:

yιι―△y=f(ダ′ι),whereダ =(χ .′χ2)
With the bOundary condition

y(ダ′ι)=O on「 =I× oΩ
And initial conditions

y(ダ,0)=(χ l― α)(χ2~α)(χl― b)(χ2~b)
yι (ダ′0)=― (χf-4χl+3)(χ

`-4χ

2+3)
Where

f(χ,t)=[(χそ-4χl+3)(χ

`-4χ

2+3)-2(χf-4χl+3)
-2(χ

`-4χ

2+3)]θ
~ι

By using the method of H00k and Jives with step length k=l and

different initial values Of(a and b).The results are shown in table(4).

Table-4:Different initial valuc OfunknOwns(a and b)and their flnal valucs

CONCLUSION
In this paper we conclude that the finite elements method is suitable and
efflrcient to solve the direct problem and in the other hand the finite
elements method associated with unconstraint Hook and Jives method
for solving a nonlinear optimization problem at certain time f with
different values of space variable is efficient to determine initial
condition associated with the given partial differential equation. It is
important to mention here that the value of r is chose arbitral in the
interval I, one can take any other value of r provided this value belong
to I.
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ABSTRACT
In this work, the notion of fully strongly stable modules relative to an ideal has been

introduced and studied which is stronger than those of fully stable modules and fully
stable modules relative to an ideal. Several properties and characterizations have
been given. Endomorphism ring of this class of modules has been studied and

criteria given, that an endomorphism ring is fully strongly stable relative to an ideal

by using categorical concepts.characteriz,ation of submodules have been given in
terms of some residual condition, and the property that each submodule is
idempotent relative to an ideal.

INTRODUCTION
Throughout, R represents an associative ring with identity, unless
otherwise stated and M a unitary right R-module. Let M be an R-
module , a submodule N of M is called stable if o(N) E N for each R-

homomorphism u, : N ---+ \z[. In case each submodule of M is stable, then
M is called fully stable t1]. The relativity manners are usually
applicable in mathematics, especially in module theory. Let M be an R-
module and A a right ideal of R. A submodule N of M is called stable
relative to A if o (N) c N + MA for each R-homomorphism o, : N ---+

M, and M is called fully stable relative to A,if each submodule of M is
stable relative to A [2]. It is clear that the class of fully stable modules is

contained in that of fully stable module relative to an ideal A. In fact
M is fully stable if and only if it is fully stable relative to the zero ideal.
In this paper, we consider a strong view of fully stable and hence fully
stable modules relative to an ideal. Let M be an R-module and A a non-
zero right ideal of R. M is called fully strongly stable relative to A if s
G'{) s N n MA for each submodule N of M and R-homomorphism o of
N into M. It is shown that an R-module M is fully strongly stable
relative to A if and only if each cyclic submodule of M is strongly
stable relative to A. Several properties and characterizations of this class

of module were considered. Among others, we proved the following :

An R-module M is fully strongly stable relative to A if and only if tM
(rn(x)) : xR nMA for each x in M if and only if for each R-
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homomorphism o of xR into M, there is an element r in R such that cr

(x) : xr € MA where x in M. We study conditions under which fully
strongly stable modules relative to A are equivalent that the double
annihilator condition holds for each submodules.
We studied the endomorphism ring of these modules. We show that
over corrrmutative ring, fully strongly stable modules relative to an ideal
have endomorphism rings with strong view of commutativty. Further,
we give the following: Let M be an R-module with endomorphism ring
S and M generates ker(B) for each p in S. Then S is a right fully
strongly stable ring relative to an ideal A of S if and only if ker(B) c

ker(o) implies that o € BS n SA.

An R-module M is called multiplication if each submodule of M is of
the form MA for some ideal A of R [3]. We consider the following
residual condition [rp(M):rp(x)] : [xRnMA : M] where x E M.

We proved that an R-module M is fully strongly stable relative to A if
and only if the residual condition holds for each x in M under

multiplication modules.
Finally, we introduced the concept of idempotent submodules relative to
an ideal and consider modules in which all submodules are idempotent
relative to an ideal, and show that an R-module M is fully strongly
stable relative to A if and only if each submodule of M is idempotent
relative to A where M is a prime module.

FULLY STRONGLY STABLE MODULES RELATIVE
TO AN IDEAL.
In this section we introduce a concept which stronger than that of fully
stable modules
Definition 2.1: Let M be an R-module and A a non-zero right ideal of
R. A submodule N of M is called strongly stable relative to A (simply
strongly A-stable). if f(N) c N n MA for each R-homomorphism f of
N into M. M is called fully strongly A-stable, if each submodule of M is
strongly A-stable. If R as a right R-module is fully strongly A-stable,
then R is called fully strongly A-stable ring.
It is clear that, if a submodule N of an R-module M is strongly A-stable,
then it is strongly B-stable for each right ideal B of R containing A.
Hence, if N is strongly A-stable submodule of M, then it is strongly R-
stable, and this is equivalent to saying that N is stable in M. Thus every
fully strongly A-stable R-module is fully stable, while the converse may
not be true generally, for example, the Z6-module Z6 is fully stable, but

it is not fully strongly A-stable for each proper ideal A of Z6.If M is a
fully stable R-module and M: MA for some non-zero right ideal A of
R, then M is fully strongly A-stable. If M is projective R-module, then

\
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M=Mtr(M)where tr(M)is the trace of M[4,proposi● on(2.40)],sO r

M is a fully stable prdectiVe R… module,then M is hlly strongly tr(M)‐

stable.In particular,every fully stable ring R is fully strongly tr(R)―

stable.The Z‐module Z as well as Q and Q/Z are nOt fully strongly

(mZ)― Stable for each non― negat市 e integer m.If{Nili∈ I}is a family of

strongly A― stable submodules of an R― Inodule M,then so isΣ iぎ Ni.

Funy strongly A‐stable modules are not closed under submodules.For

example,the Z― module zP" is fully strongly(nZ)― Stable fOr each

posit市e integer n,if α:zダー→zP'iS a Z―homomorphism,then α(Zγ■)
⊆ zPャ ∩zF".It is wen known that zP∝ is divisible,so彪 フ鱚=ZP=for

each positive integer n and hence α(Z,1)⊆ ZF[∩  Z「,(nZ).We claim

thatthe submodule ZPま ofzP"is not fully strongly(Zッ ぶ)―Stable,for each

k>1,let f:Z"ドニ>ZP,l be the inclusion inapping,so f(ZP・ )= Zγちbut

_7Pk∩ (ZP=キ "p2kz)=0.ThiS shows that Zpぶ Z is not fully strongly(ZP■

Z)―Stable.

Letヽ4be an R― module and A a non― zero right ideal of R,We say that a

submodule N of M is A― pure,if NA=N∩ M.
In the following we show that certain submodules inherit the propett of

full strong stability relative to a non‐ zero ideal.

Proposition 2.2:Let M be a fully strongly A― stable module.Then every

A―pure submodule of NIlis fully strongly A― stable.In particular,every

purC(and hence direct summand)submOdule of fully strongly A― stable

module is funy strongly A― stable.

Proo■ Let N be A―pure submodule of NII.For each submodule K of N

and R―homomorphisin f:K→ N,put g=iN° f:K―→ M where iN iS

the inclusion mapping of N into M,then【 K)=g(K)⊆ K∩ MA⊆
K∩N∩MA=K∩ NA.Thus N is fully strongly A― stable.
The proof of following proposition is immediate

Propositiom 2.3:Let M bean R― module and non― zero right ideal A of

R.Then
l‐    NI is fully strongly A― stable if and only if each cyclic submodule

ofNIlis strongly A― stable.

2‐    NIl is nllly strongly A…stable for each non‐zero right ideal of Ro if

and only if it is fully strongly(aR)…module fOr each non― zero element a

in R.

Next, we discuss the direct sums of nllly Strongly A‐ stable modules.

The Z‐ module Q/Z iS nOt fully strongly A― stable for each ideal A ofZ,

while Q/Z笙 9Zρ "Where the sum has been taken over all primes.This
shows that illly strongly A―stable modules are not closed under direct

,
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sum ln the following 、vc consider conditions 、vhich guarantee ■11

ざlli認i号7:電踏業賓鵠eК M輌蹂m“Jeおrmぬ i

Wih rR(Mi)+nJ.rR(MJ)=R and A a non― zcro nghtideal of R Then M

is fully strongly A― stable if and only if each Mi is fully strongly A‐

stable

Proo■ 、vc sha‖ provethe case M=Ml o Ⅳ12 and the proposition then

fonows by induction on n Lct K bc a submodule ofヽ 4 Thc condition

r(Ml)+r(M2)=R implies thatthere are submodules Nl of Ml and N2

0f M2 SuCh that K=Nl o N2[1]Let O:K→ M be an R‐
homomorphism put 01=π 10 ji(1=1,2)whcrC ji:Ni→ M is the
itteCtiOn mapping and πi:M→ Miお the natural proJcc■on Hence O=
01+02 and O(K)=01(Nl)o02(N2)⊆ (Nl∩ MlA)o(N2∩ M2A)⊆ (Ml
O M2)A=K∩ NIA This implies that M is fully strongly A‐ stable Thc
converse follows from propos1lon(22)

Ncxt、vc notc characterizations of fuHy strongly A‐ stable modulcs

Theorem 2.5:Let M be an R―module and non―zero right ideal A of R

Thcn the follo、 ving conditions are equivalent:

1‐   M is hlly strongly A‐ stable,

2-   Each cyclic submodule ofM is strongly A‐ stable,

3‐  CM(rR(X))=XR∩ MA for each x in M,
4‐   rR(X)⊆ rR(y)impliCS y cxR∩ NIA foreach x in M and yin

ⅣLヽ
,

5‐   8M(aR tt rR(X))=CM(aR)∩ xR∩ NIA for cach x in M and ain R.
6‐   For each R‐homomorphism α:xR―→ M,thcrc is r in R such that
α(X)=Xr c NIA
Proo■ (1)⇔ (2):Follows from Proposition(23)

(4)⇒ (3):It alWays xR∩ NIA⊆ xR⊆ CM(rR(X))Ify C CM(rR(X)),thCn

rR(X)⊆ rR(y),sO y∈ XR∩ 卜lA,by(4),and hence CM(rR(X))⊆ XR∩

Ⅳm
(3)→ (4):Let x∈ M and ycNIA IfrR(X)⊆ rR(y),thCn cM(rR(y))⊆
ιM(rR(X))SO by(3),yR∩ NfA⊆ xR∩ L41A,but y∈ yR∩ らヽヽ  ,thcn
y cxR∩ NIIA

(3)⇒ (5):ι M(aR+rR(X))=CM(aR)∩ CM(rR(X))=CM(aR)∩ xR∩ NIA

(5)→ (6):Let a:xR→ M bean R‐homomorphism Then α(x)R⊆ 3M

(rRα (X))⊆ ιM(rR(X))=XR∩ Ma,by take a=O in(5),so α(X)=Xr〔
Ⅳ眈 forsomc r in R.

(6)→ (2):Lct α:xR→ M bean R‐homomorphism.Then by(6),there
is rin R such that α(X)=Xr C NIA.For each u=xt c xR,where tin R,

ヽ
ヘ
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SO α(u)=CX(Xt)=α (X)t=(Xr)t∈ XR∩ MA and hence α(XR)⊆  xR

∩PIA.This shows that xR is strongly A― stable submodule in M.

As we have rnentioned that an R― rnodule M is ttHy stable if and only if

it is fully strongly R‐ stable,so by take A=R and ⅣI=R in Theorem

(2.5)we the f01lowing corollaries respect市 ely.

Corollarv2.6:([1],theOrem(3.6))Lct M be an R― module.Then the

following conditions are equivalent:

1-   NI is funy stable,

2-    Each cyclic submodule ofⅣ lis stable,

3-  CM(rR(X))=XR foreach xin M,
4-  rR(X)⊆ rR(y)implies y∈ xR for each x,yin M,

5-    Each R― homomorphism α:xR一→ 4ゝ is a right rllultiplication by
an element of R.

Corollarv 2.7:The following are equivalent for a ring R and a non― zero

right(respt.left)ideal A ofR,

1-  R is right(reSpt.le■ )fully Strongly A― stable,

2-   Each right(reSpt.left)principal idcal ofR is strongly A― stable,

3-  CR(rR(X))=XR∩RA(respt・ rR(CR(X))=Rx∩ AR)for eaCh X in
R,

4-   rR(X)⊆ rR(y)implies y∈  xR∩ RA (respt.CR(X)⊆  CR(y))

implies y E Rx∩ AR)foreaCh Xin R and yin RA,

5‐   CR(aR+rR(X))=ι R(aR)∩ xR∩ ⅣIA(respt.rR(Ra+ER(X))=
rR(Ra)∩ Rx∩ AR)for eaCh X,ain R.
6-  For each R‐ homomorphism α:xR→ M(reSpt.α :Rx→ M),
there is r in R such that α(X)=Xr∈ RA(respt.α (X)=rx∈ AR).

We direct our attention for conditions(3)and(6)of TheOrem(2.5)for

each submodule,We have proved that an R― moduleゝ4 is nllly strongly

A―stable if and only if for each cyclic submodule xR and R―
homomorphism α:xR―→M,there is an element rin R such that α(X)=
xr∈ plA if and only if eM(rR(X))=XR∩ NIIA for each x in M.

Proposition 2.8:LetlⅥ  be an R―module and A a non― zero right ideal of

R with rR(N∩ K)=rR(N)+rR(K)for eaCh initely generated
submodules N and K of NII. Then the following statements are
equivalent:

1-    M is funy strongly A― stable,

2‐   For each R― hornomorphism α:xlR+x2R+.… +xnR→ M,there
is tin R such that α(Σ卜lχ :■)=(Σ卜lχぎ■)tC MA whererl,r2,… ・,rll in

R.

Proof:(2)⇒ (1):f01lows from Theorem(2.5)

(1)■ (2):Let N=xlR+x2R+.…  +xnR be a flnitely generated
submodule of M and α: N ―→ M be an R―homomorphism. We use

,
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induction on n.For n= 1,this is just theorem (2.5).SuppOSe that the

statement holds for m<n,there e対 st“′o element r,sin R suchthat α(

Σ婁オχ:ri)=(Σ窪」χfrI)r∈ NIA and α(Xnrn)=Xnrns∈ MA.Now,let y=

Σ婁」χ:ri=xnrn,then α(y)=yr=yS,SO r‐ s c rR(y),but y∈ Σttχ[R ∩
xnR,there exist u c rR(Σ 喜千χ[R)and V∈ rR(XnR)such that r― s=u+v.

Put t=r― u=s+v.let z=Σ :互lχfrt.Then
α(Z)=α (Σl」χfrl)+α (Xnrn)=(Σ ttfχfr3)r+(Xnrn)S=(Σ ttfχ :ra)r_
(Σ工士χfra)u+(Xnrn))S+(Xnrn)V=(Σ 婁1l χfrl)t+(Xnrn))t=Zt∈ NIA

Corollarv 2.9:Let M be a noetherian R‐ module and A a non― zero right

ideal of R with rR(N∩ K)=rRい)+rR(K)for eaChいVo submodules N
and K ofヽ1.Then the fonowing statements are equivalent:

1-    4ヽ is fuHy strongly A― stable,

2-   G市 en a submodule N of M and R― homomorphism α:N―→ M,
for each x in N,there exists an element rin R such that α(X)=Xr∈ MA
Lemma 2.10:Let M be a fully strongly A‐ stable R― module such that for

given x in M and rightideall ofR,cach R― homomorphisrn ofxl into M
can be extended to one from xR into M.Then if a submodule N of M

satisfles CM(rR(N))=N∩ MA,then so does N+xR.
Proo■ Denote rRい)and rR(XR)by B and C respectively.Then by
Theorem(2.5)and aSSumption,we have CM(C)=XR∩ MA andCM(B)
=N∩ MA.Since rR O+XR)=B∩ C,it iS enough to show that eM(B
∩ C)⊆ 0+XR)∩ NIA.Lct y∈ CM(B∩ C).0:XB―→NIl is well‐
deflned by O(xb)=yb.The hypothesis implies that O can be extended to

α:xR―→M,so α(x)∈ XR∩ MA.For each b in B,α(x)b=α(Xb)=yb
implies that α(x)― y∈ CM(B)=N∩ MA,so α(X)― y=n fOrsome n∈ N
∩MA or y=―n+α(x)∈ N∩ MA+Rx∩ MA⊆ oヽ +xR)∩ MA.
Proposition 2。 11:Lct M be an R― module and nOn― zero ideal A of R,
such that for given x in M and rightideall ofR,cach R― homomorphism
of xl into M can be extended to one of xR into M.Then the following

are equivalent:

1‐    M is funy strongly A¨ stable,

2¨   ιM(rR側))=N∩ MA for each initely generated submodule N
ofM.
Proo■ (1)⇒ (2):Let N=ΣLlχ:R be a flnitely generated submodule of
M.we use induction on n.Theorem(2.5)implies that(2)is me fOr n=

1。 Suppose that eM(rR(K)=K∩ MA for m‐generated submodule K
of M where m<n.Then lerruna(2.10)implies(2)for(m+1)‐
generated submodule of M.

(2)⇒ (1)Follows from Theorem(2.5)。

ヘヽ

54



Al- Mustansiriyah J. Sci. Vol.24,No5,2013

Note that quasi― ittect市e mOdules([4],deinitiOn(6.70))are Satistting

the extension condition of Proposition (2.11)。  Then, we have the
fonowing COronary.

Corollarv 2。 12:Let NIIbe a Noetherian quasi-lnJectiVe R― module and A
a non― zero right ideal of R. Then NIl is nilly strongly A― stable if and

only if CM(rR(N))=N∩ MA for each submodule N ofM.

ENDOMORPIttISM RING
Let M bean R‐ module wtth S=EndR(M),itS endomorphism ring and A a

non― zero right ideal of R. Suppose R is conlinutative and NIl is fully

strongly A― stable.Then for each α,β in S and xin M,there are s,t in
R such that α(X)=XS∈ NIIA and β(X)=Xt∈ NIA,so α β=βα.Since

NIIA is a fully invariant submodule of M,then αβ(x)=βα(X)=β(XS)∈

β(MA)⊆ MA.
The above suggestthe fonowing:

Let hII be an R-1■ odule and S be its endomorphisnl ring.We say that S

is Strongley commutat市 e relat市e to a right idcal A of R(simpley

strongly A―commutat市e,ifαβ(x)=βα(X)∈ NIA lor each α,β in s and
xin M.

Proposition 3.1:Let R be a commutat市 e ring,and]M a fully strongly

A― stable R― module.Then S is strongly A‐ corrmutative.

The converse ofthe above proposition rnay not be true fbr example,it is

well known that Endz(Q)≡ Q([5],page 216)which iS a commutative.
Since Q(mZ)=Q fOr each nonzero m in Z,thus Endz(Q)iS StrOngly

(mZ)―COmmutat市e for each non― zero m in Z,while Q is not fully
strongly(mZ)―Stable for each ideal mZ of Z。

Now,we discuss the converse in certain class ofrnodules.

Proposition 3.2: Let M be an R― module in which every cyclic
submodule is direct summand.If S=EndR(M)iS StrOngly A‐
commutative,then M is fully strongly A‐ stable,where A is a non― zero

right ideal ofR.

Proof:Let N=xR be a cyclic submodule ofヽ 4 and α:N―→ヽ 4 be an
R―homomorphism.Then M=N o L forsome submodule L of M.α

can be extended to β∈S,by putting β(L)=0.For each w=x+y∈ M
where x∈ N and y∈ L,deflnc h:M一→M by h(x+y)=X.Put α(X)=
u+v forsome u c N and v∈ Lo Now(h・β)(W)=h(β (X■y))=h(α(X))=
h(u+V)=u,but β o h(W)=u+V.Strong A‐ commutat市e of S implies u
=u+v∈ MA,so v=O and hence IX)=ucN∩ MA.This shOws that
N is strongly A― stable,so by Theorem(2.5),M is fully strongly A―

stable。
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Recall that an R-module M is regular if for each m € M, there is oe

M':Homn (M,R) such that m = mo(m). In regular modules each cyclic
submodule is direct summand [6, Theorem( I .6)]. Then we have.
Corollarv 3.3: Let M be a regular R-module ( R is commutative ring )
and A a non-zero ideal of R. Then M is fully strongly A-stable if and
only if S : Endp(M) is strongly A-commutative.
In ([6],theorem(5.2)), Zelmanowitz proved that for a regular R-module
M, M is quasi-injective if and only if Endp(M) is self-injective ring. We
shall regard this as a motivation for the following
Theorem 3.4: Let M be a regular R-module (R is commutative ring)
and A a non-zero ideal of R. Then M is fully strongly A-stable, if and
only if S : Endp(M) is right fully strongly Homx (M,MA)-stable.
First we need the following lemma.
Lemma 3.5: Let M be an R-module in which every cyclic submodule is
direct summand and A a non-zero right ideat of R. If S : Endp(M) is
fully strongly Homp (M,MA)-stable, then M is fully strongly A-stable.
Proof: Let N be a cyclic submodule of M and o:N --- M an R-
homomorphism. I : Homn(M,N) is a right ideal of S. 0: I --- S is well
defined bV e(0 : oo f , for each f eI. full strong K : Homx(M,MA) -
stability of S implies that 0(I)\subseteq I O KS:I l'l K, that is for each f
e I, o " fe I O K, so o. f : M ---NOMA. SinceN is direct summand,

then o .zrpi M ---+ N n MA where zp is the natural projection of M onto
N. Since ,rN is onto, then o(N) : o(lrN (N)) : (o . ,rNXN) so, o : N ---+

NOMA. Then o(N) c N0MA, this shows that M is fully strongly A-
stable, Theorem ( 2.5).
Corollary 3.6: Let M be a regular R-module and A a non-zero right
ideal of R. If S: Endp(M) is a right fully strongly Homp(M,MA)-stable,
then M is fully strongly A-stable.
Proof of theorem (3.4): Let K : Homp(M,MA) and M a regular fully
strongly A-stable R-module. Then by [6, theorem (3.4)], cent(S) is a
regular ring, Proposition (3.1) implies that S is strongly A-commutative,
and so commutative ring. Thus S is fully stable ring [1, proposition
(1.2.2)). For each o e S and S-homomorphism p : (o)---+S, we have B(o
S) E oS, but p(o) e S and since S is strongly A-commutative, then o"0
:0 

" o and Im(p o) c MA, so 0" o e K, that is B(a) e K and hence p(o)
E o S O K = o S n KS, this shows that S is fully strongly K-stable. The

other direction follows from Corollary (3.6)
We conclude this section with some conditions that an endomorphism
ring is fully strongly stable relative to an ideal.
Recall that, for two R-modules B and C, B generates C if C : Ztm(e')
where the sum runs over all R-homomorphism <p : B --- C. Dually, C

´
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cogenerates B if 0 : o ker(g) where the intersection runs over all R-
homomorphism g : B ---+ C. This is equivalent to saying that for each
non-zero R-homomorphism l": L --* B, there exists an R-homomorphism
g: B ---+ C such that g I + 0( [7], theorem(3.3.3)).
Theorem 3.7: Let M be an R-module, S : Endp (M) and W a non-zero
right ideal of S. Then

1- Assume that M generates ke(P) for each B in S. Then S is a right
fully strongly w-stable if and only if ker(B) E ker(6) implies that 5 E Bs
n sw.
2- Assume that M cogenerates I\#B(M) for each B e S. Then S is a left

fully strongly w-stable if and only if s(M) E B(M) implies that 6 e sB o
ws.
Proof : 1- For each u, e rs(F), then Im(o) g ker(g) e ker(6), so CI, E rs(6).
Thus rs(0) s rs(6) implies that 6 e BS n SW, corollary 2.7. Conversely,
if 6 e ts(rs(p)) and x e ker(B), then B(x):0 and X: Xl,=r ct.(m) where
mq E M and o,; :M - ker(B), hence 0: Ii'=rpa,(rr,), thus B oi:0 for
each i, then o,i e rs(P), so 5u4 :0 for each i. Then 6(x) : Ii'=1 da (.m ):
0 implie that x e ker(6) Thus ker(B) - ker(6). The hypothesis implies
that 5 e BS n SW ,so by Corollary e.7), S is right fully strongly W-
stable.
2- For each o, e ts(P), then oB: 0, Im(6) clm(g) c ker(cr) implies that
Im(6) c ker(o) and o e ts(6). Hence 0s(g)e [s(S) Corollary (2.7)
implies that 6 e SB n WS. Conversely, if 5 E rs({,s(g)) and S(M) s
B(M), then there is ms e M such that 5 (rrr) e B(M), thus the natural
epimorphism u:M ---+ M / B(M) is non-zero. The cogeneration
hypotheses implies there is an R-homomorphism o : M --- M such that
ou 10, so o(6(m6) + B(M)) +0.f :M -- M is well defined by f(m):
o'(m+ B(M)) for m e M. Then(S(mo)):f 6(ms):o (6 (mo)+ B(M))l
0, so f 510, while f B:0, hence f € ts(B), but f 610 which is a

contradiction. Thus 6(M) c B(M),so the hypothesis implies that 5 e sB
nws, and then rs(ts (0)) : SB owS. corollary ( 2.7) implies that S is
left fully strongly W-stable.
RESIDUAL CONDITION
Let R be a ring with identity and A a non-zero ideal of R.Then by
theorem (2.5). R is fully strongly A-stable if and only if tn(rn (a)) :
aRoRA for each a € R. If R is commutative ring, then the last
condition is equivalent to the condition [rp(R): ra(a)] : [aR o RA: R]
for each a E R while for arbitrary R-module M, the residual condition
does not equivalent to full strong A-stability of M, for example, the z-

●

け

57

Al- N4ustansiriyah J. Sci.



Modules whose Submodules Are Strongly Stable Relative To An Ideal 
Mehdi and Khalid

module Q satisfies the condition trn(Q) : rp(x)l : lxZ n Q(mZ) : Ql
where x in Q, but Q is not fully strongly Gfl) -stable for each non-zero
ME Z,

First, we prove the following
Prpopostion 4.1: Let M be an R-module and A a non-zero right ideal of
R. If M is fully strongly A-stable, then [rp (M): rp (x)] : I xR nMA : M]
for each x €M.

Proof : Let we [rp(M):rp(x)] and m € M. Define 0: xR---+ \{ by

O(xr) : rrrw, for r e R. If xr: 0 and since rn (w) E rR (m), then mrw: 0,

thus 0 is well defined. It is clear that 0 is R-homomorphism. Then
Theorem (2.5) implies that there is t e R such that 0(x) : xt e MA, thus

mw€ xR n MA. Therefor w E IxR n MA:M] and hence [rp(M):rp
(x)l c I xR n MA : M]. The other inclusion is always true.

We need the following lemma which appears in ([1], lemma(3.2.4)),
before considering the converse of Proposition (4.1)
Lemma 4.2: Let M be a multiplication R-module (R is a commutative
ring) and N a submodule of M. For each R-homomorphism 0: N -*M
we have
l- teN) : Ml c [rn (M) : rn (N)]

2- 0(N) c M[r* (M) : rn (N)]

Theorem 4.3: Let M be a multiplication R-module, (R is a commutative
ring)andAanon-zero idealof R. If [rp(M): rp(x)] E IxR n MA:M]
for each x €M, then M is fully strongly A-stable.

Proof: Let xR be a cyclic submodule of M. For each m e M and e E

[rn(M) : rp(x)], o1m,e) : xR --- M is well defined by o1m,ey (xr) : mre, for r
e R . By the choice of e, m and the condition [rn(M) : rp (x)] E [xR
nMA : M] we have cr1n,,"y (xR) s xR n MA Now for each R-

homomorphism o : xR -.' M, by Lemma (4.3) we get o(xR) s M[rR (M)

: rp (x)], thus o(xr) : cr(x)r : IIL, lnire. for some m1 E M and e; e

[rp(M):ra(x)] so cr(xr) : XL,. a1-1,,i;(xr). Therefore o : XlL, a(*,"i)

and hence hence o(xR) c xR n MA. That is M is fully strongly A-
stable.
Then we have the following corollary which gives a characterization of
fully strongly A-stable modules in terms of residual condition.
Corollary 4.4: Let M be a multiplication R-module and A a non-zero
ideal of R. Then M is fully strongly A-stable if and only if [rp(M):rp(x)]: [xR n MA : M] foreach x €M.
As every cyclic module over a commutative ring R is multiplication, in
the following we have the motivation that mentioned at beginning of
this section.

心



　́
）

Al― /ヽ1ustansiriyah J.Sci.                                              V01・ 24,No5,2013

coronarv 4.5:Lct A be a non‐ zero ideal of a ring R.Then R is fully

strongly A―stable if and only if[rR(R):rR(X)]=[XR∩ A:R]for eaCh X

∈R.

There is no comparison between multipHcation modules and the
residual condition,for example Z is a multiplication Z― module which

does not satistt the residual condition while zF"is a fully strongly A―

stable Z― module for each non― zero ideal A of Z and hence by

Proposition (4.1) satiSfles the residual condition, but z,∞  is not

multiplication.

Derlnition 4。6:Let M be an R― module and A a non‐ zero ideal of R.A

submodule N ofM is called A¨ idempotentin M ifN=NN∩MA:N]
Next,we consider rnodules in which each submodule is A¨ idempotent

this is equivalent to saying that each cyclic submodule is A― idempotent.

Proposition 4。 7:Let M be an R― module and A a non― zero ideal of R.If

each submodule of NIl is A― idempotent,then 卜4 is ■11ly strongly A―

stable.

Proo■ Let N be a submodule of bll and α: N 一→ 4ヽ an R―
homomorphism.For each n∈ N=NN∩ MA:NII],then n=Σ I卜 1統:ri
forsome ni∈ N andム ∈EN∩ PIA:M].Thus α(ni)■ ∈ML⊆ N∩ Ⅳ眈

for each i and so α cゞ)⊆ N∩ MA.
The Z― module Z8 iS hlly strongly(3Z)―stable,Theorem(2.5).ConSider

the submodule N=(5,=}Of Z8・ NN∩ Z8(3Z):Z8]=NN:Z8]=
N(4Z)=0≠ N.This shows Z8 haS a Submodule which is not(3Z)―
idernpotent.

For the converse of Proposition(4.7),recall that an R― module M is
prime ifrR(M)=rRIN)for eaCh nOn― zero submodule N ofM.

Theorem 4。 8:Let M be a prime R― module and A a non― zero ideal ofR.

Then the fbHowing staternents are equivalent

l―    卜4 is funy strongly A― stable
2- [rR(M):rR(X)]=[XR∩ MA:M]for each x∈ M
3-    Every submodule ofNI is A― idempotent.

Proo■ (1)⇒ (2):Follows from Proposition(4.1)

(2)→ (3):Lct N be a submodule of M,and a non― zero element n in N(

no loss of generality if we assume that N is non― zero).Then by(2),R=

[rR(M):rR(n)]=[nR∩ MA:M]⊆ lN∩ MA:M]⊆R,so R=[N∩ MA
:M]and hence N=NN∩ MA:M]
(3)⇒ (1):Follows from Proposition(4.7)

・
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ABSTRACT
In this paper the control methodology of bifurcation for a nonlinear control system
with parameter has been studied. The controlled Lorenz system is treated as a model
of nonlinear control system with bifurcation. The normal form of this control system
has been found by modifuing the input-output methodology. Lyapunov function for
the normal form which equivalent to the original system are found and used to
design the controller for the original control system. A numerical simulations of
Lorenz system with different parameters and initial conditions and its controller and
graphs are shown in the end of this work.

l.INTRODUCTION
The input-output methodology is an approach to nonlinear control
design which has attracted a great deal of research interest in recent
years. Where this approach is to algebraically transform a nonlinear
system dynamics into a exactly or partially linear form. For the normal
form of the nonlinear control system and its connection to the
bifurcation problem one can consult !ll, I2l, [3], [4], and [5]. In this
work, The controlled Lorenz system as model of a nonlinear control
system depending on parameter with bifurcation has been adapted.
Some theoretical justifications to design and analyze some classes of
nonlinear dynamical systems with bifurcation have been developed
based on some previous literature a nornal form for the controlled
Lorenz system with output function has been driven via input-output
method. Some numerical simulations are given to show the behavior
and the stability for the closed-loop system.
2. Mathematical concepts
In this section some mathematical concepts which important in the
study of nonlinear control systems with output function have been
introduced.
Definition (1) : [61

Let h:Rn + R be a smooth scalar function, and f :R'-+ Rn be a

smooth vector field on R', then the Lie derivative of h with respect to /

＾
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is a scalar function defined by Llh - Vh' f , Repeated Lie derivatives

can be defined recursively L'rh - Lf(LTrh) -v(t'i'n) f fo, i =
1,2,...
Similarty, if g is another vector field, then the scalar function LnLyh is

LnLlh:v(trn).g
Delinition (2) : [71

Let f and g be two vector fields on R". The Lie bracket of f and g is
the vector field defined by V,Sl-VS.f-Vf.S.Repeated Lie

brackets can be defined as adi S - l|,aai'9] for i = 1,2,"'
Definition (3) : [71

A function (p'. R" -+ R" defined in a region O , is called a
diffeomorphism if it is smooth, and if its inverse g-1 exists and smooth.

Lemma (l) : [61

Let tp(x) be a smooth function defined in a region O in R". If the

Jacobian matrix Vrp is non-singular at a point x = xo of A, then g(x)
defines a local diffeomorphism in a sub-region ofO .

Remark(l): [61

A single input nonlinear control system i = f (x)+ g(x)u where /, g
being smooth vector fields on Rt, x € Rn and the control function
u € R. This system is said to be input-state linearizable if there exists a

region O in R", a diffeomorphism g'. A'-> R' and a nonlinear feedback

control law u - q(x) + p(x)v such that the new state variables

z - q (x) and the new input u satisff a linear time invariant relation
2=Иz tt Bυ .

Thc form of system
follll

and B

cancd rounovsky normal

Definition (4) : I8l
The single input single output nonlinear control system (1) is said to
have relative degree (or strong relative degree) r in the region O if :

Lnh(x) = LnLyh(x) = "' = LsLi-2h(x) - O

And %好
~lλ
(χ)≠ O  Vχ ∈ρ

Lemma(2):[91
Consider the autonomous nonlinear dynamical system i = /(x) with
the equilibrium point of interest being the origin, and let

A(x) -- V/(x) denote the Jacobian matrix of the system. If there exist a

symmetric positive definite matrix P and a symmetric semi-positive

definite matrix Q, such that Yx + 0 and if the matrix F(x) - ArP +
PA+ Q, is negative semi-definite in some neighborhood O of the
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origin, Then the function 7(x) - fr P f is a Lyapunov function for this
system.
3. Problem formulation
Consider the following control system * - f (x,1t) * g(x,1t)u,
where f , g are smooth vector fields, x e Rn is the state variable,
u e Rm is the control input, p e R is the parameter. The performance of
the system depends on the values of p and u. The following is the

system: r :1,:Y,:::'1. 
[J] 

u, where r =lil,
L*.

and x is proportional to the intensity of convective motion, y is

proportional to the temperature difference between ascending and
descending currents, z is proportional to the distortion of the vertical
temperature profile . q, b are positive parameters and the parameter c

depends on the difference between the temperature in the top and the
temperature in the bottom, in general we have assumed that c > 0 [10].
Figure(l) show the classicalLorenz system when the control u = 0.

Figure… 1:the traCctory ofthe Lorenz system with the initial conditions

χ(0)=2,y(0)=1,Z(0)=4,and α=10,b=:,c=28

Remark(2):
Lorenz system represent a wide variety of physical and

engineering phenomena like electrical circuit and ocean navigation[2].

Systems like these need a speciflc output functions and these output

functions are differs by the difference of the physical problem.The

general form ofthe output hnction for any nonlinear control system can

be deflned as

is the state space and α
:′

j=1,...′ η

So in this work, And the input output controHed Lorenz system would

be

,
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h(X): ilLx * azy * a3z

where f =l;l is the state vector and e,b,c are real positive
L-rl

parameters.
since our aim is to study and control the Lorenz system as a nonlinear
dynamical system with bifurcation, the following is necessary.

4. The Input-Output Stabilization of The Lorenz system
In this section the main theorem has been introduced, with the following
aims
1. find out a transformations family which are transforming the

nonlinear controlled Lorenz system into a simpler nonlinear normal
form.

2. Design a nonlinear controller u for the original nonlinear system.
Next we give a remarks which is important to the proof of the main
theorem.
Remark (3)
Based on the natural structure of Lorenz system, there are three general
cases for the relative degree of system ( I )
l. r:3:the system(l) is input-state linearizable. This case has been

studied in our previous work which have been sending for
publishing.

2. r = 2: based on definition (4), then the following is hold Lsh(X) -
0

implies d.2 -- 0 , and LsLflL(X) = &tQ * a3x + 0, which means for
r - 2 there are some necessary next conditions hold:

i. dz=0
ii. for a * 0 (given):
If a, * 0 and qz* 0, then the controlled Lorenz system (l) have

relative degree r = 2 if and only if x + -ry.'d3

If a3 - 0and dr* 0, then the controlled Lorenz system (1) have
relative degree r = 2 for any x.

3. r = 1: the normal form has relative degreer: L, which is again
nonlinear control system , it may complicated more than the original
system. So this case had been ignored and the case when r = 2 has
been adapted.

Based on remark(3) the following is developed.
Theorem(l): (The Main Theorem)

Consider the controlled Lorenz system(l), If x + -a*-then:d3

1. There are a family of single input single output normal forms
that could be driven by using The state transformations family

ヘ
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(r4 n|G) + prn6) + t rrrn(D + t r,pr@))
Ln Lr h(X)

where Ln Lf h(X) + 0 and K : lh k2 krl is the gain vector,
that will be designed later on.

Proof:
l. Since x + -W and d2 = 0 and based on remark(3) then the systemd3

(1) have relative degree r - 2. we are Looking for a family of
diffeomorphisms so that consider the vector function

lzrl l,pr(X, r)1
z - lrrl = lrrq,') I = q(x,c)

Lzr) Lqr6,q)
I h(x) I

On using h(X) = dtx * a3z,and let cp(X,c) -lLr h(X) l, th.n

L,pr(x, d]
I a1x*a3z I

q(X, c) - lara(y - x) + az(xy - b)l
Lpr(X,c) l

and to prove that the vector function q(x,c) defines a diffeomorphism,
then based on proposition(1) we have to prove that the matrix vcp(x,c)
is nonsingular

I or, 0 ds I

tvq(x,c) r = l-";*i,S* "f.!,ri,{ ;i:.!,,1* o @)

la*Oy0zl
ロ
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Since Ln<pz(X,c) : 0, tnen!9ff4 - o (5)

On substitution (5) in (4), then

lv\(x,c)l = aral I otp''(x'c) d93(x'c)\-a3x 
\41 A, - d3-- Ax- )+ 

o

For arry*"r4#O. Thus rp(X,c) is nonsingular. Based on

definition(3), the diffeomorphism rp(X,c) has a smooth inverse, and
since r - 2. then the following is true

21 = = LyrQJX, c) : zz (6)
and, 2, = L?h(X) + LnLlh(X).u (7)
By the control transformation (2.b) in (7), one gets 22 - u (8)
and fu - Lrwz(X, c) + Lnr4(X, c)u
By the condition Lnrry(X,c) = 0, then we have

i, - (u#!a(y - x) +9sfo(xr - u,))lr=r,,r, (e)

By (6), (8) and (9), the normal form is as the following

lil =ly* 
a(v - x) . u1::' 

",., -,,,)l 
r =..-,)

2. On using the equation (2.b) v - L?h(X) + LnLlh(X).u
And set u = -KZ, where K is the gain vector K = [kr kz k3], in
(2.a),the controller is found to be

u = -U7hx)*r,,ng):!**rn*,q,ra), where Ls Lf h(x) + o.

Proposition(2)
Consider the controlled Lorenz system( 1)

r =1,::4::,]. 
[;]"

h(X)-q.tx+a3z
rX-r

where X = lrl ir the state vector and a,b,c are real positive
Lzl

parameters. If we set ar = 1 and dt = 0, and based on the state and
control transformation (2) in the main theorem, then
l. there exists a state transformations family can be defined as:

lzrflxl
lal = | a(y - x) l, c, and c2 are nonzero constant ( l0.a)
lzzl lcrxz + c2z)

ヽ
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with the condition Lnes(X, c) = 0, and the control transformation

υ=好ん(χ)+ちけれ(χ )・・ (10.b)

ヽ
９

2.the transformation family(10)WhiCh transforms the nonlinear
control system(1)intO the f01lowing nonlinear normal form

21=Z2
ク2=υ                     (11)

23=‐~bZ3‐十
(2cl+i争 )ZlZ2‐

十(σlb+σ2)Z12
3. The nonlinear control law ofthe original system is then

u=:(一たlχ 一‐た2α (y_χ)一 た3(Clχ
2+σ
2Z)~~(α
2+α
c)χ )

+(α
2+α
)y tt αχZ               (12)

Proo■ the proof can be obtained directly from the proof oftheorem(1).

5。Design analysis

ln this section,some concepts which is useful in the nonlinear analysis

have been introduced.The normal follll(11)WhiCh introduced in
proposition(2)is nonlinear and also it's linearization (as a COntrol

system)is unCOntrollable so we can not use the lincar system design

control to deflne the nonlinear control. So a Lyapunov function has

been developed for that normal form to get some information and

conditions to deterinine the gain lnatrix l(for the linear control υ.The

next remark is important.

RemarK4)
1.The Lyapunov theory have been adapted to flnd some conditions and

relation between the element ofthe gain vector κ.On using υ==一κZ

in the normal form(11)we have the linear appro対 mation the closed¨

loop systenl at the origin
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The characteristic equation of(13)is

lИ 一λfl=一λ
3_(た
2+b)λ
2_(た
1+bた 2)λ ~たlb=0

The systenl have three eigenvalue:

λl=― b,λ2=~:チ +」二Ξ三二三and λ3=~12~匝 .Then one
cOnclude the fbHowing conditions on the elements ofthe gain vector:

i。  たl andた 2 are pOsitive real and(等)2<た 1.

五. Since the eigenvalue do not depend onた 3 i・ eた 3 dOeS not effect

on the stability of system(11),SO We Can setた 3=0・

2.To simplitting the calculation in the next proposition one can set

Cl=~万 and ε2=l in the transformation(10),then the normal form is

'■

=Z2
●
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2z=-k{r-kzzz
2z= -bzs * eztz

(14)

where ε= (こう:L)and b≠ 2a,A Lyapunov function、vhich is stabilizc
thc nollllal fbl111、 vill bc found by the ncxt proposition

PrODOSition f3):

Consider the nonlinear cIOsed-loop system (14)

Zl=Z2

22=~た lZl― た2Z2
23=~bZ3+ε Z12

1f Pl,P2,and P3 are pOsi」 vc real and satisies thc cOndhiOns:

92~2た2P2>0,and 93~2bP3>0           (15)
Then thc stabilizing LyapunOv lunction ofsystem(14)is obtained tO bc

7(Z)=Plz22+P2(た■Zl+た2Z2)2+P3(~bZ3+ε Z12)2
Proo■

On using lemma(2) cOnsidcr thc functiOn 7(z)=FTPF,whcre

卜|プ劇祠銚3x3p…鋼たm正…e
origin is thc Only critical point then 7(o)=F(0)7PF(0)=0

Let P=li l lll ,Where a>0,ι =1,2,3

Set C=lil  ll  ll ,Where 9:≧ 0,I= 1,2,3

because P pOsitive dcflnitc matrix thcn ン(Z)>o,VZ≠ 0,thenズの
11尋話職券F乾翻P,

thenク(z)=FTF(Z)『 ―
『

79F,w

Then F(Z)=|ち
」豫 
」}・
|

Using Sylvester criterion(see refercnce llll),then Dl=9.,

D2=IPl」
LlP2  」}三Li」シ」

=91(92~~2た 2P2)~(PI― たlP2)2,

ム=L」聾身拳 f重翻
=91(92~2た 2P2)(93~2bP3)~(92~2た 2P2)(2εzlP3)2
~(93~2bP3)(Pl~た

lP2)2

ヽ
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Since o is semi…posit市e deflnite matrix then we can set 9.=0

0n using the conditions(15)above,then

Dl=0,D2=~(Pl― たlP2)2<0,and
D3=~((92~2た 2P2)(2εzlP3)2+(93~2bP3)(P■ ~たlP2)2)<0
That mean F(Z)is Semi_negat市e deinite and since c is Semi_negat市 e

deflnite thenク (Z)iS Semi― negat市 e deinite,so that the function 7(Z)is

a Lyapunov hnction and deflned as
y(Z)=PIZ22+P2(た lZl+た 2Z2)2+P3(~bZ3+ε Z12)2.

6。 Numerical lllustrations

The following are the numerical sirnulations for the controlled Lorenz

system (1)and the Lyapunov approaches which has been inodifled in

proposition(3)and remarks(4).

6.l control design

To complete the control design chose the Fnatrices P and o satiSfled the

COnditiOns(15).then P==||  |  |land O==||  |  ||

The gain vector can be chosen as[た 1  た2  た3]:= [0.3  0.4  0] (16)
On using the nonlinear controner(12)which iS given by proposition(2)

u=:(一た
・
χ―̈た2α (ノ

~χ
)一 た3(C1lχ

2+cr2Z)~(α 2+αε)χ)+(α
2+α
)y

+αχz

lf we set α=10, b=:,and σ=28.And obtain the valuc ofthe gain
vector iて (16), then the nonlinear control law of the original control

system is u=鳥
 (-0.3χ
-4(y一 χ)―-380χ)+110y+10χZ  (17)

the igures(2)show the stability of the single input single output

controlled Lorenz system us yg the nonlinear co L Эl law(17)

II III

Figure-2:I,II and III shows thc χ‐statc,y―state and z―state versus tiinc

respectively ofcontrolled Lorenz systcm with the initial conditions χ(0)=2,
y(0)=1,and z(0)=4,and α=10,b=:,and ε=28

6。 2 Control bifurcations

The bifurcation problerns for the control systerrl is invariant under

change of coordinates(diffeomorphisms)then We can study the

じ

"
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bifurcation of dynamical systems by focusing on bifurcation of their
normal forms.
The local bifurcation is the change of the stability of the dynamical
system as the parameter varied. To study the bifurcation of the classical
Lorcnz system If the parameter c < L then the origin is the only critical
point, while if c > 1 then in addition to the origin there are two critical
points

P.=(Vb(ε -1),Vb(σ -1),(ε -1)) and

r, - gJ t1, - 11, -J bG - t), (c - 1)) Il2l.
1. If 0 ( c ( l, : The origin is the only critical point and hyperbolic and

all of the eigenvalues have negative real part then the origin is
asymptotically stabl e. |21

2. if c = l" : The equilibrium point at the origin bifurcates into two
equilibria p, and p2 .The origin is nonhyperbolic equilibrium point
and the system experience a pitchfork bifurcation.

3. if 1 < , a * : In general the system has one real positivea-b-L e

eigenvalue and two complex eigenvalue with negative real part. The
equilibrium points p, and p3 are asymptotically stable and the origin
is unstable.

4. , - ffi: The system experience a Hopf bifurcation[l3l
- a(a+b+3)5. c > # : All the eigenvalue have positive real part, so all thea-b-l

equilibria are unstable [13]. See figure(3)

Figure-3:(Bifbrcation of Lorenz systcm):I,H HIShows χ―StatC versus time of

Lorenz system when c<1,1く c<24.737 and c>24.737 respectively with the
I.P(2,1,4)and paralneters α=10,b=:

Therefore the Lorenz system have twO bilurcations value at c=l and

σ=α
(α +b+3)。

As we mention before the parameters α and b do not

effect on the stability of the Lorerlz system,therefore this system is

belong to bilbrcation of one parameter farnilyo in order to control the

bilhrcation of Lorenz systenl with respect the parameter c.In order to

show that the nonlinear controller(12)will COntЮ lled the bittrcations

we win graph  the closed-loop system with different values of the
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parameter c which represent the bifurcation values in the classical

LoreFIZ Systern.

Let α==10,b=:,andた
・
った2 aS in(12),then

u=i(~0・ 3χ -4(y一 χ)― (100+10σ)χ)+110ソ +10χZ(18)

we can see that the nonlinear control law is parameterized controller,

i.e.,depend on the state X,as well as the parameter ε.The control(18)

u(χ,C)Will COntrol the bifurcation.Lorerlz system have two

biJhrcations value at ε==l and ε=7,When α= 10 and b==:.

Then σ=l and  c=24.737.Table(1)the behavior of nonlinear
controlled Lorenz system has no bifurcation when the parameter σ

varied and pass through the bifurcation values ofthe Lorenz system.

ハィ三

I                      II                      III
Figure-4:I,II and III shows the χ̈state,y―state and z― state versus tilne respectively

ofcontrolled Lorenz system with the initial conditions χ(0)=2,y(0)=1,and
z(0)=4,and α=10,b=:,and C<1

I                 II                 III
Figure-5:I,II and III shows the χ―state,y―state and z― state versus tirne

respectively ofcontrolled Lorenz system with the initial conditions χ(0)=2,
y(0)=1,and z(0)=4,and α=10,b=:,and ε>24.73

や

り

Table-1:

The parameter value The associated control law with respect the parameter value The figure number

c<1
(c=0.5) ・ =イ;(-0・

3χ -4(ッ ーχ)―-105χ)1110ソ +10χZ
Figure (4)

1<σ <24.737
(c=20)

u=T百 (~0・ 3χ -4(ッ ーχ)-300χ)+110ソ +10χZ
Figure (5)

c>24.73(c=28)
・ =I百 (~0・

3χ -4(ッ ーχ)-380χ)+110ソ +10χz
Figure (2)

,
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7. CONCLUSIONS
From the present study, the following conclusions may be drown: The
Lyapunov function which stabilize the normal form is employed to
design the controller. The Input-Output Stabilization Design method is
applicable to stabilize the systems with bifurcation. The design control
methods for these systems suggest that we can find a feedback control
law depend on these parameters.

8. REFERENCES
1 . Kang W. and Krener A., Normal form of nonlinear control

systems, int. J. ofchaos and control, pp.345-376 ,2006
2. Kang W., Bifurcation and Normal form of nonlinear control

systems, Partl , SIAM J. Cont. Optim., Vol. 36, No.l, pp 213-232,
1998

3. Kang W., Bifurcation and Normal form of nonlinear control
systems, Partll , SIAM J. Cont. Optim., Vol. 36, No.l, pp 213-232,
1998

4. Kang W., The stability and invariants of control systems with
pitchfork or cusp bifurcations , IEEE Conf. on decision and
control, pp. 378-383, 1997

5. Kang W., Invariants and stability of control systems with
transcritical and saddle-node bifurcations , IEEE Conf. on decision
and control, pp. 1162-1 167, 1997

6. Slotine E. and Li W. , Applied Nonlinear control , 1991.
7. Lu Q. , Sun Y. , and Mei S. , Nonlinear Control Systems and

Power System Dynamics , 2001 .

8. Sastry S. and Isidori A. , adaptive control of linearizable systems,
IEEE Transaction on Automatic control, Vol. 34, No. l l, pp.l123-
1131, 1989.

9. Krasovskii, N. N., Problems of the Theory of Stability of Motion,
Stanford Univ. Press, 1963; translation of the Russian edition,
Moscow (1959).

10. Lorenz Edward N. , Deterministic non-periodic flow , 1963.
11. Farina L. and Rinaldi S., Positive Linear Systems : Theory and

Applications , 2000
Gulick D. , Encounters with chaos , 1992
C. Sparrow. The Lorenz equations: bifurcations, chaos, and strange
attractors. Applied Mathematical Sciences, 41, 1982.

２

３

１

１

つ
‘

，
′



‐

Al- Mustansiriyah J. Sci. Vol.24,No5,2013

Cryptanalysis of Complement Product Generator by Solving
Linear Equations Systenl ofthe Generated Sequence

Sahar Ahmed Mohanlmcd
Mathematical Dept./Collegc of Scince/Al― Mustansiriya Universiサ

Receivcd 17/3/2013-Accepted 15/9/2013

`へ
中̂
Jこ
ヨ:)lLJ:L]|

戸 `邸 。
。メ L(Lヽ bふ 劇 尋 ム 山y。し が出 ,出

y中
」メ
～

鼻 ´ ′ び 」
に却 11ゝ ひ

い い 翡 ♂
1」 (社|メ｀ いな」■ )」 Lリ

コ
藝 凸ツ島 F出 ,出

y塾
メ |。ゝ ,井

叩 脚 |■|エリリメメ リい 1叫 `f国 11園
|』ム出 こJメ 1夢JJメ し .■メ 1麹Jメ

♂
島 よ 」 .こ劇 げメ

～
メ ル 亀Jメ 1も郷 16メ 1`工|かミ・ ・いe園 ||ゝ よ ´ひ J♂劇 |

`亀Jノ
』 1山国メ |工 1.」メ lξ な脚 1社 |り 1出卸 社 |■ 1ゞ評 |」-1壽 尋 」 1凸Y。日 |

こJ11早♂ 1脚1が `″劇|げメ |」メ1出

ABSTRACT
In this paper,flrstly,a Golomb's lnethod is introduccd to construct a linear

equations systcln ofa single linear feedback shift register.Sccondly,this incthod

is developed to construct a linear equation systenl ofkey generator(a linear

feedback shift registcr system)where the effect ofcombining inction oflinear

feedback shift registcr is obvious.Lastly,before solving the linear equations

systeln,the uniqueness ofthe solution must be tested,then solving the linear

equations systern using one ofthe classical incthods like Gauss elilnination.

Finding the solution oflincar equations system means flnding the initial values of

the generator.Onc ofthe known generators;Complemcnt generator,treated as a

practical example of this work.

INTRODUCTION
A Linear Feedback Shift Register (LFSR) System (LFSRS)

consists of two main basic units. First, is a feedback function and

initial state values [1]. The second one is, the Combining Function
(CF), which is a Boolean functionl2l. Most of all Stream Cipher

System's are depending on these two basic units. Figurel shows a

simple diagram of LFSRS consists of n LFSR's.

This paper aims to find the initial values of every LFSR in the

system depending on the following information:
1. The length of every LFSR and its feedback function are known.

2. The CF is known.
3. The sequence S (keystream) generated from the LFSRS is known, or

part of it, practically, that means, a probable word attack be applied

t1l.
This work consists of three stages, constructing linear equations

system, test the uniqueness of the solution of this system, and lastly,

solving the linear equations system.
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Generated Sequence

CONSTRUCTING A LINEAR EQUATIONS SYSTEM FOR SINGLE
LFSR

Before involving in solving the Linear Equations System (LES), it
should show how could be the LES of a single LFSR constructed,
since its considered a basic unit of LFSRS. Let's assume that all
LFSR that are used are maximum LFSR, that means, Period (P):2'-1,
where r is LFSR length. Let SR, be a single LFSR with length r, let
A6:(a-1,a-2,...,2-r) be the initial value vector of SR, s.t. o-;, l<j<r, be

the component j of the vector ,4.6, in another word, a-1 is the initial bit
of stage j of SR., let C6r:(c t,. . . ,c.) be the feedback vector, c.; e {0, I },
if c1:1 that means the stage j is connected. Let S: {r, }1.' be the

sequence (or S:(ss,sl,...,Sm-l) read "S vector") with length m
generated from SR,. The generation of S depending on the following
equation:

=ヽ■=Σ aHcj i=0,1,…

Sahar

...(l)
j=l

Equation (1) represents the linear recurrence relation (see [3]).
The objective is finding the As, when r, C6 and S are known.
Let M be a rxr matrix, which is describes the initial phase of SR,
M:(ColI ,*.-1), where Mo:I.
Let ,A.1 represents the new initial of SR. after one shift, s.t.

cr 1...0

A 
1 

:AsxM:(at d-2,. . . d-r) = (ia-.,c,tLr,...,al-r).
j=l

c,00
In general,

A1:A;-1 xM, i:0, 1,2,...
Equation (2) can be considered as a recurrence relation, so we have:
Ai=Al_1× M=A卜2×卜42=.… =AO× Mi

...(2)

. .(3)
The matrix M' represents the i phase of SR,, equations (2-3) can be

considered as a Markov Process s.t., As, is the initial probability
distribution, Ai represents probability distribution and M be the
transition matrix (see [ ]). Notice that:
M2:[ClCslI*.2] and so on until get Mi:[Ci-r...Coll,,,-i], where l<i<r.
When Cp:Co then MP*I:M.
Now [et's calculate C; (see [4]) s.t.

C1:MxC;- 1, i:7,2,... ...(4)
Equation (1) can be rewritten as:

A6xC;:Si , i:0,1r..rf-1 ...(5)
When i:0 then A6xC6:Ss is the I't equation of the LES,
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i:l then AsxCl:S1 is the 2nd equation of the LES, and
i:r-1 then AsxCl-1:S.-y is the rth equation of the LES.

In general:
AsxC:S . . .(6)

C represents the matrix of all Ci vectors s.t.

C:(C6C1...C.-r)
The LES can be formulated as:

Y:[ Crlsr] ...(8)
Y represents the extended matrix of the LES.

Example (1)

Let the S& has C6r:(0,0,1,1) and S:(1,0,0,1), by using equation(4),
get:

0

1

I

0

, in the same way, C2:

1

1

0

0

,c3:

1

0

1

1

this system can be written as equations:

ula (8) is:

ヤ １
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０

０
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COMPLEMENT PRODUCT GENERATOR (N.CPSCG)
The Product generator is defined by n-maximum-length LFSRs

whose lengths tt, r2,..., rn, where neZ* are pair wise relatively prime,
with AND combining function [1]:

Fn(x1,x2,..,xn) : x18x28. . . 8xn :li *,
i=l

Where @ is the usual product operation.
"

く
υ
句
′

… (10)
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In this paper the complement product generator will be discussed.
The generator takes the complement of the output of every LFSR. So,
equation (10) can be written as follows:

Fn(x1,x2,..,*") :fI(*, @ 1) ...(11)
i=l

Where @ is the exclusive OR (XOR).
This generator considered weak, despite of his good linear

complexity, because of his weak randomness (see Figure l).

Output S

Figure- I :Complement Product CSG.

Where o is the complement of the output of LFSRi.
For n:3 the truth table of this generator will be shown in table

The truth table o Complement Product CSG.
X: X2 X3 x101 X201 x301 F
0 0 0 l l l

0 0 l 1 0 0
0 l 0 0 l 0
0 l l 0 0 0

0 0 0 1 1 0
0 l 0 l 0 0
l 0 0 0 l 0
1 1 0 0 0 0

The linear complexity (LC) of this generator is LC(Sp) :

ll(r, * rl
i=l

Where Sp is the sequence generate from n-CPSCG.
Assuming the degrees of the all combined primitive feedback

polynomials are relatively primes.
The correlation probability cP(si) of the sequences s; generated

from of output of LFSR; which is combined in the n-cpSCG. It can
be calculated by the following Lemma (1).
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Lemma (1): for all inputs of the complement product function
consists of n-LFSR's, the CP:0.5+1/2n.
Proof:

Since the complement product function gives output zero's
everywhere accept for the state when all inputs are zeros's the
corresponding output is one, then for all zero's and all one's inputs
are identical to the corresponding output of the product function, then
the CP1

CPl(S)=2/2n
Where n is the number ofcombined LFSR's.

Half of the rest inputs is2"-2 are zero's, so they are identical to the

corresponding output of the product function, then the CP2 is:

2" -2
2n_1_1

(b)

I
of correlation probability for n:2...8

… (a)

‐

CP2=
2n     2n

The flnal CP is the sum ofthe CP's in equations(a)and(b),then

cP=壬生+2n■ _1=2n■ +1=0.5+J午       ….(12)2n   2n     2n
And this is ending the proof.

Table (2) shows some values
depending on equation (l l).

Table-2: some values of CP for n:2...8 usiins on equation (12).

n 2 3 4
く
υ 6 7 8

Ｃ

Ｐ

０

。

７

５

0.6

25

0.5

625

0.53

125

0.515

625

0.507

8125

0.50742

1875

Form table (2), when the value of n:2,3,4,5 then the complement
product system can be attacked by correlation or fast correlation
attack, otherwise the system is immune.

Constructing A Linear Equations System for n-CPSCG
As known, the outputs of every LFSR of the complement product

system are multiply with each other to gain the sequence S which is

generating from this system.

Since SR. has q number of unknown initial values, then m:f[1r, + t1rt J 
j=l

Now, all the vectors Ael are extended from r; to m as follows:

ロ
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eo:fI(eo, @ 11:(Aor@l).(Ao2@1)...(A0"@l )
j=l

For simplicity without losing generality, let n:3.
Then:

3

Ao: fI (A oi @ 1) :(Ao 
r .Aoz.Aor)@(Ao rAo2@Ae 1 Ae3@AozAo: )

j=r

@(Aor@Ao2@Ao3)Ol
Ao : (P0,Pt,...,Pn,-t), where:

Po:&t ..dt2'&8, Pt:ot t'a.l2'?23,.. ., Pk:81l'o12, Pk*l:&t t,. . . , p1:d1yo,12,
p;+t:ilt 1,..., Pm-l:1.

The same process will be done on the feedback vectors C;.; which
must be found first from equation (4), therefore, C; will be:

3

ci:fl(cij @ 1)
j=r

:(cir.c;2.c;3)@(ci rci2@c; 1c;3@c12ci3)@(ci r @ci2@c03)@ I
Where, i:0,1,. ..,D- I .

Since the cF is AND, then s can be goffen from multiply alr
unknowns S;. Since m equations are needed, that means every LFSR
shifts m movements, then:

3

si:ff (s, @ l) :(s;1.s12.s;3)@(s;1S;2@Si1Si3@s;2s;3)(D(s;1@si2Os63)@ 
1,

j=l

where i:0,1,...,m-1, and, S1:(S01,sri,...,S._tj), j:|,2,...,n.
while S can be found by following equation:

3

S: fl(s, @l): (so,sr,...,Sm-r).
j=l

Figure 2 describes the sequence s generated from the product system.

St:Sot Stt ...Sm-t r

SZ:SOZ Sl2 ...Sm-1.2

SO St ... Sm-t=S

Sn=Sgn srn ..*fr-r,n

/

Figure -2:Complement Product system.

So C can be obtained from equation (7) and by applying equation
(6), the LES can be constructed depending on b; values.

Example (2)
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Let's have the following feedback vectors for 3 LFSR with leng[h2,3

and 4:

1

Let's denote v63: ,V13= , V23==

1

1

1

1

, V33=

0

1

1

1

, V43=

1

1

1

0

, V53==

0

1

0

1

and V63= ,V73=

1

1

0

1

,V83=

0

0

1

1

, V93== , vlo,3: , vll,3: , Ylz,3:

oヽ      ro

01  11

11'b司 o
0り   tO

ヽ
一

3

Notice that in=II(鳥 +1)=60
j=1

S=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

Letis denote v01=(|),Vll=(|)and v21=(|)then,

Cil=.… =Cjl=.… =C57+tl=Vil,i=0,1,2,j=3*k+i,k=1,… 。,18.

・=C56+L2=Vi2, i=0,1,… 。,6  j=7*k+i,

k=1,… .,7.
１

　

０

　

０

　

１

１

　

０

　

１

　

１

じ

１

　

０

　

１

　

０

０

　

１

　

１

　

０

０

　

０

　

０

　

１

１

　

１

　

０

　

０

蜘J:1施Lの‐う‐鳥硼卿 ,…4

j=15*k+i,k=1,2.

,       AO=(all・ a12・ a13,all・ a12・ a23,… 。,a2ra32・ a43)=(pO,pl,...,p23)



Cryptanalysis ofComplement Product Gcnerator by Solving Linear Equations System ofthe

Generated Sequence
Sahar

Where pO=all・ a12・ a13,pl=all・ a12・ a23,・・・,p23=a21・ a32・ a43・

by applying equation(4),COT Will be:

COT=(1,0,0,1,0,0,0,0,1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,1,0,1,1,0,1

,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,

1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0,0,1,1)

Therefore,
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Test The Uniqueness of The Solution of LES
Since the system consists of m variables, then there are 2^-l

equations, but only m independent equations are needed to solve the
system. If the system contains dependent equations, then the system has
no unique solution. So first it should test the uniqueness of solution of
the system by many ways like calculating the rank of the system matrix
(r(C')) or by finding the determinant of the matrix. If the rank equal the
matrix degree (deg(Cr)), then the system has unique solution, else
(r(C'). deg(Cr)) the system has no unique solution.

In order to calculate the r(Cr) it should to use the elementary
operations to convert the Cr matrix to a simplest matrix by making, as

many as possible of, the matrix elements zero's. The elementary
operations should be applied in the rows and columns of the matrix Cr,
if it converts to Identity matrix then r(Cr):deg(Cr):m, then we can
judge that Cr has unique solution [5].

Example (3)

０

１

１

０

０

１

Let's have the matrix Cr:

0  0  1  1

0  1  1  0

1  1  0  0

1  0  1  1

, by

operations, the matrix can be converted
1  0  0

0  1  0

0  0  1

0 0 0

using the elementary

to the matrix Cr':
０

　

０

　

０

　

１
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,} 
this matrix has rank:4:deg(C'; then the matrix has unique solution.

SOLVING THE LES
After be sure that the LES has unique solution, the LES can be

solved by using one of the most common classical methods, its Gauss
Elimination method. This method chosen since it has lower
complexity than other methods. As its known, this method depending
in two main stages, first, converting the matrix Y to up triangular
matrix, and the second one, is finding the converse solution [5].
Example (4) shows the solving of a single LES for one LFSR.

Example (4)
Let's use the matrix Y of equation (9), after applying the

elementary operations, and then the up triangular matrix is:
1  1  0 010

Y′ =
0  1  1  0

0  0  1  1

0001

0

1

1

No、v applying the backward solution to get the initial value vector:

AO=(0,0,0,1).

The LES of n― LFSR's is lnore complicated than LES of a single

LFSR,speciaHy,if the CF is high order(non― linear)funCtiOn.First,it

should solve the variables which are consists of rnultiplying more than

one initial variable bits of the combined LFSR's. As an example of

complement Product Generator, its going to solve the variables dk,

1≦k≦rn-1,then solving the initial values a_l since dk is represented by

multiplying two initial bits.In another word,every system has its own

LES systern because ofthe CF,so it has own solving rnethod.

Example(5)
When solving the LES of equation(12),then the solved vector of

solution:

X=AO=(xO,Xl,.… X59)=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1).

There are inany strategies to flnd the initial of the combined LFSR's,

like:

1.Notice that :al=x50=0, a2=つ く51=1, blこっく52=0, b2=つく53=0, b3=つく54=1,
Cl¬K55=0,b2=X56=0,C3=X57=0,C3=X58=1,then:A01=(0,1),A02=(0,0,1),

A03=(0,0,0,1).

2.Notice  that:x23=a2b3C4=1,  X29=a2b3=1,  X37=a2C4=1,  X47=b3C4=1,

X51=a2=1,

X54=b3=1,X58=C4=1,Then:A01=(al,a2)=(al,1),A02=(bl,b2,b3)=(bl,b2,1),

じ

ロ
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As3:(c1,c2,az,cq)-- (c1,c2,ca,l). Now we look at combinations of
product of two known values product with unknown one, for example

e2b3c-x2s:0, then ct:O, since v2:b7:1, and so on until found all
unknowns.

CONCLUSIONS
1. If we change our attack from known plain attack to cipher attack

only, which means, changing in the sequence S (non-pure absolute

values), so we shall find a new technique to isolate the right
equations in order to solve the LES.

2. It is not hard to construct a LES of any other LFSR systems; of
course, we have to know all the necessary information (CF, the
number of combined LFSR's and their lengths and tapping).

3. Notice that m is high because of the non-linearity of the combining
function CF, and because of changing the non-linear variables to
new variables, so we think that it can keep m as number of non-
linear variables and solving the non-linear system by using methods
like Newton-Raphson.
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ABSTRACT
In this paper, we introduce and study stable (quasi)- continuous modules
as a proper generalization of (quasi)- continuous modules. Many results
and properties of stable (quasi-)continuous modules are obtained. An R-
module M is strongly (quasi-)continuous if and only if M is cl-fully
stable and M is stable (quasi-)continuous. We veriff some properties
well-known for continuous modules still hold under Stable continuous
modules. For instance) a directly finite stable continuous module is
cohophfian.

I-INTRODUCTION
Continuous modules and quasi-continuous modules were introduced
and studied by S. Mohamed and T. Bouhy [1], Jeremy l2l and Goel and
Jain [3] as a generalization of quasi-injective modules. They showed
that some properties known for quasi-injective modules still hold under
weaker assumption of continuity.
Throughout this paper all rings have an identity and modules are
unitary. Let R be a ring and M be a left R-module. A submodule,l/ of M
is essential if every non-zero submodule of M intersects 1/ nontrivially.
Also, a submodule N of M is closed in M, if it has no proper essential
extensions in M [4] .By Zort's lemma any submodule of M is contained
in a maximal essential extension (a closed submodule) in M. An R-
module M is continuous, if it satisfies the conditions (C1): Every
subomdule of M is essential in a direct summand of M; and (C2): Every
submodule of M which is isomorphic to a direct summand of M is a
direct summand of M. Also, an R-module M is quasi-continuous if it
satisfies the conditions (C1) and (C3): If two direct summands of Mhave
zero intersection, then their sum is a direct summand of M.
Recall that a submodule l/ of an R-module M is fully invariant if

f(I'{)cl/ for each feEndR(M) [5]). On the other hand, M. S. Abbas
introduced and studied stable submodules which are properly stronger
than that of fully invariant submodules [6]. A submodule N of an R-
module M is called stable it, "fN)=Ir{ for each R-homomorphism /'
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N---------->M. An R-module M is called fulty stable if each submodule of
M is stable.

2- Stable (quasi-) continuous modules.
We introduce and study the concept of stable (quasi-) continuous
modules as a proper generalization of (quasi-) continuous modules.
Firstly, we introduce the following conditions for an R-module M
(Sr): Every closed stable submodule of M is a direct summand.
(S2): Every submodule of M which is isomorphic to a stable direct
summand of M is a direct summand of M.
(S:): If two stable direct summands of M have zero intersection, their
sum is a direct summand of M.
Definition (2.1): An R-module M is called stable continuous (shortly,
S-continuous), if Msatisfies the conditions (S 1) and (S2).

Delinition Q.?: An R-module M is called stable quasi-continuous
(shortly, S-quasi-continuous), if Msatisfies the conditions (S r) and (Sl).
Examples and Remarks (2,3):
(1) Clearly, every continuous module is S-continuous, while the
converse is not true in general (see (8)).
(2) Also, every quasi-continuous module is S-quasi-continuous, while
the converse is not true in general (see (8)).
(3) If an rR-module Mhas (S2), then it satisfies the condition (S3).

ProolftLet A and B are stable direct summands of M such thar AOB :0.
Write M :A@C, where C is a submodule of M, and let z be the
projection of I @ C onto C. Since b : ( I - Db + xb e A@ xB for all b e B
, and rb : b -(l- x)b e A@ zrB, it follows that A@B = l@ zB. Since
AnB :0, then z 6: B-----+ C is a monomorphism. Hence, xB=B, it
follows that by (S2) condition of M; that zB is a direct summand of M.
Write M: rB@D, where D is a submodule of M. Since xBe Cc.M,by
modular law; we have C = fi@X. Thus M --A@ rB @(CM =A@B
@ (CM; and hence l@B is a direct summand ofM.
(4) As a consequence of (3), we have every S-continuous module is
S-quasi-continuous, while the converse is not true in general (see (6)).
(5) Recall that an R-module M is stable uniform if every stable
submodule ofM is essential [7]. It is clear that, every S-uniform (and
hence uniform) module is S-quasi-continuous.
(6) The Z-modtle Z is S-quasi-continuous (from (5)) stnce Z as Z-
module is uniform which is not continuous. In fact, Z2 does not satisff
the (S2) condition since 22=Zwhere Zis a stable direct summand of 22,
but 2 Z is not direct summand of Z7 (since 2 Z --:--+ 4.
(7) The converse of (5) is not true in general, for example Za as Z-
module is S-quasi-continuous which is not S-uniform since the
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submodule N: {0, i} is astablesubmoduleof Z6asZ-module,but
it is not essential of 26 (since N is a direct summand of 26).
(8) For any prime number p, the Z-module M :(ZlZr)@Q has M;
Zf Zr@0 and M2 : 0@ Q both uniform and thus M1 and M2 are

satisfies the (S1) condition and hence, by theorem(3.2.1), M satisfies the
(S1) condition. By [8, Example 4.2)Msatisfies the (C2) condition and so
M satisfres the (S2) condition. Therefore, M is S-(quasi-)continuous
Z-modula While M does not satisfies (C1), because K:Zo(l + Zp,l) is a
complement submodule which is not direct summand of M where Zo is
local ring (see [9, Example 10]. Hence M is not (quasi-)continuous
Z-module.
(9) Every S-extending module (recall that a module M is S-extending if

every stable submodule of M is essential in a direct summand of M [7])
satisfies the (S1) condition. In fact, assume that an R-module M is
S-extending and let N be a stable closed submodule of M. so there is a
direct summand D such that N is essential in D. But N is closed, hence
N:D. so M has (S1) condition.
(10) Let M be an ss-module (recall that an R-module is SS-module if
every direct summand of M is stable) , then M has (Cr)
(respectively,(C3)) if and only if Mhas (S2) (respectively,53).
(11) By [10, Lemma (2.1.6) ] , every fully invariant direct summand is
stable. So we have:
(a) An R-module M has (s2) if and only if every submodule of M which
is isomorphic to a fully invariant direct summand of M is a direct
summand.
(b) An R-module M has (s3) if and only if direct sum of any two fully
invariant direct summands of M with zero intersection is a direct
summand of M.
(12) Recall that an R-module is S-indecomposable if (0) and M the only
stable direct summand of M. one can easily prove that every
S-indecomposable module has the (S3) condition. Moreover, by (9)
every S-extending S-indecomposable module is s-quasi-continuous.
In following proposition we give a characterization of the condition
(Sz).

Proposition (2.4: An R-module M has (S2) if and only if for each
submodule N of M which is isomorphic to a stable direct summand of
M, each R-homomorphism "f:N-----+M can be extended to an
R-endomorphism of M.
Proof: (e) Let N be a submodule of Mwhich is isomorphic to a direct
summand D of M. Let i: N---+M be the inclusion homomorphism,
and g: N------>D be an isomorphism, r; M----->D the natural
projection of M onto D, i1: D1M inclusion map, then zro i1: D
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=′ for each″ cD,hence πol

By hypothesis, the R-homomorphism i1"g: N ------->M extends to an
R-endomorphism h: M-------+M,hence (h. i)(n): h(i{n) : h(n) = (i1"
g) (n) for each r inN, hence (r"g) = thoi),then 1g-t ovolloi); N-------+
N and (g-t "t7" h. i) (n) :( g-t o tr) o (ho.i)1n) = 19't " 1tr" i,1 " 

g) (n) : (g't
.dfu) : r for each r eN, hence (g-t o r o fi o i|:.1,1. Take
g-t oroh,then aoi =1,r' , thus Im(i) iia direct summand of M, therefore N
is a direct summand of M hence Mhas the (Sz) condition.
(=). Let N be a submodule of M which isomorphic to a stable direct
summand D of M and /' N--+ M be any R-homomorphism. By
hypothesis, Mhas the (S2) condition, and then N is a direct summand of
M. Hence it easily checks that f can be extended to an R-homomorphism
g: M-_+M.
Corollarv Q.5): An R-module M is S-continuous if and only if M has
the (S1) condition and for each submodule N of Mwhich is isomorphic
to a stable direct summand, of M, each R-homomorphism / N--+M
can be extended to an R-endomorphism of M.
In following results, we give a characterization of strongly (quasi-)
continuous by using conditions reducer than conditions in result ([10],
propositions (2.3.14),(2.3.15)). Following [10], recall the following
conditions for an R-module M:
(SC1) Every submodule of M is essential in a stable direct summand of
M
(SC) Every submodule of Mwhich is isomorphic to a direct summand
of M is a stable direct summands of M.
(SC3) If two direct summands of M have zero intersection, then their
sum is a stable direct summand of M.
An R-module M is called strongly continuous if it satisfies the
conditions (SC1) and (SC2). An R-module M is called strongly quasi-
continuous if it satisfies the conditions (SC1) and (SC3) [10].

0-一一→ N一 M
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Proposition (2.61: The following statements are equivalent for an
R-module M:
(l) M is strongly continuous;
(2) M satisfies the conditions (SC,) and (C2);
(3) M satisfies the conditions (SCr) and (S2).
Proof: (1) =(2). [10, proposition(2.3.6)].
(2) =(3). It is obvious.
(3) =(1). Let 1/ be a submodule of M which isomorphic to a direct
summand D of M (i.e. N=D).Since every module has the (SC1) is
SS-module [10, (Lemma (n.$)], then D is a stable. So, by (S2)
property of M, N is a direct summand of M. Again by SS-module
property of M, 1/ is a stable direct summand of M. Then, M has
(SCz). So M is strongly continuous.
Proposition (2.7): The following statements are equivalent for an
R-module M:
(l) M is quasi-strongly continuous;
(2) M satisfies the conditions (SC1) and (C3);
(3\ M satisfies the conditions (SC1) and (S3).
Proof: The proof essentially the same as that the proof of proposition
(2.6), so omitted. tr

Recall that an R-module M is cl-fully stable, if for each closed
submodule 1/ of M, aN)cN for each R-homomorphism a.. I{-----+M
[12]. clearly, every fully stable module is cl-fully stable and every
cl-fully stable is SS-module.
we obtain the next lemmas which are useful to get more examples of
cl-fully stable modules and establish a relationship between S-
(quasi)continuous modules and strongly (quasi-)continuous modules.
Lemmq (2.8): An R-module M is cl-fully stable if and only if every
submodul e of M is essential in a stable submodul e of M.
Proof :(>). Let N be a submodule of M. Since, by Zorn, s lemma, iy' is
essential in a closed submodul e of M (say) c. Thus, by hypothesis C is a
stable submodule of M.
(e). Let // be a closed submodule of M.By hypothesis, there exists a
stable submodule H of Msuch that 1/ is essential in H. But N is closed
in M, hence N :H and so N is a stable of M. Then, Mis cl-fully stable.
Lemma (2.9t: An R-modde M is uniform if and only if M is s-uniform
and M is cl-fully stable.
Proof :(>). Clearly, every uniform module is S-uniform and by lemma
(2.8), every uniform module is cl-fully stable.
(e). Let N be a submodule of M. since M is cl-fully stable (by lemma
(2.8)), N is essential in a stable submodule H of M. But, by
S-uniformity of M, rl is essential in M.Hence. i/ is essential in M. Thus
M is uniform.
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By using above lemmas, we give a sufficient and necessarily condition

for strongly (quasi-)continuous modules.

Prooosition 0.10l: An R-module M is strongly (quasi-)continuous if
and only if Mis cl-fully stable and Mis S-(quasi-)continuous.

As an application of Zom's lemma, each submodule N of an R-

module M has a relative complement. In particular every direct

summand of M has a relative complement. In fact, if N is a direct

summand of M, then in general there are various complements of N in
M. For example, consider the vector space V :f') over a field F. Let

S: {(",0)laeF}, s:{(0, f)lfer} andw={()', )) lleF},thenS'S
', W are subspaces of /. It is easy to check that S is a direct summand of
V and S,I4' are two different complements of S in Z.

We need to introduce the following concepts:

Definition Q.LD: An R-module M is called DUC-module if, every

direct summand of Mhas a unique complement.

Definition Q.1): An R-module M is called comstable if, every

submodule of M has a stable complement.

It is clear that uniform modules, cl-fully stable moduels and strongly

extending modules are some examples of comstable modules'

Moreover, every comstable module is DUC-module.

Motivate by Ming's ideas [13, theorems 1,2], we investigate a

characterization of S-(quasi-) continuous modules under some

conditions.
Proposition (2.13): Let M be a DUC-module. Then, the following

statements are equivalent:
(1) M is S-quasi-continuous R-module;
(2) For any stable complement submodule K of M, any relative

complement of K in M, any submodule N of M containing K@ C, every

R-homomorhism of N into M extends to an R-endomorphism of M.

Proof: (l\>(2). Let K be stable complement submodule of M, C is a

relative complement of Kin M. Then K@ C is essential inM(by Lemma

(1.1.8)). Let N be a submodule of M containing K@C. By the (S1)

condition of M, K is a direct summand of M' But M is DUC-module, so

K has a unique complement and hence by [6, theorem (4.8)], C is a
stable submodule of M. Again, by the (Sr) condition of M, C is a direct

summand of M. Since KnC =0, so by the (S:) of M, K@ C is a direct

summand of M Therefore, by [14, p.75], K@C =N: M. Then' (2) is

valid.
(2) = (1). Let K be a stable closed (complement) submodule of M. If C
is a relative complement of K in M, let E: K@C, t: E-------+K the

natural projection. The set S = (2, a) | E *L ''M, a: L-----+ K), clearly

S+ { and by Zom's lemma S has a maximal element (I, a/. Now' let
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a.: L______+K be the extension of x to L.If i: K_>M is the inclusion
map, then (i"a): L------->M and by hypothesis, ioa extends to an

R-endomorphism h: M----> M of M. Suppose that h(Att) e K. Since K is
a relative complement of C in M,then (h(ArI) +K )OC* 0.If 0*ce
(h(M) +K )aC, c :h(m) * k, meM and keK. Define F :{ueM I h(u) e
E), it is an easy to see that F is a submodule of M. Moreover, F properly
contains L,in fact, if xe L,then h(x) :a(x) e Kc{ hence xeF, on the
other hand, h(m) :c -keE, thus ze ^F, now if meL,then h(m): k *c, so
a(m): (i"a)(m) :h(m) :k *ceK, thus c : a(m) - keCOK which is
contradiction, hence meL. Define f : F---->Eby p(x) :h(x) for each x
eF, then (x"0: F-->K and (x"B)$) :x(B@) : tr(a(x)) :r(x(x)) :
n(x) for all x ez. Hence (n.f) is an extension of tr to F which
contradicts the maximally of z, thus h(M cK which implies that h(lt4)
:K. Now if keKn ker(h), then 0 :h(k) : nt(k): k, therefore KO ker(h)
:(0). Also, h(b -h(b)) :h(b) -h(h(b)): 0 for each beM,thus if beM,
b : h(b) +b -h(b) eK + ker(h). Hence, M: K@ker(h). Since C is a
relative complement of K, then h(c) :a(c) :tr(c) :0, this implies that C
cker(h), by maximalty of C, C : ker(h) and hence M :K@ C. Thus, M
satisfies the (S1) condition.

Let D and K are two stable direct summands of M with DftK :(0).By
zom's lemma, the set of submodules of M containing D and having
zero intersection with K has a maximal member Z which is a relative
complement of Kin M. We have, as above, M:K @ Z. Since DcV, D
is a direct summand of M, then V :D@ U which yields M :K@ V@ U.
Thus Mhas (S3). Therefore, Mis S-quasi-continuous.
Proposition (2.141: Let M be an DUC-module. Then, the following
statements are equivalent:
(l) M is S-continuous R-module;
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(2) For any isomorphic image K of a stable complement submodule of
M, any relative complement C of K in M, any submodule ly' containing
K@ C, any R-homomorhism of N into Mextends to an R-endomorphism
of M.
(3) Mis S-quasi-continuous such that for each submodule Nof Mwhich
is isomorphic to a stable direct summand of M, each R-homomorphism

f: N 
---+ 

M can be extended to an R-endomorphism of M
Proof. (l)=(2). Let K be a non-zero isomorphic image of a stable
complement submodule of M, C a relative complement of r( in M, N a
submodule of Mcontaining K@C. By S-continuity of M, K is a direct
summand of M and since Mis DUC-module, C is a stable submodule of
M, so C is a direct summand of M. Since K1C:Q), then K@C is a
direct summand ot M ( Mhas (S3)). But K@C is essential of Mwhich
implies that K@ C :M and so N :M. Thus, ( 1) implies (2).
(2)=(3). By proposition (2.13), we get M is S-quasi-continuous. Now,
let N be a submodule of M which is somorphic to a stable direct
summand of M. Let D be a relative complement of Nin M, and f: N

-)M 
be any R-homomorphism, g: D@N ------+ N the natural

projection, then /.g. D@N -----+N and by hypothesis,/"g extends to
an R-endomorphism & of M. Clearly, & is an extension of/and hence
(2) implies (3).
(3)=(l). By using Corollary (2.5). o
Remarks (2.15): The concepts of DUC-modules and S-continuous
modules are different. For example, the vector space V :14 ouer a
field F is S-continuous F-module which it is not DUC-module. On other
hand, Z as Z-modtie is DUC-module which it is not S-continuous.
Recall that an R-module M is directly finite if, M is not isomorphic to a
proper direct summand of itself [ 15]. Also, an ,R-module M is cohopfian
(or Mhas (MJ) property), if every monomorphism endomorphism of M
is an isomorphism [9].

It is well- known that directly finite continuous modules are
cohopfian [16, p.53]. In the next result, we generalize this result for
S-continuous modules.
Proposition (2.16): Every directly finite S-continuous module is
cohopfian.
Proof: Let Mbe directly finite S-continuous R-module and a: M--)
M be a monomorphism. Then, aM=M, but M is a stable direct
summand of M. So by S-continuity of M, we have aM is a direct
summand of M. Now, since M is directly finite, it follows that aM=M
and hence a is isomorphism. Therefore, Mis cohopfian.
Corollorv 0.17): A directly finite S-continuous module can not be
embedded in a proper submodule.
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proof: Let a: M--+N be a monomorphism.If NgM,then M--1N
:) M is a monomorphism, hence by Proposition (2.16), it is an

isomorphism which contradicts directly finite property of M.
Remark (2.18l-:
(1) The concepts of directly finite modules and S-continuous modules

are different concepts. For example, Z as Z-module is directly finite
which is not S-continuous. On other hand, consider any continuous (or
quasi-) injective module which does not having the cancellation
property [16].
(2) A directly finite S-continuous modules need not be continuous. For
example, as we have seen in (Examples and Remarks (2.3) (8)) the

Z-module M: (ZlZ)@Q (p aprime number) is S-continuous which it

is not continuous. Other direction, since Zf Zrand O are

indecomposable Z-modules, hence they are directly finite. Also, ZlZ,
and Q are quasi-injective Z-modules. Since, by [15, corollary (6.21)],
any direct sum of directly finite quasi-injective modules is directly
finite. So M : (ZlZ ) @ Q is directly finite Z-module.

It is well-known that if M is a continuous R-module and if S denotes the
endomorphism ring of M, and../ denotes the Jacobson radical of E then

the following valid: (l) J(S) : {aeSl ker a--+M};(2) SIJ(S)is a
regular ring [16, proposition (3.5)].

In the following proposition, we study the endomorphism ring
of S-continuous modules and show that the properties (1), (2) above still
for S-continuous modules under an additional condition.

It is known that, if Mbe an arbitrary module and A : {aeS I

ker a--1M),then A is a two sided ideal of S [16].

Prooosition (2.191: Let M be a comstable S-continuous R-module, then
,S/A is a regular ring and J(S) : L.
Proof: Let heS, and denotes ker(h) by K. By comstability of M,let L
be a stable complement of K in M. By the (S1) condition of M, we have

L is a direct summand of M. Since LnK :(0), then hp: L--> M is a
monomorphism. Hence hL=L, and the (S2) condition of Mimplies that
hL is a direct summand of M. Write M :hL@X, and let tt be the
projection of Monto hL.For any (. eL, (h-1rh) (() : (h-'h) (() :(..Let
d,:: h-|It, hence (ah)p: I L.It follows that (h-hah)L :0. Consequently, L
@ Kc ker(h- hah) c M. Since L@ K-2-+ M, then by Proposition
(1.1.2) ; ker(h- hah) -+M. Hence, h- hahe A, and thus h=hah
modulo A. Therefore, S/A is a regular ring. Now, let BeA.By
essentiality of ker(fl in M, and since ker(fl Oker(I- 0):0, we have that
ker(l- P) :0.Thus (1- p)M=M, and by the (S2) condition of M, (1-
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flMis a direct summand of M. However, ker(fl c(t- OM:Mand so
(l- flM--->M, by Il l,Proposition (1.t.2)]. Consequently, (l_p)M :
M, and hence (I- P) is unit in s. so it follow that peJ(s) and hence a
cJ(s). on other hand, s/A is a regular ring, thus we have J (slu :0
and so J(S)c A. Therefore, J(S):L.o
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ABSTRACT
In this paper we introduce the concept of Special quasi-injective modules and

Special PQ-injective modules which generalize the concept of Special injective
modules, quasi-injective modules and PQ-injective modules. It gives some of the

basic properties of these modules.

INTRODUCTION
Let R be a commutative ring with l, and M be a unitary left R-module.
M is said to be quasi-injective if for each R-homomorphism f: N--*M
(where N is a submodule of M) there exists an R-homomorphism
g:M--*M such that g(n):f(n) for all n in N. And an R-module M is

called special injective modules relative to N (or special N-injective)
(where N is an R-module) if for each R-monomorphism f: K tN
(where K is an R-module) and each R-homomorphism g: K---M there is

an R- homomorphism. h:N --*M such that h of (x)-g(x)e L(M) {where
L(M) is the prime radical of Mlfor each x in K .An R-module M is
called special injective if M is special injective relative to all R-
modules. In this work we introduce the concept of special quasi-
injective modules which is generalization of both quasi-injective
modules and special injective module. An R-module M is called special
quasi-injective module if for each R-homomorphism f: N -*M {where
N is a submodule of M) there exists an R-homomorphism g:M--+M
such that g(n)-f(n)e L(M),for all n in N .Also the concept of special PQ-
injective modules is introduced here as a generalization of both PQ-
injective module and special quasi-injective modules. Given two R-
module M and N. An R-module M is called special principally N-
injective module if for cyclic R-submodule A of N and ever R-
homomorphism
f:A---M. There exists an R-homomorphism g:M-+M such that g(a)-
(a)€L(M) ,for all a in A. An R-module M is called special principally
quasi-injective if M is special principally M-injective. Many
characterizations and properties on direct sum of special PQ-injective
modules are given. Finally new characterizations of semi-simple
Artinian rings in terms of special PQ-injective is introduced.
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Definition (1) : An R-module M is said ro be special quasi-injective, if
M is Special M-injective that is for each R-submodule N of M and each
R-homomorphism

f.N-+M, there exists an R-homomorphism g:M-->M such that
s@)-"f (*) eL(M ) for all x in N.

Examples and Remarks (2):-
a) Every quasi-injective R-module is Special quasi-injective.
b) It is clear that every special injective R-module is Special quasi-
injective, but the converse is not true in general, for exampleZ o: asz-
module is Special quasi-injective, but not Special injective since Z ,is
quasi-injective and by (a), then Z, is Special quasi-injective but z ris
not Special injective by tll.
c) Every semi-simple (simple) R-module is Special quasi-injective.
d) The following statements are equivalent for an R-module M:
1) M is special quasi-injective.
2) For each diagram with exact row (where N be a submodule of an R-
module M)

0-_+N --d )M
l'f {t s

M

There exists an R-homomorphism
(g " q)(x) -f (x)

g:M -+Msuch that

e L(M ) forallxinN. E
Proposition (3):- Direct summands of special quasi-injective R-modules
are special quasi-injective.

Proof: Let M be any special quasi-injective R-module and N be any
direct summand R- submodule of M. Thus there exists an R-submodule
Nr of M such that M:N@Nr. Let B be any R-submodule of N and
f ,B -+l/ be any R-homomorphism. Define g:B --> M -N @N, by
g(b)=(f (b),0)for all b in B. It is clear that g is an R-homomorphism
and since M is special quasi-injective, thus there exists an R-
homomorphism /l :M -+M such that h(x )-g(x )eL(M ) for all x in
B. Let nN be the natural projection R-homomorphism of M: l/(ENr
into N and iN be the inclusion map from N into M.put
hr=frr,r ohoitt:N +N . Thus ftr is an R-homomorphism and foreach
b in B.Then

彗

ヘヽ

94



Al- Mustansiriyah J. Sci. Vol.24,No5,2013

h,(b)-f (b)- tN oh "ir,r(b)-f (b)= trr,r oh "iN(b)-r*(ff (b),0))

= nTN (h. i (b) - nr @ @)) = tTr @ " i (b) - g (b)

=nTN(h(b)-g(b)) eZ(1[) [2].Therefore, N is special quasi-injective. EI

Recall that an R-module M is semi-simple, if each submodule B of M is
a direct summand of M (i.e. M =B @Kfor some submodule K of
M).A ring R is semi-simple, if it is a semi-simple R-module.Also an R-
module M is called Artinian, if for each descending sequence S r r Sz

f ...=Snl... of submodules of M, there exists k eZ*, such that

Sr:Sr*i for all i> 0. A ring R is Artinian, if it is Artinian as R-module.It
is well-known that, a ring R is semi-simple Artinian if and only if, R is
regular and Neotherian ring [3]. The following theorems give new
characterizations of semi-simple Artinian rings in term of special
injectivity.

Theorem (4): The following statements are equivalent for a

commutative ring R:
1) R is semi-simple Artinian ring.
2)Every R-module is special injective.
3) Every cyclic R-module is special injective.

Proof : (1) = (2) . Since every module over semi-simple Artinian ring R

is injective [4], then every R-module is special injective.
(2)= (3).It is obvious.

(3) = (1). Assume that every cyclic R-module is special injective. Let
M be any simple R-module. By our assumption, M is a special injective
R-module. Since J(M):0 by [5] and L(M) < J(M):0 then L(M):O. Thus

M is an injective R-module, [1] Therefore every simple R-module is

injective and this implies that R is a regular ring, by [5] . Therefore the
Jacobson radical of every cyclic R-module is zero [5] and since L(M) <
J(M):0 then L(M):0 and hence every cyclic R-module is injective.
Thus R is semi-simple Artinian ring [6].tr

As it has been mentioned (Examples and Remarks ((2), b), that every
special injective module is Special quasi-injective, the following
theorem shows that the converse is true under the condition that R is
semi-simple Artinian.

Theorem (5): The following statements are equivalent for a ring R
t) R is semi-simple Artinian ring.
2) The direct sum of any two special quasi-injective R-modules is
special quasi-inj ective.
3) Every special quasi-injective R-module is special injective.

・
一

・
一
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Proof: (1) = (2) . Assume that R is semi-simple Artinian ring. Thus

every R-module is special injective by Theorem (4) and this implies
that every R-module is special quasi-injective, by example and remark
((2), b).Therefore, the direct sum ofany two special quasi-injective R-
module is special quasi-injective.
(2)=(3). Let M be any a special quasi-injective R-module and

E:E(M) be the injective envelope of M [1]. It is enough to show that M
is a special direct summand of E. Consider diagram (l) with exact row.

g-------+i[ ---!---+6
IIM J

M
(Diagram (l))

Let i, betheinjectionR-homomorphismof Einto M @Eand i, be

the injection R-homomorphism of M intoM @E, thus diagram (l)
implies diagram (2).

0-------+M P >E " >M @E

4

M
flP i) lVa'

M@E
(Diagram (2))

By (2), M @ E is a special quasi-injective R-module. Thus by
proposition ((2), d). There exists an R-homomorphism

f :M @E -+M @E such that
gr ot,o B)(m)-(ir"I r)(m)eL(M @E), for all m in M. Put

g -p""f "it:E )M, wherep be the projection of M @E onto M
such that P "iz= I tt, it is clear that g is an R-homomorphism for all m
in M. We have (g " p)(m)-I 

^,(m)=(p 
of oito P)-(p "ir"I u)(m)

p((f "i," 0)@)-(i,.l r)(*)). Since

U' oit"B)(m)-(ir"Ir\(m)\el(M @E), for all m in M, thus

p((f oi,o B)@)-(ir.I ")(m))eL(M), 
for all m in M, [2] then for

G " 9)(*)-I r(m)eL(M) for all m in M. Return to diagram (l) we

have just shown there exists an R-homomorphism g: E-+M such that

G " 0)(m) - I r(m) e L(M ) for all m in M.

rMl,
●
／
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0-----+M P vg

l-I,l,r's
M

Hence [] implies that M is a special direct summand of E, therefore M
is a special injective R-module.Thus every special quasi-injective R-
module is special injective.
(3) = (1). Assume that every special quasi-injective R-module is

special injective. Since J(M):O for any semi-simple R-module M [5],
and since every semi-simple R-module is special quasi-injective by
example ((2),c). Thus by (3) every semi-simple R-module is special

injective. Since L(M) < J(M):0 then L(M):0, thus every semi-simple

R-module is injective, [1] since every simple R-module is semi-simple,

then every simple R-module is injective and this implies that R is

regular ring [5] . Let Mr be any countable direct sum of injective hulls
of simple R-modules. Since every simple R-module is injective, thus
Mr is a countable direct sum of simple R-modules. Therefore by [5], Mr
is semi-simple R-module. Since every semi-simple R-module is

injective, thus Mr is injective R-module. Hence every countable direct
sum of injective hulls of simple R-modules is injective and this implies
that R is a Neotherian ring [5], therefore R is regular and Neotherian
ring and this implies that R is a semi-simple Artinian ring, by t3l. tr

Recall that a ring R is fully stable if a(I )clfor each ideal I of R
and for each R-homomorphism a :I --> R l7l.
Here we are introduced a special fully stable ring.
Definition (6): Let R be a ring, R is called special fully stable ring if
a(I)eI +Z(R)for each ideal I of R and each R-homomorphism

r a:I -->R.

Example and Remark (7):
It is clear that every fully stable ring is special fully stable but the

converse may not be true in general. For Let
R - Zzlx ,y)l<x' ,!2,xy >(the polynomial ring in two indeterminate

x andy over Z rmodulo the ideal <x2,!2,x! ). R is special fully stable

ring but not fully stable.

Proof : The only ideals of R are (0),(t),(/ ),(t,y)and R, the zero

ideal(O)is not prime since x'e(0)but x *(0) (x)is not prime ideal

since(f)= Rf ={0,r} and y'e(x)but y e(ilsimilarly (y)is not
o
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prime ideal, and since (x,y)is maximal ideal and every maximal is

prime in commutative ring then(x,y)is prime and (x,y)is the only

prime ideat in R. ThusZ(R)=(r,r) Then l(R)=/(R)=(x,r).
Since R is fully J-stable by [8], then R is fully L-stable (i,e) R is special

fully stable ring. But R is not fully stable ring since

annao(annar(f\) - anna^((f ,F )) = (x ,y ) * (;) t7l. tr
Recatl that an R-module M is called principally N-injective if for

any cyclic R-submodule A of N, every R-homomorphism from A into

M can be extended to an R-homomorphism from N into M. An R-
module M is called principally quasi-injective (in short, PQ-injective) if
M is principally M-injective.

Definition (8): Let M and N be two R-modules. M is said to be special

principally N-injective (in short, special P-N-injective) if for any cyclic

R-submodule A of N and any R-homomorphism f :A------+M there

exists an R-homomorphismg:N ->M such that g(a)-f (a)eL(M),
for all a in A. an R-module M is called special PQ-injective, if M is

special principatly M-injective. A ring R is called special PQ-injective,
if R special PQ-injective R-module.

Examples and Remarks (9) :

1) It is clear that every special quasi-injective module (resp., PQ-

injective module) is special PQ-injective module.
2) The concept of special PQ-injective modules is a proper
generalization of both, special quasi-injective modules and PQ-injective
modules: as it has been shown in the following examples

i) Let R be the ring of all continuous function from the set of rational

numbers QtoZ2. R is a PQ-injective R-module [9], thus by remark (l)
R is a special PQ-injective R-module. Since R is a regular ring and not
self-injective, then L(R):O and this implies that R is not special quasi-

injective R-module. Since if not, that is R is special quasi-injective R-

module then (by remark ((2),d) for each diagram with exact row (where

I be any ideal ofR),
0-------+1 ---g-+Rt'

f {Ls
R

there exists an R-homomorphism g : R -+ R such that

@"a)(r)-"f (x)e L(M)-0, for all x in 1(i,e) (goa)(x)-f (x)
for all x in ^I, and this contradiction since R is not self-injective. Thus R

is not special quasi-injective R-module.

‐
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ii) Let R = Z zfx ,y7l<x2 ,!2,x! ) (the polynomial ring into

indeterminate x arrd y oyer Z2module the ideal <x2,!2,x! ), R is
fully L-stable but it is not fully stable ring by (Example (7) ).R is
special quasi-injective ring,let I be any ideal of R and let f :/ +R be
any R-homomorphism if 1: R, then put g:/ Now if I +R , since R is
fully L-stable ring, thus /(f)ef +Z(R). Since (0),(r),(/),(*,y)
and R are the only ideals of R and sinceZ(R ) = (i,y), thus 1cZ(R) for

all ideal I +R and this implies thatf (I)cL(R).Defineg:R -+Rby
g(r): ri for all r in R. It is clear that g is an R-homomorphism. Since

f e L (R) , thus g (r) eZ (R ) for all r in R, therefore

S?)-f (r)eL(R)for all r in I. Hence R is a special quasi-injective

ring and by remark (1) R is special PQ-injective ring. Since R is not
fully stable ring since annR(ann*(t)): annR((r,l)) =(x,y)*(i)
.Thus R is not self-injective ring [7] and hence R is not PQ-injective
[7].Therefore R is a special PQ-injective but it is not PQ-injective R-
module.
3) i) If M is special principally N-injective and K 2 M = K is special
principal ly N- inj ective.
ii) If M is special principally N-injective and K n N = M is special
principal ly K-inj ective.

In general there is the following implication
special injective = special quasi-injective = special PQ-injective

modules

fi
modules

1l

modules

fi

″

Injective modules - quasi-injective modules= PQ-injective modules

The following theorem gives many characterizations of special P-N-
injective modules.
Theorem (10): Let M and N be two R-modules and S - Endo(M)then
the following statements are equivalent:
1) M is special P-N-injective R-module.
2) For each m in M, n in N such that annR@) c ann R(m) , there exists

an R-homomorphism g:N -+M suchthat S(n)-meL(M).
3) For each m in M, z in N such that annR@)gannR(la), we have

S m c. Hom 
^(N 

,M )(n) + L(M ) .

4) For each R-homomorphism f ,A +M (where A be any R-
submodule of N) and each a in A, there exists an R-homomorphism
g:I't -->M suchthat S@)-f (a)eL(M).

‐
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Proof : (1) = (2) . Let M be a special P-N-injective R-module. Let

m eM , n eN such that ann*(n)c.ann^(*). Define f ,Rn -->M by

f (rn)=rmfor all r in R. It is clear that / is well-defined R-

homomorphism. Since M is special P-N-injective R-module, thus there

exists an R-homomorphism g:N -+M such that

g(x) -"f (x)eL(M ), fo, each x €R,.Therefore S@)-m eL(M).
(2)=(3). Let m eM , n €N such that annR(n)E ann*(m). By

hypothesis there exists an R-homomorphism g : N -+ M such that

S@)-m eL(M). Put S@)-m =(., where (. eL(M) - Leta eS,
thus a(m) = a(g (n) - {) =
a(S@D+a(-l)--do S@)+a(-l) since qo g eHom*(N ,M ) and

a(-l)eL(M). Thus a(m)eHom*(N,M)+ L(M) therefore

Sm eHom*(N,M )(n )+ L(M).
(3)=(a) Let f :A -->M be any R-homomorphism where A be any R-

submodule of N, and let aeA, put m -f (a), since m eM and

ann*(a) cann*(m), thus by hypothesis we have

S, € Hom*(N,M),+L(M).Let I 
^r:M ->M be the identiff map

since 1, eS, thus there exists an R-homomorphism

g eHom^(N ,M )such that I r(*) - g(a)+ (. where (. eL(M).
Thus S@)-m eL(M )and hence g(a)-f (")eL(M).
(4) = (1) . Let A:Ra be any cyclic R-submodule of M, and

f :A--->Mbe an R-homomorphism, thus by hypothesis there exists

an R-homomorphism g : N + M such that S@) -f (o) e L(M )fot
each x in A, x:ra for some r in R, we have that

s@)-f (*1- gQa)-f (ra) -r(s(a)-f (")) eL(M).
Therefore M is special P-N-injective R-module. E
As an immediate consequence of theorem (10) there is the following
corollary in which many characterizations of special PQ-injective
modules have been given.

Corollary (11): The following statements are equivalent for an R-

module M:
1) M is special PQ-injective.
2) For each n,m eM such that ann^(n)gannR(z), there exists an R-

homomorphism g:M ->M suchthat S(n)-meL(M).
3) For each n,meMsuch that annR(r)gann*(m), we have

Sm c.Sn+L(M )where S -Enda(M).
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4) For each R-homomorphism f :A -+M (where A be any R-

submodule of M) and each a in A, there exists an R-homomorphism

g : M --> M such that s@) -f (a) e L(M ) .E

Proposition (12): Let M and N be two R-modules. If M is special P-N-

injective then M is special P-A-injective for each R-submodule A of N.

Proof : Let A be an R-submodule of N, B be a cyclic R-submodule of A
and f : B ------>M be an R-homomorphism. Let is be the inclusion

R-homomorphism from B into A and ie be the inclusion R-
homomorphism from A into N. Since B is a cyclic R-submodule of N
and M is special P-N-injective thus there exists an R-homomorphism

h:N -->M such that (hoinoir)(b)-f (b)eL(M )for all b in B. Put

g:h"i^:A-->M, then for each b in B we have that

s (b) - f (b ) = (h o i o) (b) - f (b) = (h o i o) (i u (b)) - f (b)

-(hoiuoir(b)-f (b)e L(M ).Therefore M is special P-A-

injective for each R-submodule.E
As an immediate consequence of proposition (12) there is the

following corollary
Corollary (13): Let N be a submodule of an R-module M. If N is special

P-M-injective then N is special PQ-injective.E

Proposition (14): Direct summands of special P-N-injective R-module
are special P-N-injective.

Proof: Let M be any special P-N-injective R-module and A be any

direct summand R-submodule of M. Thus there exists an R-submodule
Ar of M such that M:A @ Ar.
Let B be any cyclic R-submodule of N and f :B -->Abe any R-
homomorphism. Define g:B -+M =A@Ar by g(b)-(f (b),0)for
each b in B. It is clear that g is an R-homomorphism and since M is
special P-N-injective R-module, thus there exists an R-homomorphism

h:N -->M such that h(b)- g(b) eL(M ) for all b in B. Let ne be the

natural projection R-homomorphism of M:A @Ar into A. Put

ht=fru"h:N -+A. Thus ftr is an R-homomorphism and for each b in

B. Then
h,(b)- g(b):(nn "h)(b)- nu((f (D),0) - lrA(h(b)- ttn@@)

= ftA(h(b)- g(b)) eL(A).17) Therefore A is special P-N-injective R-

module. E

●
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By proposition (14) and corollary (11) we have the following corollary
corollary (15): Any direct summand of special pe-injective R-module
is also special PQ-injective. E

Theorem (16): Let M =$U,. If lvt is a special p-Mi-injective R-
, =l

modules for each ij:|,...,n, then M is special pe-injective.

Proof : Let N:Rm be a cyclic R-submodule of an R-module M, then we
can write m:(m1,m2,...,ffin) where m, eM,( i :1,...,n). Let
f ,N -->M be any R-homomorphism and put f , =r., o-f , for each

(ij:|,...,tr) wheref be the restriction of -f to Rmi and r,be the

projection of M onto I\4 Then f,,:Rm, -->M,. Since for each

ij:\,...,n, I\4i is a special P-Mi-injective. Then there exists an R_
homomorphism gi1 :M )M, such that g,,(x)-f ,,(x)e L(M,) for

each x eRm,. Put f =ffo, o g,, oa, where a, is the injection R-
i=t t=l

homomorphism from Ivt into M and lri is the projection R-
homomorphism from M onto M;, then g e End *(M) . Therefore,

s@) -f (*) = (ifo, o B,j o r,)(m) -
i=t t=l

fu,@,)=(lfo, o s,j o r,)(ml-fg,(f ,(^,))
′=lプ =1

=(ZZo, o B,j ofr,)(m)-)tf 
",
。ぅ)に (″′)]

j=1ノ
=l

= (ZZo, o g,j o E,)(m) - If (I di o E,)(f , " r,(m))l

f=1 ノ=l

j=1  ′=1
'=1ノ
=1

=ΣΣ%Ogヴ 。4(″ )一ΣΣ←4に %4)。 4)(″ )
f=1ノ =1

i=l j--l

f=1ノ =1

=ΣΣ%。 gゥ 04(″ )一ΣΣ(名 。ノし。4)(″ )
′=1ノ =1                  ′=!プ =l

=ΣΣ%(gヶ (4(″ )))一為(4(″ )))
f=1ノ =1

=力力%むゥ∽J)協砕,D=文力%り
'=lプ
=l

where oj = g,j(*,)-f u(m,)eL(M 'for each ij:\,...,n.
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R―homomorphism, thus by [2].since dj:Mi+Mis an

a,(a,)eL(M), for each i:|,...,n, hence LZ.a,(a,)eL(M).
i=lj=l r J'

Therefore, g(m)-f (m)eL(M)and this implies that

g(x) --f (*) eL(M), for eachx in Rm. Hence l,[ - 6*, is a special

PQ-injective R-module. fI

By Theorem (16) and Corollary (15) we have the following corollary

Corollary (17):_For each R-module M and n eZ *, then M is a special

PQ-injective if and only if, M 'is a special PQ-injective R-module. E

The direct sum of any two special PQ-injective modules need not be

special PQ-injective module. However the following proposition we
give a condition on which direct sum of any two special PQ-injective
R-module is special PQ-injective.

Proposition (18): The following statements are equivalent for a ring R.
1) Direct sum of any two special PQ-injective R-module is special PQ-
injective.
2)Every cyclic special PQ-injective R-module is special injective.

Proof: (1) = (2) . Let M be any special PQ-injective R-module, let

E:E(M) be the injective envelope of M, a:M -+Ebe any R-
monomorphism i,be the injection R-homomorphism of E into M @ E
and iz be the injection R-homomorphism of M into M @ E , thus we
have the following diagram with exact row :

0_____>M __+F __, +M @E

l-rt ut'
M ...t- g

fl
PV di

M@E
By hypothesis M @ E is a special P-Q-injective R-module and thus
by corollary (11) we have that for each m in M, there exists an R-
homomorphism g:M@E-+MOEsuch that

(g"i,"a)(m)-(ir"Iu)(m) eL(M@E). Put

f = p o g oir:E -+ M wherep is the projection R-homomorphism of
such    that    ′ o′2=fν・
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(g oJ10α)(″ )― (J2° /ν )(″ )∈ Z(』ビ①E), thus
p(s "ir" a)(m)-(ir)(m)) eL(M)121., therefore each R-
monomorphism d; M -+ E and for each m in M, there exists an R-
homomorphism f :E ->M suchthat (f "o)(m)-meL(M)andthis
implies that a is special split R-homomorphism[1], thus M is special
injective R-module[ I ].
(2)= (1). Let Mr and Mz be any two cyclic special PQ-injective R-
modules. By hypothesis Mr and Mz &re special injective R-modules,
thus Mr@Mz is special injective by corollary I I ].and hence M | @ M z

is special PQ-injective R-module. E

The following example shows that the direct sum of any two
special PQ-injective dose not need to be special PQ-injective module.
Example (19): Let M,=Qas Z-module, Mr--Zo as Z-module.

Since Mr is an injective and Mz is a quasi-injective, thus Mrand Mz
special PQ-injective

Z-modules.LetM:M,@Mr=Q@20,, then M is not special pe-
injective Z-module. Since suppose M is special pe-injective z-
module then by proposition (18), every cyclic special pe-injective is
special injective, then M , = Z pis special injective Z-module

and this contradiction with example [1].Therefore, M =e @ Z ois not
special principle quasi-injective Z-module. E

corollary Q0): if direct sum of any two special pe-injective R-
modules is special PQ-injective, then R is a regular ring.

Proof: Let M be any simple R-module. Since M is a special pe-
injective
R-module, thus by proposition (18) M is special injective R-module.
Since L(M):O, thus M is injective R-module, since every injective
module is P-injective, then M is P-injective R-module. Hence
every simple R-module is P-injective and this implies that R is a
regular ring [10]. tr

corollary Ql): If direct sum of any rwo special pe-injective R-
modules is special PQ-injective, then every cyclic special pe-
injective R-module (and hence simple R-module) is injective R-
module.
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Proof: Let M be any cyclic special PQ-injective. By proposition (18),
then M is special injective R-module. Since R is a regular ring by
corollary (20) thus J(M):0 and since L(M)'-J(M):0. Then L(M):0
and this implies that M is injective R-module. [1].tr

By corollary (20) and corollary (21) we have the following corollary:
Corollary Q2): If direct sum of any two special PQ-injective R-
modules special PQ-injective, then the following statements are

equivalent:
1. R is a self-injective ring.
2. R is a self P-injective ring.
3. R is a special PQ-injective ring.
4. If R is principal, R is a self special injective ring. [1
Faith and Utumi in [11] were proved that a ring R is a semi-simple

Artinian if and only if, every R-module is quasi-injective.
The following proposition gives a new characterization of semi-

simple Artinian ring in terms of special PQ-injective R-modules
which is a generalization of Faith's and Utumi's reslts.

Proposition (23): The following statements are equivalent for a ring
R.

1) R is a semi-simple Artinian ring.
2) Every R-module is special PQ-injective.
3) Every cyclic R-module is special PQ-injective and direct sum

of any two special PQ-injective R-modules is special PQ-
injective.

Proof: (1) = (2) . And ( 2) = (3) . Are obvious.

(3) = (1). Let M be any cyclic R-module. By (3) M is special PQ-

injective R- module and by corollary QI), then M is injective R-
module. Hence every cyclic R- module is injective therefore R is a
semi-simple Artinian ring, bV [6].

The following corollary is immediately from proposition (23).

CorollaryQ\:- (Faith's and Utumi's results) t12l
A ring R is a semi- simple Artinian if and only if every R- module is
quasi- injective.
Proof:- Let R is semi-simple Artinian ring, then by proposition (23)
every cyclic R-module is special PQ-injective and direct sum of any
two special PQ-injective R modules is special PQ-injective, then by
corollary (21), M is injective R-module, thus M is quasi-injective.

"
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CorollaryQ5): - The following statements are equivalent for a ring
R:-
1) R is a semi- simple Aninian ring.
2) An R-module M is P- injective if, and only if, M is special PQ-
injective .

Proof: (1) = (2) .It is obvious by proposition (23).

(2)= (l). Let M be any simple R- module. Thus M is a special PQ-

injective and by hypothesis M is P-injective. Hence every simple R-
module is P-injective and this implies that R is a regular ring [10].
Hence every R-module is P- injective [10] and by hypothesis we are

every R- module is special PQ- injective. Therefore R is a semi-
simple Artinian ring, by proposition (23). tr

B. L. Osofsky has noted that a ring R is a semi- simple Artinian il
and only if, for each R- module M. if Nr and Nz are injective R- sub

modules of M, then Nr n Nz is also injective R- module [3]in the
following proposition we give a new characterization of semi- simple

Artinian rings which is a generalization of Osofsky's result in [13].

Proposition (26):-The following statements are equivalent for a ring
R:-
1) R is a semi- simple Artinian ring.
2) For each R- module M, if Nr and Nz are special PQ- injective R-
submodules of M, then Nr n Nz is special PQ- injective.
3) For each R- module M, if Nr and Nz are special quasi- injective R-
sub modules of M, then Nr n Nz is a special PQ- injective R-
module.
4) For each R-module M, if Nr and Nz are quasi- injective R-
submodules of M, then Nr n Nz is a special PQ- injective R- module.
5) For each R- module M, if Nl and Nz are injective R- sub modules
of M, then Nr n Nz is a special PQ- injective R- module.

Proof: (l) = (2)It follows from Proposition (23)

(2) = (3), (3) = (4) and (4) = (5) are obvious.
(5)+(1)Let M be any R- module and E =E(M)is the injective

envelope of M, let Q =E @E , K ={(*,*).Q I x eM }K is a
submodule of a and let 0 =g I K . Also put
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νl=(ッ +た C2/ノ ∈E① (0))and ν2=レ +た ∈2/ノ C(0)① E)・ It

is clear that 2=ν l+ν 2・Deine%:E→νl by%o)=し ,0)+K,
for allッ ∈E and α″E→ν2by%o)=(0,ノ )十κ,fOr allノ∈E.Since

(E① (0))∩κ=(0)and((0)① E)∩κ=(0),thus we have αl and α2

are R― isomorphismso Since E is an ittect市 eR‐module therefore■4

iS ittect市 eR― submodule of 2.For J=1,2,see[13]and thus by(5),

we have MI∩ M2iS a Special PQ― ittectiVe R‐ module.Deflne byズ
“
)

=(″ ,0)+κ , for   all me M. Since

M,)Mr={y +k e0 ly eM @(0)},thusitiseasytoprovethatf is

an R-isomorphism. Thus Mis a special

PQ-injective R- module, by remark. Hence every R- module is

special PQ-injective and this implies that R is a semi-simple Artinian
ring, by proposition (23). tr
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i,a)l'ill
l:JlJijJl i-LU ,-:-ll +t-n ll drt-i- g.-)s q-calculus i'otr^ 6rcl*r -r '''- ill ba i

ii+J ,,$i c,l-,,_l t+L i-i3 '-llJ ( q-Meyer-Kdnig and Zeller Durrmeyer operators)
c,l-i-1. c.l:s o+lr, q-Meyer-K6nig and Zeller operators tlil dr +r+ t-e'_Jl9*9t,

.L:- irr.3. qt.
ABSTRACT

In this paper, the convex approximation properties of a general family of q-

Meyer-Kdnig and Zeller Durrmeyer operators has been studied based on q-calculus

concepts .Thus operators are well-known positive linear operators. The aim of this

work is to convert them into a new type of convex positive q-Meyer-Kdnig and

Zeller operators.

l-Introduction
Many works on q-calculus are available in literature of different

branches of mathematics and physics. Recent studies show that the

theory of q-calculus plays an important role on analyic number theory

and theoretical physics. For example, various applications of this theory

have appeared in the study of hypergeometric series [5], in the

approximation theory [6,15,17] while other important applications have

been related with the quantum theory [10,11,13].
We recall some notations and concepts of q-calculus.

results can be found in [8] and [10]. In what follows, q is a

satisfying0<q<1.
The classical Meyer-Konig and Zeller (I\'ffZ) operators

c[0,1]:

All of the
real number

r defined on

"

were introduced in 1960[10].

囃 →
増 r+f司

真 J"〉
『 月

“

ザ 知 仏

/χ ∈[0,1)

/χ =1

Abel et al. [1] present the Meyer-Konig-Zeller Durrmeyer operators as:

0≦ χく1

Also, H.Wang [18], O. Dogru and V. Gupta l7l, A. Altin, O. Dogru

and M.A. Ozarslan [4] and T. Trif [17] studied the q-Meyer-Konig-

Zeller operators.
Before introducing the operators, we mention some definitions that

concern us in this search that based on q-integers.

For each non-negative integer k,the q-integer [&] and the q-factorial

[k]! respectively defined by:
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脚={帥「悧  居}
(1.1)

For the integer″ ,た satistting″ ≧た≧0,the 9‐ binomial coefflcients
deflned by:

(1)=満
We use the following notations:

[た
■-1]=9[た]+1  , I万

¬:[:I可
=χ ,   [′

]=[た]+91[′
―た] ,

[た
+2]=92『4+9+1

27-1

(α■b);=Π (α +9∫ b)=(α ‐卜b)(α ■gb)¨ .(α +9"~lb)
S=0

,:-1                      ∞

and(r,9)0=1,(′ ,9)"=Π。一gSr), (r,9)∞ =Π (卜 9Sr)
S=0                                5=0

Also       it       can       be       seen       that       :

(α ,7)″ ==7::|::,I   Suchthat(α 9",9)∞ ≠0

For″,″ cN,the 9-Beta function is deflned as:
l

為(〃,4)=∫ r"J(卜 9′ ):J4′
0

and

B-(m.n\ _[m-l)tln-t)lY' fm+n-l)l
It can easily cheek that:

firr-a',) 2f :-r) ,-=r (tz) .i
rn2009, Sharma [16] introduce the q-Meyer-Konig-Zeller Durrmeyer

operator as follows:

M,.o(f;x)=t^,.n,o!)lu,.u.r$)f(qt)d/, 0<x<l and 0 <q<t (1.3)
t=0 O

(n+ r-l\ n-l
where m,,*,,(x)=p,_,(x)1. ; 

'y , pn_r(r)=ll(l-q'x) (1.4)

and b,.0.,(r)=mtkg-qt)in (1.5)

Forthe interval U c R, the continuous function p:lJ + (0, co ) is
called weight. we call weighted space Lo,o, the set which represents the
space of all functions f : u J R, for which there exist M> 0, such that
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χ∈U.This space can be endowed with the

If the set is convex, closed, bounded, and m-dimensional, it is called

an m-dimensional conyex body ,let K* denote the set of all convex

bodies in R-. For U€K* , by Lipi@), ), > 0, we denote the set of all

functions on U satisfying the weighted Lipschitz condition'.

鵬…努
The function / : U + R , Ue K', is convex if :

ノ(αχ十(1-αン)≦ αノ00+(1-α)ノ0) Yx,yeU and 0<ct<l
The following Lemma on convex extension of Lipschitz functions:

Lemmu 1.1 ll2):Let UeK* and f e Lipl(U). Then, f can be extended to

a function (i.e.7(x) : -f (*),VxeU ) which convex on R', and

satisfies the Lipschitz condition on R'with the constant Jl .

We note that it was shown in [12] that can be defined as follows:

7 @\: inf { yeR: (x, y)eCO{(r, {r)). R* x R : x eR*} }

where g(x)::f (P(x))+ lx -P(x)l , P(r)":: at1miny.u ly - * l,x e R*,
and CO(A) denotes the convex hull of A.

Now we smooth - by considering its first steklov mean:

え(χ)=ε・1/ノ /iχ +4)訪 1,
‐ε/2

for sufficiently small e >0.

As usual, throughout the paper we use the test functions e;(x):x' fot i
:0rlr2'

In the present paper we first introduce a new sequence of convex

positive linear operators and then investigate their approximation
properties. Mainly, we obtain a Korovkin-type approximation theorem

and compute the rates of convergence of these operators by means of
modulus of continuity.
2-Auxiliary Lemmas
Lemma 2.1 :|6)Forthe integer n, ksatisfyingn>k> 0,q'0 and for
g,(t) : t',
s : 0, lr2, .. .,wo have:

(1.6)

<tl*-vl

xrtreU
(1.7)

"

〉̈0点の物
S

"

(2.2)
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二′″″α22.・ [9]For r=0,1,2,… .,4>″ ,andた ≧0,we have:

4_1(χ):](η
l:ル

~1)面

高t=耳F=!]1「{112
(2.3)

where[′ -1]ζ =[″ -1][″ -2]_.[′ ―r]

Zι″′″α23「 [9]
For r≧ O and n>r,the identity:

l <_1

[′十た+r]~9′
+l[″
+た -1]' (2.4)

holds.

ZaF″″α2イ′[3]Forえ deined on(1.7)and∀χ∈U:
1-if′υ=ノ then え(χ)=1
2-ifズリ=χ then 勇(χ)=χ
3-rブリ可

2 thenえ
(χ)=χ

2

3‐The Main Result
Now,we construct a new type of 9-NIleyer― Konig―Zeller DulHileyer
operators which are convex linear positive operators as foHows:

"    1 
夕(r)え (9r)′ 9′,    0≦χ<l and O<9<1   (3.1)2メス→理性が→卜̂

)and ttare g市en in(1.4),(1.5)and(1.7)where 4,,々
,9(χ), ら,た ,9(′ |

respectively.

動
`ο
rem J.I「

For all χ∈[0,1],′ ∈N and 9∈ (0,1),We have:
1‐」′″,9(θO;χ)=1

(3.2)

却―需 "″げ
≦れい糾糟

(3.3)

3-

2ぉ ホ ノ +Ψ
リ ン ソ ¶ 器 宰

潤 〃

(3.4)

′″οグ
1-From Lerruna 2.4(1),we getぇ

(χ)=%=1 .
TherefOre by using(1.2)and Zθ ″″α2.1(when s=o),we haVe:

ヽ
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（
じ

ムィ(θO;χ)=2〃4れ,(χ )ib″ム9(のク=1
た=0            0

2-鷺
翼盤写i島統'非澪恩

1

ル49(■ ;χ)=Σ″4仁9(χ)∫ aら49(′ )グ 4′
た=0            0

僻Dl歎1町w鵡鯰アグ
=魯 41-1(χ )(411・

)χ

た
(7:有吉:][;1:+

=7月|_1(χ)'E(″
HIた~1)                 χl

記pttrず]尚ノ
by ttθ

““
α2.3(when r=1),and whereた ≠′…1,we get:

≦9月に1(χ),](′
1:た

~1)7〒

′曇)=百χ力+gι _1(χ)13(″ 1:た
~1).2[た

+′ _1]χ
カ

ヽ

―

―

―

ノ

脅
　
た

η
／
１
‐
‐
―
ヽ

∞Σ

胸

χ鳥９＜
一

χａ
，

”ν
92

χ
々

１

一

一

＋

一
η

同

Ｔ

憂

一脇

▼

抑ゴず]凸輌→魯げう満 ノ
カ≦χP"_1(χ)基

 (411~l) 
χた+ΨΣ:(″tF~l)詰9

and Zθ

“
″α2.2(when″ =1),We get:By using(1.2)            

レ″,9(θ l;χ )≦χ+皇
-9″
4χ
)

′

         7[″ -1]
J

(3.5)

伸 =ら0ゴずう船 ノAlso ル

frorn deflnitions of(I)and[た]!,we have:

れゆ=寃0魯囲 Ψ 船 ノー4+1]
from prope■y[″]=レ ]十グ[4-」i],We get:

スれから0を昭]Ψ需署ノ
≧」t_1(χ)'E(η

llた~1)(冊
)χ
″+l

=P_1(χ)'E(″
Hlた~1)(〓―

i7=百;百三菱i)χ
力+1

‐

H3
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≧れ0ゴ判(需端―嵩プ
=為0ゴずつ(識fJく嵩凛10言げン
=れ0ゴ判(男常#プJ―嵩χ
=れ0ゴ判件〆為ノJ―嵩χ
=鍋0ゴずつ件  プJ―嵩χ
=珈→言げケ七0言げつ⊆¥鶏型押―嵩χ
=χ _√24メ→葛げ]詰ギ+√し凛102げ]面性]ノー嵩χ
=卜出ザ0ずれ08げ]ノー嵩χ
=翼―出―嵩ピ知ザ
えん脚―需 >切¬ザ

Then from(3.5)and(3.6),we get(3.3).

3-To obtain(3.4),sinCe if/=X2thenえ
(χ)=β2=χ

2and,We get: 

ぇ(グ)=(7′)2∞          1

ム̀
(θ
2;χ)=西“ヽ仁9。)lb″∴9(r)。′)2′ 9′

Bylemma 2.1,(where s=2),we get:

嬬→越鍋0『ずレ〆  )
=92】E≧_l(χ)(″

lた

~1)χ
l(17T:卜

:#撃ti「11争:」:デ[7T)

=921[:ォ ;―l(χ)(′
1:た

~1)χ
l(17再

I卜:言:[:;キ三万
)

by Zθ

“
″α2.3 and[′許2]=92[珂 +9+1,We have:

嬬
"28鍋
0『ずつ攻   )

ヽ

Therefore
(3.6)

上

朗

ｇ

一

一

＋

一
″蜘一冊

″
覇
＋

一
■

↑
一―

χ

ヽ
１
‥
‐
ｌ
ノ

．
一‐
一

た

η
／
１
１
１
ヽ

χ年
∞Σ

日

⊥
〆
〓

l14



ヽ
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_[n+k-t]ln+k-2)ln+k-3lt [k)'

=」L,1月11(χ)(ηず

~l)(望
生壁旦liデ
{:;Lil11:労

`与

il主

ヨ生二1)χ々

=iフ「2]ι-1(χ)(″
11た ~1)(2i型

;li号1:1卜1lf;:1,争

二」[)χた

=:祐0ゴず](請誨プ +Ψ鍋0才ず](而牌プ +

Ψ鍋0「ず]怖端両プ
Since:

『ず・) 汁靡 (  )

Vol.24,No5,2013

6.8)

，
′
●
Ｄ

"

″

[た ][た -1]|[′ -1]! [た +′ -1][た +η -2]

whereた=た+l then:

(″
ち

た~l)(

再 )=111:lil::::;」
旦=:lli;[:il(9[た]+1)

and

た]![′ -1]

[ず]酬鵠 浄躙 詔 鵠 =

[η +た -2]!

[た
-1]![′ -1]![″ +た -2]

whereた=力+l then:

Ftη
(詔品 、中岬〈

′ずう嵩  0
and since ln-llL:ln- llln-2). . .ln-r) then

[た +′ -1][″ +た -2] [″ +た -1]2

(3.10)

By substituting 3.8,3.9 and 3.10 in 3.7,we get:

物 ≦Ψ言紆 ……愕 言『ずう嵩
ノ

+(9+1)オ )_l(χ),3(4ち
た~l)F「
=:IIFχ

た

By Lerrllna 2.2,we get:

=

ぐ
υ
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卸
　
　
　
　
＾集
　
州

”Ｌ
　
　
　
　
↓
　

＜

94   [″ _1][“ -2]

Therefore

ル
"0メ
→≦χ
2+::(≒

デ讐|二
)+【
≧
:メ+卜≡千

12χ +上
チ
手皇三
fF≒+|:112

=れ(属「X:+7>ソ千器宰
=ノ +χ
l~9月χ〆2+29+与 +ザ≒岩耀絆

=ノ +号1≒若2χ+ザ≒岩耀絆
Theorem 3.2: The sequence M,.r,,(f) converges to/on Ce[0,1] for each

f eCrl0,1) iff q, -+l as n-->@.

proof: By the Korovkin Theorem, M,,0.(f ,x)converges to/ uniformly

on [0,1] as n -+"o for f eCol},l) iff M,o^(r',x)-+-r' for i:1,2 uniformly

on [0,1] as n-+co.
Moreover,6Q,-+1, then[nlr.-o, therefore by Theorem 3.1, we get:

M,.r"(t' ,x) --> x' for i=0,1,2

Hence, M,.0.(f) converges to/on uniformly Cr[0,1].

Conversely,Let M,.r.(_f) converges to/uniformly on Cr[0,1] and q,

does not tend to 1 as r r"o: then there exist a sequence {q^r\ of {q,\
such that: Q,r, ) Qo @o +l) .

for η≠1,2

s.t. qi, *l

ヽ

asft-+o ,

Take fi:fi1,atndQ:Qrkin M,.n(e,x), we have:
赤=号→0可∂

0- qi'x)(t- q,)
M,.r(e,x)< v13 --:-----3:' 7y

Q,,
s.t.q,, * 0

This is contradiction.Therefore:9″
→ l as η―→∞.

Theorem 3.3: Let(q^)"be a sequence satisfuing sr-limq"- l,g, e(0,1),

116
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|ム′(/,χ)一え|≦ 2ち (́/,マ写)
for al1/∈ %[0,1],Where c,=`,′ ((9′―χ)2,χ )

′″οげ
By the linearity and monotonicity ofル″′,we get

l」

`",9(/,χ

)一ん|≦■4,`d/(′)一ん(χ)|,χ )

=Σ″″
“
(χ)∫ b″.ィ (`)|え (7r)一えωlグ9′ ,

た=0           0

論 成∽ ―え釧 司:Iタグ域 L― :ニチ。・
rlDJrl-0

≦
:ルタグ→―チ出L"  <げチ物ヽ」隆  直レ刊-0
=%メスα7M:ル』  正λ>0
=%,ρび,のは+争 )
Then

成o―えo卜 o+7)%メ スの  釧 7歳卜δ

恥Кb釧嬬ケ珀≦言鶴ρいけリリのク

=(乳 4(ι∝χ)+ナ 44((7′―χ)2,χ ))%´ (/,δ)          (3.11)
し        and

ムィ((9′―χ)2,χ)=ムィ(92′
2_2η

 ttχ
2,χ
)

=92北′(θ″χ)+χ
224(θ

"χ
)-242′ (■ ,χ)

By,rheOren1 3.1,we get:

嫌グザ→幼7+ΨW計ザ
観烈―辮 岬 摘

イ
… 辮

)

―%生″
…
(  ―

瘍
>

g

"
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= (9--1)2χ
2+ (                          )χ + (1+9)(1‐

-9″
~lχ

)(1‐
―

`7″

~2x

■つ 7+0蜘 デ 卑
Ψ ¶ 器 宰

拗 拗
需
拗 ¬ 初

FromtheconditionofthiliTl;:rillill:::|:=0

9″
~→ 1

Let a=′
"ィ
((グーχ)2,χ ),and a>O for all″ and δ=刊町 ,by Substituing m

Then

3.1l we get:

1颯
`(/,χ
)一勇|≦ (1+キ)%´ (/,δ )

||」

`",9(/,χ

)一勇‖′,ρ ≦2ωρ.ρ (/,δ)

Theorem 3.4:
For all f eColo,t) and [1r; = o ,we have:

lA,,r,r(7)l<4,.0.r(7,0=otn.o(f,Q')(t+q-") 0<k<n
proof:

I 7, (qt) I =l 7,@0- .I Ol t < at o.o(-f , Q^ Q - q t)) < co o.o(-f , e" Xl + Il--q');
q"

Thus I A,,r,, (f) I 3 A,.r.o (l .f D =l 4.r,n () | i,(qt) | d,t
0

I

< at r.o(.f . Q')ja,,*.0 11)1t *j1a r,
oq"

Since ,*'-!'= r*l -1n,, then:
qq'q'

rl-rl-
I A,.0.,(f)1 s aoo(f ,q')((t + 

7)l,b*"(t\d/ 
- 

' 
!u,.r.olt\ 

* a,t

By using Lemma 2.1:

I A,,o.n(.f) 1 
< at,o(.f , Q" xo + 4l ; ##1 = ao o(.f , Q' )(l * ; - # #*,
< atn,o(f ,Q' )G +q-")

4-Conclusions
From the results we conclude that, we can convert a positive linear

operators which satisffing Korovkin Theorem into convex operators by

using the convex function [ .

ヘ

ヽ
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In addition, this new operators zl,9″ (/)Satistting Korovkin

Theorem therefore converges to/onら [0,1]fOr eaCh/∈ ら[0,ll iff

9″ →l as 4→∞and lム
`(/,χ
)一え|≦ 2ち (́/,√ )。
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ABSTRACT

discuss the relationship between weighted earliness and weighted tardiness

problems (i.e., the problems l/c1<d1/)W Ei and l/C1Zd1/)\ T; ). These two

problems are NP-hard ,for special case we proved a good result that EDD rule with
Ei<Pt is optimal for l/c1<d1/)W;E1 problem .

Also we proved that 6fu and fk are equivalent for llCi<dil Ew

problem and llCf_d/Tft problem. The properties between weighted earliness and

weighted tardiness problems are given with some examples.

INTRODUCTION
Scheduling problems are one of the most studied problems in

combinatorial optimization. It can be defined as a decision making
process that is used on a regular basis in many manufacturing and

services industries. It deals with the allocation of resources to task over

given time periods and its goal is to minimize one or more objectives

[1]. In the scheduling literature, the objective is generally to minimize
functions such as makespan, tardiness, flow time, etc.

The fwo objectives I E1 and fT; that are important in practice as well
. The ll I ZTi problem has received an enormous amount of attention

in the literature [1] ,[2],[3] . It is well know that the problems 1/ / I Wi
Ei and ll I LWi Ti and their genetalizations 1/ / IW, E1 and 1/ i IWi
Ti are NP-hard problems. Since the earliness objectives are non regular

functions, hence there are a few studies to earliness problems.

The scheduling problem under consideration can be described as

follows: there are n jobs to be scheduled on a single machine, which
can handle one job at a time , each job i has positive integer processing

time Pq and positive integer due date d1 .Job i (i:1,2,..,n) becomes

available for processing at time zero . The main object of this paper to
prove the equivalence of the following problems :

llci1dilIWi Ei and llCi>dilIWi Ti , llCfdil E* and

llCi>dl rk where

ワ

ロ
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Ek: W1 Max{Ei} : Wi Max{d1-ci ,0 } and Tk : W; Max {Ti} : Wi

Max {C;-di ,0 }.
In this paper in section one, we proved that l/c1<d/ Ek is equivalent

to llc/d/rft and we proved that EDD schedule with Ei<Pi is optimal

for 1/c1<d/)W; Ei .In section two we show some properties of
weighted earliness and weighted tardiness problems with some
examples for each case is given. In section three we show the
conclusion and future work.

The following lemma shows that the total weighted earliness problem
is equivalent to the total weighted tardiness problem.
Lemma (1)

The following measures are equivalent:

t-iw,r,, 2- fw,r,.
i=l t=l

Proof
n

Let C: Z p ,, consider an instance of the total weighted tardiness (
j=l' t

f*,r,) problem where p',:p, and d',-c-d,+p, for j : 1,2,...,n.

Suppose S is an optimal schedule for this instance. Define a new
schedule S'as follows:
If a job j is the k-th job scheduled in S, then 7' is the (n-k+l)th job
scheduled in S'. Clearly, we have C', =c -C, * p, and hence

Wjl:W; max { C',-d',,0 ) :Wjmax {(C{j+Pj){C-d; +P1),0 }
:W1max{d:-Cj,0}:WjEj.

Therefore, the minimum total weighted earliness is the same as the
minimum total weighted tardiness. Hence, as we know that the total
weighted tardiness problem on one machine is NP-hard [5], then the
total weighted earliness must also NP-hard.

It should be noted that in our problem l/ci< dtriw,t, every job i

is either early or on time, but in the total weighted tardiness problem

I lcpd/fwtT,,everyjob j is either tardy or ontime.
j=l

Lemma (2)
Efu is equivalent1o rft in case of complexity
Proof:
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fetf Ol,consider an instance of the maximum weighted tardiness
j=l

Max{WqT1 }problem where p'j:pj and d'i=C-d,tP, for j : l,
2,...,n.Suppose S is an optimal schedule for this instance. Define a
new schedule S' as follows:
If a job j is the k-th job scheduled in S, then 7' is the (n-k+l)th job

scheduled in S'. Clearly, we have C'j = C - C, * P, and hence

rk: \ max{!} : Wj max{max{ i,-d'j,0 \ } : Wj max {max(C-
Cj+Pj){C-dj +Pj), 0 } :\ max { max{di-Cj, 0 }} :Ek'
Hence, as we know that the lllfk problem is solved by Lawler

algorithm , then the lllEfi problem is also solved by sequencing the

jobs in non -decreasing order of

equivalent of 1/ci≦ d/Σ Z二
′=1

problem and 1/q≧軋/Σ zttproblem.
プ=1

Theorem(1)
If the EDD schedule with■ ≦乃 fOr each job j is optimal for 1/ci

≧島/Σ %■ ,then the EDD schedule with di=C― 島+島 and with

E1(P; is optimal for I lcisdil

Proof

problem.

Let S be the optimal schedule for 1 /c1 >a.tr fw,r, problem obtained by
j=t? 

EDD rule for the due date d; and with Ti <P: for each j.
Now construct a schedule S'by EDD rule for di : C - d: + P.;, where

C: f P, and the completion time for each job i is given by C,: C -

C:+ P.;. From lemma (1) the measures fw,z, and f*,r, are
r=r j=l

equivalent.
For the optimal schedule S, we have T1<P:.Hence C:- d: < P.;, using

the definition of di and C; in the schedule S' we have for each job i

I : Cj-dj:(C+P:-C'I{C+P:-d,) :di- Ci:Ei < P.; andPi :Pj
Then Ei ( Pi.

‐

Wiヽ =Ц(■―p).

The fonowing result shows the

二Ｚ
″Σ

，〓‐

"
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Hence the EDD schedule with Ei S P; for each job i is optimal for I
tci<d1fwp,.

i=l

Now we will give some examples to show some of the important
properties for the weighted earliness and tardiness problem which is
given in the above results.

Example (1) consider the weighted earliness problem with four job.
we now show that the weighted earliness and weighted tardiness

equivalence with the following four -job, for which the processing times
and due dates are shown in the following table (1). The jobs are already
numbered in EDD order.

Table-l:data for I /ci<dil ZW,t,problem is arbitrary.

is clear,om tabL(1)that C=18 andthe minimum Σz二 =
′=l

29 and  Ei≦ Pi for each i,E″  =12.

Tabに -2:data br 1/cJ≧島/Σ %弓 proЫ em.

EDD 4 り
，

つ
４ l

Pi 4 ，
′ 5 6

Di 4 6 9 14

ヽ/: 1

ξ
リ 4 3

Ci 4 7 12 18

Ti 0 1 3 4
ヽri 1

ξ
フ 4 3

WiTi 0 ξ
′

つ
４ 12

It is clear from table( 2) thatminimum f.*,r,= 29 andl S pr for each j ,Tk =
J=l

12.
Example (2) shows that, if the EDD rule is optimar for I
lci<d/ Zw,r,problem, but there exists a job i with E; > pi, then there

ヽ

124

EDD 1 2
う
ｊ 4

Pi 6 く
′ 3 4

di 10 14 15 18

ヽri 3 4 く
フ

l

Ci 6 14 18

Ei 4 3 l 0

Wi Ei 12 12 5 0
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exおts an optimal schedule for 1/q≧ 島/Σ%弓 prObbm withΣに二=

Σ%弓 and With samejobj with■ >島 .

Tabb‐3:data br 1/q≦ di/Σζtt prObLm

It is clear from table(3)that EDD rule is optimal with E2=5>

P2=3,

C=15,Σに二=27.
′=1

Tablc-4:data for 1/ci≧ d/Σ Lヽ Ti prOblem.

4 3
つ
４ 1

Pi
つ
４ 6 3 4

di l 8 6

Wi 4 1 3 2

Ci
つ
４ 8

く
フ

Ti 1 0 5 4

Wi Ti 4 0 15 8

It is clear from table(4)that the schedule(4,3,2,1)is Optimal,but it

is not EDD schedule,and ΣⅥち■=Σ L`Ei=27 and T2=5>P2=3.

P/θ″ι/Jics

(1)If SWPT rule g市es maximum value for 1/ci≦ d/ΣWi Ei
problem,then LWPT ruに gives maximum value for 1/%≧ 島/
Σ`囁■ prOblem.

Example(3)Shows that SWPT rule is maximum for 1/ci≦ d/ΣwiEi

probbm and LWPT ruleis maximum for 1/q≧ 島/ΣWi■ prOblem.

able¨ :data for the example (3) fbr I lci<dilI Wt E ern

SWPT 1 2
０
フ 4 く

フ

Pi 2 3 4 5 6

di 6 5
つ
４ 20 22

ヽL 4 6 2 2 2

Ci 2
く
υ 9 14 20

Ei 4 0 3 6 2

Lヽ Ei 16 0 6 12 4

"

‐

EDD 1
つ
４ 3 4

Pi 4 3 6 2

di 8 12 13 16

Wi つ
４

０
つ 1 4

Ci 4 7 13 15

Ei 4 5 0 1

Wi Ei 8
く
υ 0 4

ロ
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Itヽ cにar iom tabL(5)that C=20,and Σz二 =38(maximum)
,=1

Tab le‐ 6:data for 1/ci≧ d/ΣW Cm

LWPT 5 4 3 2 l

Pi 6 5 4 3
つ
４

di 4 く
υ 12 18 16

Wi 2 2
つ
４ 6 4

Ci 6 15 18 20

Ti
つ
４ 6 3 0 4

Wi Ti 4 12 6 0 16
5

lt is clear from table (6) that LW,T,:38 (maximum).

The other feasible schedules for I /c.;>djl rwj ! are:

(5,4,3,1,2) with , Wj l: 38, (4,5,3,2,1) with IWj l:36,(4,5,3,1,2)
withlWjl:36.
It is clear from theorem(1) and properry(1) above, if LWPT rule gives
minimum value for I i ci<di i IWi $ problem, then SWPT rule gives
minimum value for 1 /c.;>djl IWj ! problem, see property (2).

(2) If for each job i di=d =fP,, then LWPT rule is optimal

for I lci<di/ IWi E1 proble-, uii the optimal schedule for li ci>d,il
,Wj I problem is obtained directly by setting dj : Pi for each
job j.

Example(4) Shows that if d,:a= iP, for each job i forF''
the I /ci<di :d/ IWi Ei problem and LWPT schedule is
optimal and if di : Pt for each job j, then SWPT schedule is

optimal for the I /c1>d1/twj I problem.

Itis clearthat C=15,and ΣZ二 =44.
′=l

'able-7: data for < Σ W

l 1
つ
４ 3 4 5

Pi
ξ
′ 4 3 2 l

di 15 15 15 15 15

Wi 2 つ
４ 2 6 4

Ci
く
υ 9 12 14

く
υ

Ei 10 6
，
Ｄ l 0

Lヽ Ei 20 12 6 6 0
5
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Table-8:data for /ci≧ di/Σ Lヽ Ti

J
く
υ 4

つ
Ｊ 2 1

Pi 1
つ
４ 3 4

ξ
υ

di 1 2 3 4 5

Wi 4 6 2 つ
４ 2

Ci 1 3 6 10
く
υ

Ti 0 1 3 6 10

Wi Ti 0 6 6
つ
４ 20
5

It is clear■om tabL(8)that島 =島,andΣ %写 =44.

(3) If for each jobi Pi=P, then LWPT is optimal for 1/ci≦ di/

ΣWi Ei probにm and SWPT is opumalfor 1/%≧ 島/Σ ヽ ■prOblem.

Example(5)Shows that if Pi=P for each job i for 1/ci≦ di/ΣWi Ei

problem and 島=P for 1/q≧島/Σ｀喝■problem.

Table-9:data for I /ci(di / E Wi El problem
I l

つ
４ 3

く
υ 4

Pi
つ
４

つ
４ 2 2 2

di 5 8 7 う
乙 10

Wi l

つ
４ 3 4 5

Ci 2 4 6 8 10

Ei 3 4 1
つ
４ 2

ヽri Ei 3 8 3 16 0

It is clear that C=10,and Σに二=30.
′=l

It is clear from table (10) thatf l{,7, :30.
j=l

(4) If in the optimal solution for 1 /c;<di/ EWi Ei problem, all the
jobs completed on times (i.e., C; : di the ideal solution) then the

optimal solution for I lc;-dil EWj I problem all the jobs completed on
times.
Example (6) Shows that all jobs completed on their due

dates(ideally solution) for I ic;<di i EWi Ei and I lcpdj / IWj I
problems.

●

ヽ
一

｀
able data for ≧di/ΣWi Ti problem

4
く
υ 3 2 1

Pi 2 2 2 2 2

di
つ
４ 0

く
υ 4 7

W 5 4 3
つ
４ l

Ci
つ
乙 4 6 8 10

Ti 0 4 1 4 3

Lヽ Ti 0 16 3 8 3

5

"
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Table-11:data for 1/ci≦ di/ΣWi Ei problem

l l 2 4 )
Pi 4 3 1 2 5

di 4 7 10

ヽ1 1 6 2 7

Ci 4 7 8 10

Ei 0 0 0 0 0

W, E' 0 0 0 0 0

Hence■おdearthtt C=15,and Σ7J・ E′ =o.

hble-12:data for 1/ci≧ di/ΣW
5 4 3

.,
l

Pi 5 2 l J -l

di 5 7

Wi 7 8
つ
４ 6 1

Ci 5 7

Ti 0 0 0 0 0

WiTi 0 0 0 0 0

Hence it is clear that

Conclusions and Future Work
The study shows the relationship between earliness and tardiness
problems. These two problems are NP-hard , then we proved a very
good result that the EDD rule with Ei < Pi is optimal for I /c;<di / rwi
E; problem.

An interesting future research topic would involve
experimentation discuss the relationship between

F2lCi<di/ZW E and F2lCi>di[W-T
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ABSTRACT
This paper introduces an algorithm for calculating all discrete point symmetries for
a given differential equation with a known nontrivial group of Lie point symmetries
by applying Hyden's method. We have obtained discrete symmetry isomorphic to
Zz, of BBM equation.

1- INTRODUCTION
Symmetries of all kinds ( point, contact, generalized, nonlocal) are
valuable in the study of differential equations. Many DE's of physical
importance have (Local) Lie groups of point symmetries (continuous
symmetries) that can be obtained fairly easily by linearizing the
symmetry condition about the identity transformation to derive the Lie
algebra of point symmetry generators. Each generator can be
exponentied to yield a one-parameter (Local) Lie group of symmetries
lL, 5, g, 12,'1"3, 74, 1,Bf .

The set of all such "continuous" symmetries is a normal (invariant), N,
subgroup of the group, G, of all point symmetries, when the continuous
symmetries are factored out, the remaining point symmetries form a
discrete group,G f N.
Many differential equations have discrete symmetries which can not be
founded by Lie's method, such symmetries are important in many
applications, for example they are used to reduce the domain on which
an oDE is solved numerically, thereby computational efficiency. This is
possible if the ODE, the computational domain and the boundary
conditions are invariant [8].
Sometimes it is possible to obtain exact solutions that are invariant
under a discrete symmetries [10]. Discrete symmetries involving charge
conjugation, parity change and time - reversal symmetries play a key
role in quantum field theories. Also they are used in the bifurcation
analysis of nonlinear systems [16].
The main difficulty to find discrete symmetry is that it cannot reduce to
study the infinitesimal action of vector field (as continuous symmetry).
Therefore; when applying symmetry condition we get determining
equations for discrete symmetries typically form a highly - coupled
nonlinear system. Some discrete symmetries (such as reflections) may
be founded by inspection or by using an ansatz [3]. Hydonl6,7,B,9,10]

"
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Discrete Point symmetry for the BBM Equatiotr 
N{a,aki and Ardhrki

gave a new approach (indirect method) to the problem of finding all
discrete point synunetries of differential equation which has Lie
continuous symmetries. The technique is based on the observation that
every point symmetry yields an automorphism of the Lie algebra of Lie
point symmetry generators. This results in a set of auxiliary equations
that are satisfied by all point symmetries. These equations can be
considerably simplified to give the DE's discrete symmetries.
The aim of the present work is to present Hydon's method by an
algorithm to obtain discrete symmetries of the Benjamin-Bona- Mahony
(BBM) equation (which is sometime called the regularized long wave
(RLW) equation). It was proposed by Benjamin et.al in 1972, it boasts a
wide range of applications in the unidirectional propagation of weakly
long dispersive waves in inviscid fluids

'|-t6 -- 'ulJ, * 711r, t,xc ]   (1)
method)12,912- Methodology(Indirect

A point symmetry of a given system of DE
A(x,u) - s (2)

where χ∈R■,u∈ Rn is a diffeomorphism

「:(χ′u)ぃ o(χ′u),n(χ,u))
maps the set of solutions ofthc equation to itscll This happcns if

LG,D-0whenA(z,u)-g (3)

the symmetry condition (3) can be split into a system of determining
equations for (i,O) (cannot be solved by a direct approach)
In [9], Hydon state that,
Every arbitrary point symmetry f of the given differential equation (2)
induces an automorphism of the Lie algebra I of all generators of one
parameter Lie point symmetries of (2). For each f there exists a

constant non-singular r x r matrix B = (b{)such that

Xi -li=,b!R1 (4)

All structure constants are preserved by the automorphsim.
The basic method to find the discrete symmetries can be described by
the following steps:-
l- Create a system of determining equations by using lemma (2.1) to
obtain the following system of hrst order quasilinear PDES

″ =Σ b∫為′′ι=1,… ,r (5)

may be solves by the method of characteristic or (if r 2 3) by algebra
means.

The solutions of 2 are obtained in terms of z,b! and constants of
integration, Note that not every solution of (5) need be a symmetry.
2- Find discrete point symmetries, the symmetry condition is used to
factor out the unwanted solutions that may exists from the previous step
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that do not coffespond to a symmetry transformation or if the given
differential equation (2) holds so must L(ft,fi) - g

The above two-steps basic method works in principle but it has serveral
disadvantages:-
1- Differential equations without a Lie symmetry algebra can not be

considered since the method require such an algebra.
2- The calculations are fairly simple for lower dimensional I but not

for higher dimension al L , since more coefficients b/ of r x r matrix B
must be considered and we get a larger system of determining
equations.
when the Lie algebra L is non-abelian the elements of B satis$r the

nonlinear constrains

r   r

I I ct*b{bf= I c{int,L < i < i <r,t <n1 r (6)
′=17n=1 た=1

The nonlinear constrains (6) by themselves provide some simplification
of the matrix elements b{ .Vuta combination of the nonlinear constrains
together with equivalence transformation is even more powerful as we
shall see. The equivalence transformations enable us to factor out the
Lie symmetries of the non-abelian Lie algebra L ,before trying to solve
the system of (5). The adjoint action was defined as,

If Xi € I, the adjoint action (adjoint representation) is an operator that
maps Y1 to lXi,Yl

Ad(X)yi,-> lXi,Y)
or a linear transformation of I onto itself.
The adjoint action of the one-parameter Lie group of point
transformations generated by Xj on the set X1,...,X, of basis

generators, can be described by matrix
4(ε′Ji)=θ  

εε(:) νヽλθrθ  (ε (:)):= C与

ヽ
し

‐

(7)

therefore,wc have an equivdent transformttion,generated by XJ・ ,to

group generated by

え=ぞ 句為=為 一 回 耳 脇 回 …≡iバザ ろ
ρ=0

and the relation(4)can be Written as
r

ア:=Σ
 b∫
メし И′:ι7Lら∫==(4(ε′J7)Fb`

イ=1
in other words the previous equation is equivalent to

‐
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r
\i--t _ " ^xi = /bi x,
l=7

under the group generatedby Xi. The matrix B can now be replaced by
A(e,j)B,or BA(e,j), and we have the freedom to choose r to be a
value which simplifies the replaced matrix.

3- Algorithm
In this section, Hydon's method including its improvements is explained
by the following steps, assuming that the given DE has a nontrivial
continuous symmetries X1, X2, ... , X, .

Step I: Check ifI is abelian or not, ifI is abelian go to step IV
Step II: Calculate each (e, i) , given by A(e,j) = eec(i) corresponding
to each basis of the Lie algebra.C .

Step III: Construct the matrix B from (5), then simptiQ the matrix B by
using (6).
Step IV: Create the determining equations of 2 by (5).
Step V: Determine the discrete point symmetries bv using symmetry
condition (3).
Step VI: Factor out the remaining central Lie symmetries.

4- Calculating discrete symmetries of BBM equation
In this section we will derive the discrete symmetries of equation (1)

which has a 3-dimensional Lie algebra L3: {Xr,X2,XrJ [5] whereaaaa
X, = 0t,Xz = t,Xt = tdi- u 

Au
Note that the model considered here is (time-space) reversible, i.e if
u(t,x) is a solution of(1) then so is u(-t,-x) [11]
By the commutator relation 

,

lx,,x,1 -Zr!,rr i,j = t,2,3
k=r

we get the commutator table

thcnthe structureconstants ε
l,  are

lXl,χ2]=0⇒ 針1=0,Ci=0,εfl=0
[χ2,4]=0⇒ 鍔1=0,呟 =0,αl=0
レ3,χl]=―為 → ■1=-1,θ孔=0,6331=0
レ1,ろ]=0→ 皓 =0,(2=0,C:=0
レ2,χ2]=0→ 鴫 =0,晩 =0,場 =0
1X3ん]=0⇒ ら =0,皓 =0,ら =0

レt,為 ] χl χ2 χ3

χl 0 0 χ l

χ , 0 0 0

χR ―χl 0 0

０
乙
つ
Ｄ

ヽ
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[χl,χ3]=χl=⇒ εL=1,ε島=0,ε島=0
[χ2,χ3]=0⇒ ら3=0,ε発=0,ε発=0
[χ3′χ3]=0‐〉G発 =0,σ発=0,ε島=0

Vol.24,No5,2013

The matrices ε o)are

σ(1)=|」
1 1

０

０

０

０

０

０

１

０

０

〓
３ε

０

０

０

０

０

０

０

０

０

〓
２θ

０

０

０

"

Note that X2 belong to centre of Lie algebra.
The next step is to calculate the matrices A (e, j) by using
Exponentiation of the matrices c (/) , by adjoin representation or by
solving I.V.P.

d v(e)
=[υ (ε),X]′ υ(0)=υ 。

Attoint representations table

レ1,χl]=χl=⇒ αll=1,αll=0,αll=0

「
2′
χl]=χ2=⇒ α

'1=0,α

,1=1,α,1=0
1X3′χl]=χ3~ε

χl⇒ α:1=―ε,αζl=0,α:1=1

「
1,χ2]=χl⇒ α12=1,α12=0,α12=0
区2,χ2]=χ2=⇒ α

'2=0,α

:2=1,α

'2=0レ3′χ2]=為 ⇒ α32=0,αζ2=0,α:2=1

０

０

１

０

１

０

〆

０
０

〓ε３４

０

０

１

０
〓

０

・

０

．

０

４

〓
〓
腱
燿
」ｕ

ｏ
弓

罐

　

〓

〓

・
，
０
，
　

ε＞

毛

〓
〓　
２
　

３

二嘱嘱ｑ中創ａｉｎｔｓ

凋
Ц
刈
　
６
　
ｔｈｅ

臨
陽
』
ス　
価

ΣGttbl=0

(8)

ヤ

Ad(e"i)Xt χl χ2 χ3

χ l χl ん θ
ε
χl

χ, χ χ, χ,

χ χR 
εχl

χ. χR

II ckblbf =Zr!,ot 1<i< j=2,1.-n.-3
l=l m=l k=7

for = 2, we obtain

for (i, j) - (1,3) we get b? = O

for=3,weobtain

Σ Gttb見 =0
fOr(ι ,ブ)=(1,3)wθ θθι bf=0

TherefOre t〓

(|:  |:  |:) ,Where bl≠

0(since lBI ≠ 0)
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For=1,we obtain
εふ冴げ =晰 bl

fOr(:,ノ)=(1,2)wθ  Jθι bib:一 bib,=0
fOr(:,ブ)=(2,3)wθ  get b'b:― b:b:=0
fOr(ι ′ブ)=(1,3)wθ  θθι bib:一 bib:=bl
solve(8),(9),(10),(11)and(12)、 ve get

b,=O αnd b:=Ob`≠ 0(Since lBI≠ 0)
α7Ld b:=1
We simplitt B tO the following:‐

3=(1 1

Now using the attoint matrices■ (1,ε),:=1,3

4(1,ε)B=二

|:ε  l  llll:  |:  ||

SO(by Ch00Sing ε=「 ,si71Cθ bl

transformation enables us to replace

mult●サhg B by 4←メη日)だ =h
by zero. Similarly, post

is equivalent to setting

( l3)

parameter Lie group generated by Xz

is homogeneous PDE take c : L ,

■lanaki and Aldhlki

(10)

(11)

(12)

ｅＣｎｅａＶ

１

‥

ｌ

ｌ

ｌ

Ｊ

　

ｕ

０

０

ｌ

　

ｑｅ

ｏ

暖

堵

Ｓ

房
「

ｔｈ

ｂ‐

ｏ

‐ ＋

＞

ｂ
ε

Ｆ
Ｉ
Ｉ
卜

０

〔
「
０１
「
り
　
　
　
一一　
　
　
≠

堵
購

bl =Tt
In summary, we have factored out the die symmetries by using the

adjoin action, and the inequivalent discrete symmetries are those

solution of Xi6,x1 : b!*r1,a1 , with
lx00l

u=lo 4 ol xe{1,-1}
lo b3 1J

that also satisfies the symmetry condition.

The system XiG,a) : b!frrf*,ry with B as above, amounts to

This system of first - order PDEs has the general solution

i=xt+l Ii= b|x-bllnu+cr I
a=cu )
Now we factor out the one -
setting c1 : 0, and since (1)

therefore (13) becomes

`

０
０
〈刊

ｏ
％
刊
ｏ
暖
堵

０

１

０

∝

Ｏ

Ａι

ｌ

Ｏ

ι^

　

　

〓

＝

Ｊ

ｏ
暖
堵
偽
ち
「
〈ｕ

∝

０

０

　

　

　

　

ι

一一　
　
　
　
〈為

一嗣劇嗣「細∵為
〈χχ　製
χ^

〈χ
　
〈
χ
　
〈χ

χ

χ

χ

　

　

ち^ｕ

隋」ｐ隣嘴毎
ｔ^χ^
ケ

⇒
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(14)

where∝ ∈(1,-1),A is an arbitrary constant.All that remains is to
substitute(14)in to the syrFunetry condition

食ε=食食受+食ε夕分when at=2uχ +uιχχ
(fOr the sake Of bre宙ty,the details of this straight forward calculation

are omi■ ed)It tums outthatthe symmetry condition impOses the further

constraints

И=bξ =0′ bg=∝
TherefOre we have

ι =∝ ι

χ =∝ χ

u=u

∝∈〔1,-1)

Therefore there are two classes of discrete symmetries, namely those
that are equivalent to

lr: (t, x,u) ,-s (-t,-x,u)
And those that equivalent to 112 = I (Identity), In other words the factor
group of in equivalent discrete symmetries is isomorphic to the cyclic
group 22 and is generated by lr. Thus we have derive the following
result.

4.1. Theorem: -
BBM equation's discrete symmetry group is cyclic of order 2, generated
bv I-.

4.2. Corollary:-
The maximal real point symmetry group of the pDE (1) consists

of all point transformation of the form yfi i = 1_,2 and y is continuous
symmetry.

5. CONLUSION
In this paper, we have found discrete symmetries of the BBM equation.
By applying Lie group method. we get group of discrete symmetry
isomorphic to Zr.
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ABSTRACT
In this work,the variatioal iteration method(VIⅣl)iS Cmployed to flnding

thc approxiFnatiOn  solution of  the  linear lnixed Volterra― Fredholin integro
differential equation of second kind(V― FIEs).The(VIM)iS tO COnstruct correction
functional using general Lagrange multipliers(λ )identined optimally via the
variational theory. VVe proving  the0111l study  the cOnvergencc approxirnate

solutions to thc exact solutions,FinHy,two examples are given and their rcsults are

given in tables and are sho、 vn in flgures,the error estiinate,in cach examples is

calculated.

INTRODUCTION
A mixed volterra- Fredholm integro differential equation contain
mixed Volterra and Fredholm integral equations where the Fredholm
integral is the interior integral ,whereas the volterra integral is the
exterior one.Moreover , the unknown function u(x,y) appears inside the

integral ,whereas the derivative S (x, y) appears outside the integral.
dy

These types of equations playing an important role in many branches of
linear and nonlinear functional analysis and their applications in the
theory of elasticity, engineering and mathematical physics[1 ,2,3,4f.
A discussion of the formulation of these models is given in wazwazl4f
and the references therein.
In this work, we consider the following the linear mixed Volterra-
Fredholm differential equation of second kind:

k (x, y, z,m)u(2, m)dz dm (x, y) e [0, T] x O

(1)
where u(x,y) is an unknown function, the known functions g(x,y) and
k(x,y,z,m) are continuous of x and y on D:[0,T]"ft and (SxR) where
(S:{(x,y,z,m)},0< z, m <T,(x,y)cC)xO}) and (Q is a closed subset of
Rn (n:1,2,3,...)).
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The existences and uniqueness to Eq.(1) are given in [5].Many research

are used the linear mixed Volterra-Fredholm integral and integro

differential equation by Brunner H.[6] ,shazad S.[7] and wazwazA. [4].
In this work we propose procedure for solving the linear mixed

Volterra-Fredholm integro equation of second kind using varaitional

iteration method.
Variational lteration Method:
The variational iteration method was porposed by Ji-Huan He in
1999[8,9], and yet powerful method for solving a wide class of linear

and nonlinear problems. The (VIM) gives rapidly convergent successive

approximation of the exact solution if such a solution exists[9]' This

-.tt od is based on use of lagrange multipliers for identification of
optimal value of a parameter in a functional [10' 11]'

To illustrate the basic idea of the (VIM), we consider the following

general functional equation given in operator form:

L(u(x,y)) + N(u(x,Y)): g(x,Y) (2)

where L is a linear operator. N is a nonlinear operator and g(x,y) is any

given function which is called the nonhomogeneous term. According to

t-ft. gtttA;, we can construct the following correction functional
1t

un+r(x,y) = un(x,y) + 
J, 

7{L(x,y) + Nl(x'y) - g(x'y)}

where .1is a general lagrange multiplier which can be identified

optimally via variation theory[10,] l,l2], us is an initial approximation

in this work knowns functions, and a consider as restricted variation

which means 6 tr: 0.Therefor, we first determine the lagrange multiplier

)" thatwill be un+r(x,Y) > 0 of the solution u(x,y) will be readily obtained

upon using the lagrange multiplier obtained by using any selective

function uq(x,y),consequently the solution u(x,y):limn-'un(x,Y)'

variational lteration Method solving The Linear Mixed volterra-

Fredholm Integro Differentiat Equation Of Second Kind(V-FIEs):-

Now, we consider the linear mixed Volterra-Fredholm integro

differential equation of of second kind:-

器(X,"=g(χ,y)十イ″た(χ,y,Z′ m)u(z,7う
dZ dm

Then we have the fbllowing iteration sequence

un+1(X,y)=un(X,y)+it λ(ζ)(un(ζ ,y)―…J(ζ,y)

一イ″た(ζ′y,Z,77L)un(ζ ,771)dZdm)dζ  …(4)

138
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To flnd the optimal λ,we procced as lollows:

δun+1(x,y)=δun(X,y)+δイλ(ζ)(in(ζ ,y)― g(ζ ,y)一∬″た(ζ′y,Z′ 7つun(ζ′m)dZdm〕αζ=0

…(5)

and upon using the rnethod ofintegration by parts,then Eq。 (5)will be

reduced to:

δ・ 22+1(χ′
y)=δ■72(χ′y)十 ltλ (ζ)δ (■ (ζ,y))

=δun(χ′y)■λ(χ′y)δu7t(χ′y)―卜IF兎 (ζ )δ um(χ,y)=0
Then the fonowing stationary conditiones are obtained:

ス=0  ,  λ+1=0

The gcneral Lagrangc lnultipliers thcrefor,can be readily idcntifled:λ =-1

and by substituting in Eq。 (4),Thc f0110wing itcration forl■lula n≧ O is

obtained

un+1(X,y)=un(x,y)J7{in(ζ ,y)θ (ζ ,y)一イイた(ζ′y′ Z′ 7うun(ζ′m)dzαm)dζ …(6)

Theorem:‐ Let u c(C2[a,b],‖・||∞)be the exact solution ofthe linear
m破ed Volterra― Fredolm integro differential equation of(3)and un C
c2[a,b]be the obtained solution ofthe sequence deflned by eq。 (4).If

En(X)=un(X,y)一 u(X,y)and lた |≦ ε,  0<σ <1,then the sequence of

appro対 mate solutions(un},n=0,1,… ;converges to the exact
solution u(X,y).

Proof:―

Consider the linear rnixedヽ roltrrra―Fredholin integro differential

equation of second:―

三Lu(x′ y)=g(X′ y)■
」[χ llκ

(χ,y,Z′ m)● (z,‐)dZdm

Where the approxiinate solution using the VINItis given by

2.+1(χ′y)=

■.(χ,y)―イ颯un(χ,S)一θ(χ,S)―ガイた(χ l SIろ m)un(Z′ m)dzdm]ds

… (7)

And since u is exact solution ofthe linear rnixedヽ TIEs,have
■(χ,y)=
u(χ ,y)一

イ 曖

■ (χ ,S)一 θ (χ ,S)一
イ ″

た (為 S,ろ ■ )2(ろ m)α zdm]α s … 。(8)

い

一
）
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Now,subtracting Eq。 (8)from Eq.(7)to get:

En+1(X,y)=

En(X,y)-1lEn(X,S)一 g(X,S)十 g(x,s)frk(x,s,z′ m)En(Z,m)dZdm]dS

En+1(X,y)=En(X,y)‐ ― ll:LEn(X,S)dS+llllllk(x,S′ Z′ rn)En(Z′ rn)dZdmdS

En+1(X,y)=

En(X,y)一 En(X,y)‐ ―  En(X,0)一    llゞ Ilk(X,s′
Z′ rn)En(Z,m)dZdmdS

And since Fn(χ,0)=un(χ ,0)一 u(χ,0),WhiCh have the initial condition

ofthe 1/TIEs,the Fn(χ ,0)=0.〃αηεθ

島+1(χ,y)=イご″た(χ,S,Z,m)み (Z,‐)dZdnds      .… (9)
Now,taking the ma対mum―norm on both sides ofEq。 (9),
yields to:

‖En+1(X,y)||∞ =‖イガイた(χ′S,Z′ m)島 (z,m)dZdmdS‖∞
‖島+1(χ′y)||∞≦イガイ|lk ll∞‖島(Z′ m)||∞ dZdndS
since K is hnction bounded by c,c∈ (0,1),then

‖島+1(χ,y)||∞≦εイガイ|lk ll∞‖島(Z,m)||∞ dZdmds
‖島+1(χ′y)||∞ =Cノイイ‖島(Z,7n)||∞ dZd7n
Therefor

‖島 +1(χ′y)||∞ ≦εyイ″‖島 (Z,m)||∞ αZdm,V■ =0,1,     _(10)
Now,if n=0,then inequality(10)yield tO

IIEl(χ ,y)||∞ ≦Cyfイ |IEO(Z,m)||∞ dZdm

llEl(χ′y)||∞≦εyイイ(γ馬IEO(Z′ m)ldZdm
‖El(χ,y)||∞ =Cy(χ ―α)(b一 α)MαχlEOI                 ….(11)
AIso,if n=1,then from inequality(10)and(11)We have

‖島(χ,y)||∞≦Cyガイ|IEl(Z,m)||∞ dZdm
Substituting(H),in this inequality we get

llF2(χ ,y)||∞≦εyイイCy(χ―α)(b―α)MαχlE。 |

旧ん洲∞=げげ ⑭―の2M司硼   10
Similarly,for n=2 and from inequality(10)and(12),we haVe

‖比(χ ,y)||∞≦εyガイ|IE2(Z,■ )||∞ dZdm
Substituting(12),in thiS inequality we get

‖亀(χ′y)||∞≦εyイ″C2y2(χ
~α)2(b_α

)2 ναχlE。 ldZdm
‖E3(χ′y)||∞ =C3y3(χ

~α)3(b_α)3Mは IE。 |

And so on,in general and using rnathematicalinduction we get:

‖Eれ (χ,y)||∞ ≦ Cη y■
(χ
~α
)・

(b_α )れ !ИαχlEOI            ….(13)
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I
And since c E (0,1) and as flt @, then we will have the right hand

side of inequality (13) tends to zero, i.e, llEn(x,y)ll- +0 as

n-) @

Which impliesto un(x,y) -+ u(x,y) asn + oo

i.e., the sequence of solutions obtaind from the VIM converge of the

exact solution u(x,Y).
Numerical Examples:-

In the section, we used the (MM) which is discussed of the previous

section for solve two examPles.

"

し

一
〕
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Example (1):-
Consider the linear mixed Volterra-Fredholm integro differential

equation of second kind

# 
r(r, Y) = x- # ,', -fr f * xv u(z,m)d.z dm

With exact solution u(x,y):xy

The corresponding iterative formula (6) for this example can be

constructed as follows:

unJ(X,y)=un(X,y)―イ{in(ζ ,y)‐ J(ζ ,y)一イ″た(ζ ,y′ z,7う■.(ζ′m)dzdm〕ごζ

Let the initial appro対 mate solution■ 0(χ′y)=χ ―上 y χ
3,we get:

ul(X,y)=uO(X,y)‐イ〔u:(X,y)― (χ―士yχ
3)_∬
lz3 χy■0(Z,771)dZd7n〕 dζ

=嘉
 [-12y2χ
3_yχ 3■ 20ytχ 2■ 240yχ +240χ

]

■2(χ,y)=ul(x,y)一イ{・1(X,y)― (χ―奇χ
3y)_∬
lZ3 χy●1(Z,m)dZdm)dζ

端   [-12y2χ
3_yχ 3 4 20yχ 2 4 240yχ +240χ ]―-40320[63χ

4y_2561]

And so on,we may compute u9,uH,u13;WhiCh be more compHcated.

The exact solution and the approxiinate solution uN With different N and

the absoluteeFOr l eN I=l ucxact‐ uN I,Tabに(1)and Figure(1)&(2)are

shown exact and approxirnate solutions by using variational iteration

Method。
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Tabl 1:TheC― results of Exam
X y exact Approximat(

Sol atN=9
error Approximatc

Sol atN=10
error Approximatr

Sol.atN=l I
errol Approximat(

Sol atN=13
error

0 0 0 0 0 0 0 0 0 0

0.1 0.1 0.01 0.01 0 0.01 0 0.01 0 0.01 0

0.2 0.2 0.0400 0.0400 0 0.0400 0 0.0400 0 0.0400 0

0.3 0.3 0.0900 0.0900 0 0.0900 0 0.0900 0 0.0900 0

0.4 0.4 0.1600 0.1600 0 0.1600 0 0.1600 0 0.1600 0

0.5 0.5 0.2500 0.2500 0 0.2500 0 0.2500 0 0.2500 0

0.6 0.6 0.3600 0.3600 0 0.3600 0 0.3600 0 0.3600 0

0.7 0.7 0.4900 0.4900 0 0.4900 0 0.4900 0 0.4900 0

0.8 0.8 0.6400 0.6400 0 0.6400 0 0.6400 0 0.6400 0

0.9 0.9 0.8100 0.8099 0.000 0.8100 0 0.8100 0 0.8100 0

1 1 1.000 0.9998 0.000, 1.000 0 1.000 0 1.000 0

L.S.E 3.38c-0〔 1.968e¨

011

7.53e… 15 [.75c-021

Figure-2 : The approximate solution
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Example (2):-
Consider the Linear mixed Volterra-Fredholm integro differential

equation of second kind

u'(x,y) = 2yer - (xzs-Lsx - xze-\@2 - s)+fr [)rx'r-' u(z,m)dz dm

With exact solution u(x,y):y2 e*

The corresponding iterative formula (6) for this example can be constr
as follows:

un+r (x,y)=un(*,y)-,( [,i"(f ,y)- g(f ,y) - I; f : k ((, y, z, m)un({, m) dz dm} d {

Let the initial approximate solution uo(x,!) :Zye'- (x2e-t11e2 - 5)
we get:-

u1(x,y)=us(x,y)-f{ ui(x,y)-(2ye'- (x2e-l)(e, - s)) - E trxl e-, us(z,m)d.zd

= y2 e, - o.B7BBx2er + 0.g7gg x2y - o.SgS9Zyx3 * Zyxa * 0.g7ggx2 -
4.3944yx3 e-1 + o.8zgg yx3 eL - O.Blggyx2 ex

uz(x,y) =ur(x,y)- ff{"r{*,v)(zye*-(x2e-t11gz - s) - I; frxl e-, u1(z,m)dz

= y2e, - 0.g7ggx2ex + o.g7ggxzy - o.SgS9Zyx3 * Zyxa * 0.g7ggr,

4.3944yx3 e-r + 0.8788 yx3 et - o.BZBByxz e, *xye-210.g9e3 + 13.

62.Ser * 0.g7gea * 0.666xe2 + 35.1ss)

The exact solution and the approximate solution uN with different N and

the absolute error I .* | 
: 

I u.*u.,-u* I , fabtelt)and Figure(3)&(4) are

shown exact and approximate solutions by using variational iteration

Method.

日
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Figure-3: Approximate solution using VIM Figur+4:Exact solution

CONCLUSION
In this paper the variational iteration method is used to solve the linear
mixed Volterra-Fredholm integro diferential equation with second kind
.The reasults showed that the convergence and accuracy of variational
iteration method for numerically solution for (V-FIE)were in a good

一“
一一●
・
０

●
１

０

一

一〇

'able-2:The results o xam 2

X y exact error Approximatr
Sol.etN=l I

error {pproximat
Sol.atN=13

erro errol
Sol.atN=15

0 0 0 0 0 0 0

0.0111 0.0111 0.0111 0 0.0111 0 0.0111 0

0.0489 0 0.0489 0

01215 0.1215 01215 0 0.1215 0.1215

0.2387 0.2386 0.2387 0 0.2387 0.2387

0.4122 0.4120 0.002 04122 0 0.4122 0.4122

0.6560 06552 0 0.6560 0.6560

0.9867 0.9846 0.0021 0.9867 0 0.9867 0.9867

1.4243 1.4189 0.054 1.4243 0 1.4243 1.4243

1.9923 1.9800 0.0123 19921 0 1.9923 1.9923

1 1 0.7183 2.6925 2.7178 0.0005 2.7183 2.7183

LS.E 8.48e-004 2.35e‐ 011 1.35c‐ 015
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argreement with analytical solutions.The computations associated with
examples and graphing in this paper performed using matlab (v 6.5).
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ABSTRACT
We study the problem of scheduling n jobs on a single machine. We wish to
minimize an objective function that is a function of 2 or 3 performance criteria. The
problem is to find the set of efficient solutions (Pareto optimal points) with respect

to these performance criteria 2 and 3, i.e., ( total late rvork with maximum late work

) and ( total completion time with maximum tardiness and maximum late work ).
We propose algorithm for both problems and investigate its performance on these

two multicriteria problems, this algorithm is efficient and general one and can be

used to find the set of efficient solutions for other problems. Our experiment results
indicate that the proposed algorithm finds all efficient solutions in most cases.

l.INTRODUCTION
In general, the scheduling problem is defined as a problem

of assigning a set of jobs to a set of machines in time under
given constraints ( 12,5,91 ) Jobs are mainly characterized by
processing times (p:), due dates (d:) define expected completion
times (C1) for particular jobs.

The quality of an assignment, a schedule, can be evaluated

from different points of view, which are represented by different
performance measures. Most objective functions based on due

dates are regular ones, i.e. non-decreasing with increase in
completion times of jobs. This group includes criteria based on

lateness(l:C.; - d;),tardiness(l :max{0,Cj - di})
or the number of tardy jobs(U;:l,if Cj , dj , otherwise U1:0). The

criteria based on earliness(E;:max{0,d: - C;}) are non-regular ones.

The late work criterion estimates the quality of a solution on the

basis of the duration of late parts of particular jobs.Late work combines

the features of two parameters: tardiness and the number of tardy jobs.

Formally speaking, in the non-preemptive case the late work parameter

is defined as V.;:min{max{0,C1 - d:},p:}:min{l , Pj} or, in a more

extensive way, as

"

一
一
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In the preemptive case durations of particular tardy parts of a job
have to be summed up. The quariry of a schedule lwittr n .lobsi is
expressed

with the total late work f iU, Ij:l
The parameter v.; was first introduced by Blazewicz l3),who calledit " information loss ", reffering to a possible application of the

performance measures based on it. The phrase " late work ,, was
proposed by Potts and van wassenhove [10]. Some researchers, €.g.
Hochbaum and Shamir [6], use a descriptiv. nurn. for this schedule
parameter-the number of tardy job units.

The relation between late work and other performance measures
was established by Blazewicz et al. [a].

Applications of the late work minimization problems arise in
control systems [3,10], where the accuracy of control procedures
depends on the amount of information provided as their input. A job
represents a message carrying a certain amount of information, which
determines the
job length. All information received by the system after a given due date
is useless. The information exposed after the time required (called the
information loss) is modeled with the late work and ihould be
minimized in order to increase the efficiency (the precision) of the
control process.

The late work 
_parameter appears to be important in production

planning both from the customer's point of view und fro,n the manager,s
point of view. If the customer orders are interpreted as jobs to' ue
executed, then minimizing the late work is equivalent to -ini-iringthose parts of orders which are not executed on time. obviously, every
customer is interested in minimizing these late parts. The manager is
also interested in minimizing orders delays, which cause financial i-oss.

. Interesting applications of the late work criteria arise in agriculture,
where performance measures based on due-dates are especially useful
[l]. Late work criteria can be appried in any situation wheie u p"rirhubl.
commodity is involved uOl. For example, if crops that might be
collected from different stretches of cultivated land are represenied by
jobs, then the process of harvesting can be modeled by t[e late work
minimization problem.

148

ミ



‐

Al- Mustansiriyah J. Sci. Vol.24,No5,2013

This paper begins with a notation and basic concepts of
multicriteria scheduling in section 2.Formulation of the simultaneous

multicriteria (P) problem and special cases are described in section 3.

An algorithm (ADA) for finding efficient solutions of the (P and Pl)
problems is presented in section 4. The formulation of the simultaneous

multicriteria (Pl) problem is presented in section 5. Computational
experiments are presented in section 6. Conclusions and areas for future
research are described in section 7.

2. Notation and basic concepts of multicriteria scheduling
n : number ofjobs.
p; : processing time for job j.
d; : due date forjob j.
Ci : completion time for job j.
V.; : late work for job j.
V-,* r maximum late work.

IV: ' 
total late work.

IU., , number of tardy jobs.
EDD : earliest due date.

Definition [7]:
A feasible solution (schedule) o is efficient (Pareto optimal, or

non- dominated) with respect to the performance criteria f and g if there

is no feasible solution (schedule) z such that both (z')<f(o) and g(n)<

e(o)
,where at least one of the inequalities is strict.

Lawler's algorithm (LA) which solves the ll prec /f.* problem or

lllf^u*problem where fn-,u* € { C.u* , L*u* ,T,nu* ,v.u* } t9]. Lawler's

algorithm (LA) is described by the following steps:

Step (1): Let N: {1,2, ... ,n}, and F is the set of all jobs with no

Successors, [: g.
Step (2): Let j- such that t-( Ip' ) : min{t Op')}.

i EN j€F i€N
Step (3): Set N : N - fi-) and sequence job j- in last position of n,

i.e. r : (Tt, j. ).
Step (4): Modify F with respect to the new set of schedulable jobs.

Step (5): IfN: g stop, otherwise go to step (2).

Moore's algorithm (MA) [9] which solves the problem 1//)U.; to
find minimum number of late jobs, is described as follows :

Step(1): Order the jobs by EDD rule , let E: L: q , k: t: 0.

Step(2): k: k+l , if k > n go to step(4) .
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Step(3): t : t * pr, E : E U {k}, ift < dr. go to step(2), otherwise (i.e.,
ift > dr. ) then find ajobj e E with pj as large as possible and let t : t - pi
, E:E-U) , L: L U [i] and go to step(2) .

Step(4): E is the set of early jobs and L is the set of late jobs .

3.Formulation of the (P) problem
The simultaneous multicriteria problem of total late work and

maximum late work (P) is formulated as follows:

subject to
Yi : Mn{}, pi}, j:l.2,...,n

This problem is NP-hard since llDv j the non-preemptive total late
work problem is NP-hard [10].

3.1 Special cases for the problem (P)
case (1): The rldi: d/Lex( Ivj,v,,* ) problem is solved by Lawler's
algorithm (LA), where j:\,2,...,n.
Prooft Let v,nu** is the minimum value of maximum late work (i.e.
min{ max{ Vj } } , j: 1,2,.. .,n) obtained by Lawler,s algorithm for the
schedule o. Since any schedule is optimal for ll/lylif dj: d. Hence
this schedule o is optimal also for fv;. This means ihat the schedule o
is optimal for l/d1: dllex( IV , V,u* ) problem.n

Case (2): The problems lldj: d/ IVj *V,u* oDd
lldl: d/( IVj , V,* )are solved by Lawler,s algorithm .

Proof: Similar to proof of case (1).o

Case (3): If for any schedule C.l > d: + pj Vi ( j:1,2,...,n ) , then the
l/l(LY j , V,u* ) problem is solved by Lawler's algorithm (LA) .

Proof: If for any schedule C1 ) d; + pj Vj ( j:1,2,...,n ), then
V: : p: Vj ( j:l ,2,...,D ) . Hence IVj : lp.; which is constant .
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i 
Thus Lawler's algorithm (LA) solves Ill(IVj ,V-u* ) problem.n

Case (4): If Moore's algorithm (MA) gives a schedule with lUi : 0,

then this schedule gives ( IVj, V-u* ) : ( 0, 0 ) .

Prooft Since Moore's algorithm (MA) gives a schedule with lQ : 0,

then this means that all jobs j are early and C.; . dj , j:1,2,...,n.
Hence Vj :0 . Thus the schedule which is obtained by Moore's
algorithm (MA) gives ( IVj, V*,* ) : ( 0, 0 ).n

Case (5): If EDD rule gives a schedule with Tn.,u*:0, then this
schedule gives ( IVj, V.u* ) : ( 0, 0 ) .

Proof: Since the EDD schedule gives T*u*: 0, then l: 0 for each
job j, J:|,2,...,n . Since Vj: I , Vj (j:1,2,...,n ) and Vj> 0 , then
V; : 0 . Hence the EDD schedule gives ( IVj, V,u* ) : ( 0, 0 ).o

4. Algorithm (ADA) for finding efficient solutions for the
problem (P)

This algorithm depends on the branch and bound (BAB) algorithm
without reset the upper bound (UB) as follows:
Step(l): Find the first upper bound (tIBl) by the (EDD) rule ,that is,
sequencing the jobs in non-decreasing order of their due dates di,
j:1,. . .,n, for this order o compute IV:(o) ,V',u*(o) and put
UBl:IV(o) +V,,u*(o).
Step(2): Find the second upper bound (UB2) by Lawler's algorithm
(LA), suppose that (LA) gives the sequence o', for this order o' compute

It(o'), V.u*(o') and put TJB2: IY(o') + V.u*(o') , j:l,. . .,o.
Step(3): Set the upper bound I-IB = min{UB1,UB2} at the parent node
of the search tree.

i Step(4): For each node IN in the search tree , compute the lower bound
LB(IN) : cost of sequencing jobs * cost of unsequencing jobs , where
the cost of unsequencing jobs is obtained by EDD rule for f\ and LA
for V*u*.
Step(S): Branch each node IN with LB(IN) < UB.
Step(6): At the last level of the (BAB) algorithm we get a set of
solutions, for this set eliminate the dominated solutions and the
remaining solutions is the set of efficient solutions.

5. Formulation of the (Pl) problem
The simultaneous multicriteria problem of total completion time

with maximum tardiness and maximum late work (Pl) is formulated as

follows:
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Min

Subject to
j

-Qi 
: Ip'

i:l
,j:1,--.,n

3: max{ej - dj , O} , j:1,...,n

!!: rnin{Ii, pi} , j:1,...,n

we see that the algorithm (ADA) is still applicable if the number of
criteria is 3 as in problem P I .

Hence algorithm (ADA) is adopted to be used for finding
efficient solutions forthe problem (Pl) such that (UBl) is obtained by
(sPT) rule , that is , sequencing the jobs in non-decreasing order of their
processing times pr . (UB2) is obtained by EDD rule and the third upper
bound (IIB3) is obtained by LA. In step(3) set IIB :
min{UBl,UB2,UB3}. In step(4) the cost of unsequencing jobs is
obtained by SPT rule for the fC3, EDD rule for the T-u* and LA for the
V** .

5.1 Analysis of number of efficient solutions
As our aim is to identiff the set of all efficient solutions, we should

try to hold the entire set. It is clear that if the objectives can be
optimized individually, we can deduce that the set of efficient solutions
have no more elements only one with extreme values of the individual
objective functions. Because we are using (ADA) algorithm which
depends on BAB algorithm, we can be sure that a solution is truly an
efficient solution. However, we can determine if some solutions of the
(ADA) algorithm is dominated by other solutions. It should be noted
that the SPT schedule is one of the efficient solutions for the problem
(P1).

6. Computational experiments
The ADA algorithm is tested on problems (P and Pl) for generating
efficient solutions by coding it in Matlab R2009b and running on a
personal computer hp with Ram 2.50 GB. Test problems are generated
as follows : for each job j, a, integer processing time p; is generated
from the discrete uniform distribution [1,10]. Also, for each job j, an
integer due date is generated from the discrete uniform distribution
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!
IP(I-TF-RDD12),P(L-TF+RDD/2)1, where P: XiLrpl, depending on the

relative range of due date (RDD) and on the average tardiness factor
(TF).For both parameters, the values 0.2,0.4,0.6,0.8,1.0 are considered.
For each selected value of n, two problems are generated for each of the
five values of parameters producing 10 problems for each value of n,

where the number ofjobs n:5,10,15,20.
For the problem (P) average computation times in seconds and average

number of efficient points are given in table (6.1)

Table… 1:Average computation time seconds and average number of efficient

Number of iobs (n) Average computation time Average number of efficient points
5

0.1997 6

0.5676 9

20 406897 う
ん

For the problem (Pl) average computation times in seconds and

average number of efficient points are given in table (6.2).

Table-2:Average computation time in seconds and average number of efficient

From the above results we can conclude that the average number
of efficient points is very small when compared to the number of
permutation schedules and the average computation times rapidly
increase with problem size n 2 15. The objective of the experimental

work reported here was to obtain some idea of the computational
performance of the (ADA) algorithm. Also we solved the problems (P)

and (P1) by complete enumeration method to find efficient solutions set,

and programmed in Matlab R2009b, and implemented on the same

above personal computer and we get the same results when compared
the results with (ADA) algorithm with size number n: 4, 5, 6 and 7
jobs. But this method is not practically, since the scheduling problem is

defined on finite set of candidate schedules. This set is usually so large
such that finding the efficient schedules by complete enumeration

within a reasonable time is not possible.

8. Conclusions
In this paper, an algorithm (ADA) is presented to multicriteria

optimization and investigated its performance on a specific single

machine multicriteria scheduling problem(P and Pl). Since we are using

n

Number of iobs (n) Average computation time Average number of efficient points

5 0.0192

10 0.2989 7

0.7874

20 43.9593 14

ワ

153



Effrcient solutions for multicriteria problems 
Adawiyah and rariq

(ADA) algorithm which is depend on a BAB algorithm, we can be sure
that a solution for problem P or Pl is truly an efficient solution. Hence
the algorithm (ADA) is a general one and can be used for many
multicriteria scheduling problems to find the set of efficient solutions.
As a result of our experiments, we conclude that the (ADA) algorithm
performs quite well for the multicriteria problems (p and pl). The
research presented here contributes to the multi-objective scheduling
literature by adapting (ADA) algorithm to multi-objective problems. For
future research, we recommend the topic that would involve
experimentation with the following machine scheduling problems:
l. l// F(T,nu* ,V*u* ,IVj).
2. llE(ZCj, IVj,V*u*).
3. l/E(ZCj, IVj,T,nu*).
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ABSTRACT
In this paper, Ininimal preopen and maxirnal preopen are introduced and studied.

And new spaces deflned by using the rninirnal preopen and maxirnal preopen sets,

FurthelHlore, new types of continuous maps depending on lninirnal and maximal

preopen sets introduced and investigated which caHed minilnal precontinuous and

maximal

1. INTRODUCTION
The minimal and maximal open sets introduced in [1] and [2] and these

sets used to investigate many topological properties. In this paper we

introduced the notion of minimal preopen and maximal preopen and

their complements.
Definition (1.1)t1l: A proper nonempty open subset O of a topological

space X is said to be minimal open set if any open set which is

contained in O is $ or O.

Definition (1.2)l2lz A proper nonempty open subset O of a topological

space X is said to be maximal open set if any open set which is contains

OisOorX.
Definition (1.3)t3l: A proper nonempty closed subset F of a topological

space X is said to be minimal closed set if any open set which is

contained in F is Q or F.

Definition (1.a)t3]: A proper nonempty closed subset O of a

topotogical space X is said to be maximal closed set if any open set

which is contains O is O or X.
Definition (1.$[a]: A subset A of a space X is called a preopen set

_o
A g A .The complement of a preopen set is defined to be a preclosed

set.

Definition (1.Qtal: Let X and Y be topological spaces and f:X-+Y is a

map then f is called a precontinuous function if f-l(A) is a preopen set

in X for every open set A in Y.
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2. Minimal and Maximal Preopen Sets
Definition (2.1): A proper preopen subset B of a topological space X is
said to be a minimal preopen set if any preopen set which is contained
inBis6orB.
Remark (2.2): Minimal open set is minimal preopen set but the
converse is not true in general as in the following example.
Example (2.3\zLet X:{a, b, c}, and r=1Q, {a,b},x} then {a} is minimal
preopen but not minimal open.
Definition (2.4): A proper nonempty preopen subset B of a topological
space X is said to be a maximal preopen set if any preopen set which is
contains B is X or B.
Remark (2.5): Maximal open set is maximal preopen set but the
converse is not true in general as in the following example.
Example (2.6): In (2.3) {a, c} is maximal preopen but not maximal
open.
Definition (2,7): A proper nonempty preclosed subset F of a topological
space X is said to be a minimal preclosed set if any preclosed set
which is contained in F is { or F.

Remark (2.8): Minimal closed set is minimal preclosed set but the
converse is not true in general as in the following example.
Example (2.9): In (2.3) {B} is minimal preclosed but not minimal
closed.
Definition (2.10): A proper nonempty preclosed subset F of a
topological space X is said to be a maximal preclosed set if any
preclosed set which is contains F is X or F.
Remark (2.11): Maximal closed set is maximal preclosed set but the
converse is not true in general as in the following example.
Example (2.12): ln (2.3) {b, c} is maximal preclosed but not maximal
closed.
Remarks (2.13):
(1) The family of all minimal preopen (resp. minimal preclosed) set of a
topological space X is denoted by MipO(X)(resp. M;pC(X)).
(2) The family of all maximal preopen (resp. maximal preclosed) set of
a topological space X is denoted by Mapo(X)(resp. MapC(X) ).
Remark (2.14): The concept of minimal preopen, maximal preopen,
minimal preclosed and maximal preclosed are independent of each oiher
as in the following example.
Example (2.15): let X: {a, b, c} and , : {0, {a}, {a, b}, X} so
Preo(x)={S,{a},{a,b},x}, MlPreO(X)={{a)}, M;prec(X)={{c}},
M" PreO(X) = { {a, b} }, Mu PreC(X) = { {b,c} }
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Table (1)

fa) fc) fa、b) {b,C)

NIlin mal DreoDen Yes No No No

Ⅳ〔ax mal DreoDen No Yes No No

Minimal preclosed No No Yes No

Maximal preclosed No No No Yes

Theorem (2.16): let F be a subset of a topological space X, then F is a
minimal preclosed if and only if X-F is maximal preopen set.

Proof: = let F is a minimal preclosed, so X-F is preopen. We have to
show that X-F is maximal preopen suppose not, so there is a preopen
subset D of X such that X-FcD hence X-DcF and this contradict
being F is minimal preclosed.

= let F be an preclosed subset of X, suppose that there is an preclosed
Kr.$such that KcF thus X-FcX-Kbut X-K is proper preopen set.

Contradiction to the assumption of being X-F is maximal preopen.t
Theorem (2.17): Let U and V be maximal preopen subsets of a

Topological space X, then UUV =Xor U:V.
Prooft if UUV = X then the proof is complete.
If not, i.e. UUV * Xso we have to show that U:V.
Since UUV+X so UcUUV and VcUUV.
But U is maximal preopen set, so UUV = X or UUV = U
Thus UUV=U andso VcU.
Now since VcUUV and V is maximal preopen set, so UUV=X or
UUV=V,but UUV+X soUUV=Vand hence U cV
Therefore U:V.r
Theorem (2.18): Let U be a maximal preopen and V be an preopen
subsets of a Topological space X then UUV=X or V c U.
Proof: If UUV = X then the proof is complete.
If UUV*X so UcUUV and VcUUV.
since u is maximal preopen and UcuUvso by definition of maximal
preopen we have that UUV:X or UUV=Ubut UUV*X so UUV=U
andhence VcU.r
Theorem (2.19): Let U be a maximal preopen subset of a Topological
space X with xe X/Uthen X/UcV for any preopen subset of X with
xeV.
Proof: Let xeX/UandxeV, soVcU, thus by (2.18) we have that
uUv=X=(xtu)n(x\v)=O

=X\U c V. r
Theorem (2.20)z let F be a minimal preclosed and K be an preclosed
subsets of a Topological space X then FnK=Oor FcK.
Prooft If Fng=4then the proof is complete.ワ
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If FnK * gthen we have to show that F c K.
Since FnK*S then FnKcF and FflKcK.
But F is minimal preclosed, so we have r[-lK=F or FnK=0.
Thus FOK=F
$q FcK.r
Theorem (2,21)z let F and K be minimal preclosed subsets of a
Topological space X then FflK=gor F=K.
Proof: If F n 6 = 4 then the proof is complete.

If F n K ;c gthen we have to show that F = K .

Since FnK*Q so FnKcFor FOKcK.
Since F is minimal preclosed so we have FOK=F or FO11=4. But
FnK+shence FflK=F whichmeans FcK. .r
Now since K is minimal preclosed so we have FfiK=K or FOK=4.
But FflK*shence FOK=K which means KcF. Therefore F:K. I
Theorem (2.22): Let U, V and W be maximal preopen subsets of a
Topological space X such that U * V, if unv c w,then either U:W or
V:W.
Proof: Suppose that U O V c W , if U:W then the proof is complete.
If U * Wwe have to show that V:W
v nI|/ = v n(x lw\ Set Theory

=vnWn(uUr,)) tye.n)
=Y nl(w nu)V(w nr)) set rheory

= Qt nw nu)fl(v nw nr) set Theory

= (u n r)U(v nw) sn ceU frv cttt
= (uUw)nv Set Theory

=X0V sinceUUW=XThus VOW=V implies VcW but V is
_V

maximal preopen therefore V:W or VUW=X but VUW+Xso V:W.
I
Theorem (2.23): IJ, V and W be maximal preopen subsets of a

Topological space X which are different from each other, then
UnV a Unw
Prooft
Let UOV c UOW

=(u 0 v)U (w 0 v) c (u n w)U (w n v)

=(ufiw)Uvc(u0v)Uw
= XUV c XUW
+Vc W
But V is maximal preopen and W is a proper subset of X so V:U, this
result contradicts the fact that U, V and W are different from each other.
Hence UnVaU[^lW r
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Theorem (2.24)z Let F be a minimal preclosed subset of a Topological

space X, if xeFthen FcK for any preclosed subset K of X containing

x.
Proof: Suppose xeKand FcK so F(^lKcF and FOK;i$ since

xeFOK
But F is minimal preclosed so F0K=F. or FnK=0.
hence FnK=F which contract the relation F[lK cF. Therefore FcK.r
Theorem (2.25)z Let F and Fo (cr e A) be minimal B -closed sets if
F . U tt then there exists cre e A such that p = FL. .

creA

Proof: First we have to show that FflFo" +0, suppose that FflFo" =0

then Fo" cX\F and so p. U Fo cX\F which is a contradiction. So

creA

F0Fo, *$. andhence FOF*" cFand FOF'. -Fao

since FflFo. cF and F is minimal preclosed then FflFo, =F or

FOFo" = 0

thus F0Fo, =F and hence F.,o cF. Now since F|.]FL".FL.and Fo.is

minimal preclosed then F0F.ro =Lo or F0Fc{o:Q. Thus F[lFo. =IL"

and henceF c Fo. . ThereforeF = Foo .l

3.!""-i" and !o*-", space

Definition (3.1): A topological space X is said to be Tpremin space if
every nonempty proper preopen subset of X is minimal preopen set.

Definition Q.2): A topological space X is said to be \*.n* space if
every nonempty proper preopen subset of X is maximal preopen set.

Example (3.3): Let X:{a, b, } and t={$,{a},{b},X} thus PreO(X):t, it
is clear that {a} and {b} are maximal and minimal preopen sets thus the

space X is both \r".* and \remax.
Remark (3.a): Tpremin and \remax spaces are identical.

Theorem (3.5): A space X is Tp.e*;n if and only if it is Tpremax.

Proof: + Let X is Tpremin Sp€tco. Suppose that X is not\remax, so there

is a proper preopen subset K of X which is not maximal, this mean there

exist a preopen subset of X withX cH+Q. Thus we get that H is not

minimal which is contradict of being X is \r"rn*.
e Let X is \remax space. Suppose that X is notTpremin, So there is a

proper preopen subset K of X which is not minimal, this mean there
ワ
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exist an preopen subset of X with g * H c K. Thus we get that H is not
maximal which is contradict of being X is Tpremax .r
Theorem (3.6): A topological space X is \*-i" space if and only if
every nonempty proper preclosed subset of X is maximal preclosed set
in X.
Prooft = let F be a proper preclosed subset of X and suppose F is not
maximal.
So there exists an preclosed subset K of X with r *X such that Fc K.
Thusx-KcX-F. Hence X-F is a proper preopen which is not minimal
and this contradicts of being X is Tpre*1n spoc€.

eSuppose U is a proper preopen subset of X. thus X-U is a proper
preclosed subset of X, so X-U is maximal preclosed subset of X. and by -
(2.16) U is minimal preopen. thus X is Tpr"r;n sp&c€. !
Theorem (3.7): A topological space X is Tpr"ra( space if and only if
every nonempty proper preclosed subset of X is minimal preclosed set
in X.
Proof:

= let F be a proper preclosed subset of X, suppose F is not minimal
preclosed in X, so there is a proper preclosed subset of X such that

KcF
Thus x-FcX-Kbut X-K is proper preopen in X so X-F is not
maximal in X. Contradiction to the fact X-F is maximal preopen.

elet U be a proper preopen subset of X, then X-U is a proper preclosed

subset of X and so it is minimal preclosed set. By (2.16) we get that U is
maximal preopen. r
Theorem (3.8): Every pair of different minimal preopen sets of Tpremin

are disjoint.

Proof: Let U and V be minimal preopen subsets of Tpre minspace X such

that U*V toshowthat U['lV=O supposenoti.e. U['lV*0.
SoUOVcU and UnVcV. Since UOVcUand U is minimal preopen

then U|V=U orUflV=Q thusUflV=U.

Now since UnVcVand V is minimal preopen then

UnV=V or UnV=4 thusU0V=V.
Hence we get that U:V this result contradicts the fact that U and V are

different. Therefore U nV = O .r
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Theorem(3.9):UniOn Of every pair of different maximal preopen sets

in TpК max Space X is X.

Proo■ Let U and V be maximal preopen subsets of TpК mⅨ space X

such that U≠ V to show that U∪ V=X Suppose noti.e.U∪ V≠ X.

So u⊂ U∪ V and V⊂ U∪ V・

Since u⊂ U∪ V and U is nlaximal preopen then u∪ V=U Oru∪v=X.

Thus u∪ V=U.… (1).

Now since V⊂ U∪V and V iS maximal preopen then
U∪ V=V or u∩v=X

thus U∪ V=V.… (2)
‐      Hence from(1)and(2)we get that U=V this result contradicts the fact

that U and V are different.Therefore U∩ V=X。■

4.Continuity with Minimal and Maximal Preopen Sets

Deflnition(4.1):Let X and Y be topological spaces,a map f:X→ Y is

called minimal precontinuous if f~1(U)iS minimal preopen in X for

any open subset U ofY.

Example(4.2):Let X=Y={a,b,C}and f:(X,■)→ (Y,σ)iS the identity

map,where τ=(φ ,{a),(a,C},X)and σ={φっ{a},Y}then fiS minimal

precontinuous since the only proper open subset of Y is{a}and

_        f~1((a})={a}is minimal preopen in X.

Deinition(4.3):Let X and Y be topological spaces,a map f:X→ Y is

called maximal precontinuous if f~1(U)iS maximal preopen in X for

any open subset U ofY.

Example(4.4):Let X=Y={a,b,C}and f:(X,τ)→ (Y,σ)iS the identity

map,where τ={φ ,(a},(b},(a,b},X}and σ=(φ ,(a,b},Y}then f iS

maximal precontinuous since the only proper open subset of Y is(a,C}

andf~1({a,b})=(a,b)iS maximal preopen in X.

Theorem(4.5):Every minimal precontinuous map is precontinuous。

ロ
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Proof: Let f : X -+ Y be a minimal precontinuous map and U be open

subset of Y. then r-l1u; is minimal preopen in X and so r-l(u) is

preopen subset of X.r
Remark (a.6): The converse is not true in general as in the following
example.

Example @.7): Let X: Y: {a, b, c} and f :(X,r)-+(y,o)is the identity

map, where r:{0, {a}, {c}, {a, c}, X} and o:{0, {a, c}, Y} thenf is

precontinuous but f is not minimal precontinuous since f-I1{a,c}) = {a,c}

is not minimal preopen since {a} e PreO(X) and 0 * {a} c {a,c}

Theorem (4.8): Let X and Y be topological spaces, if f :X -+ Y is a

precontinuous onto map and X is \re*in space then f is minimal

precontinuous.

Prooft It is clear that the inverse image of 6 and Y are preopen subsets

of X. So let U be a proper open subset of Y. Since f is precontinuous so

r-l(u) is proper preopen subset of X, but X is Tpremin so r-l(u)
minimal preopen.t

Remark (a.9): the converse is not true in general as in the following
example.

Example (a.10): In@.2) f is minimal f-continuous but X is not \remin.
Theorem (4.1f): Let X and Y be topological spaces, if f :X-+yis a

precontinuous onto map and X is Tpr".* space then f is maximal

precontinuous.

Proof: It is clear that the inverse image of 6 and Y are preopen subsets

of X. So let U be a proper open subset of Y. Since f is precontinuous so

r-l(u) is a proper preopen subset of X but X is \rerrx So r-l1q is

maximal preopen.r

Remark (4.12)z the converse is not true in general as in the following
example.

Example (4.13): In (a.a) f is maximal precontinuous but X is not

\r".* SPace'

Theorem (4J$z Every maximal precontinuous map is precontinuous.

つ
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Proof: Let f :X-+Ybe a maximal precontinuous map and U be open

subset of Y. then r-l1q is maximal preopen in X and so f-l(U) is

preopen subset of X.l
Remark (4.15): The Converse is not true in general as in the following

example.

Example (4.16): Let X: Y: {a, b, c} and f:(X,t)-+(Y,o)is the

identity map, then where r:{0, {a}, {a, c}, X} and o:{0, {a}, Y}

then f is precontinuous but f is not maximal precontinuous since

f-l({u}) = {a} is not maximal preopen since $ + {a,c}: {a}.

Remark (4.17)t Minimal precontinuous and maximal precontinuous

maps are independent of each other and the following examples show

that.

Example (4.18): In (4.4) f is maximal precontinuous since

f-l11a,c)) = {a,c} is preopen but f is not minimal precontinuous'

Example (a.19): In @.2) f is minimal precontinuous but it is not

maximal precontinuous

since r-t({u}) = 1a} is not maximal preopen in X.

Theorem @.20): Let f :X+Ybe a map and X and Y be topological

spaces, then f is maximal (resp. minimal) precontinuous if and only if
r-lG) is minimal (resp. maximal) preclosed subset of X for each closed

subset F of Y.

Proof: +let F be a closed set in Y. thus Y-F is open and so f-l1V-n;

is maximal (resp. maximal) preopen. but f-l(Y-F) = X-f-'(p) ,o f-lG)

is minimal (resp. maximal) preclosed.r

Theorem @.21): Let X,Y and Z be topological spaces, if f : X + Y is a

minimal I respect. maximal) precontinuous map and g: Y -+ z is a

continuous map then gof :X-->z is a minimal (resp. maximal )

precontinuous map.

Proof: Let U be an open subset of Z, since g is continuous so g-l(u) is

an open subset of Y. But f is minimal (respect. maximal)

precontinuous thus f-l(g-1(U)=(g"f)-t is a minimal (respect.

maximal) preopen subset of X.r

‐
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5. Conclusion

In this paper we get some theorems presented to explore many various

properties of the minimal preopen and maximal preopen and their

complements and we defined two types of topological spaces and

finally we defined continuity over the new sets which produced here.
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ABSTRACT
Contrast enhancement is a method to expand the contrast of features of interest

so that they occupy a larger portion of the displayed gray level range without
distortion to other features and the overall image quality. The problem in medical
images is how to process and analyze of images (because it is important in medical
diagnosis field) so that high quality information can be produced for satisfy disease
and treatment. To produce a contrast enhancement recover an image within a given
area darkness, also improve visual quality of it. In this paper we proposed a
method of contrast enhancement which consists of two steps unsharp masking step
and contrast enhancement step then bring out hidden details. We provide
experimental results using different kind of medical images, which are hard to be
contrasted by other conventional techniques. The output images show a wide variety
of features, visible and interpretable to the human eye. Many more details become
visible. The resulting images after applying the new proposed contrast are enhanced.

1. INTRODUCTION
Image enhancement processes consist of a collection techniques that
seek to enhance the visual appearance of an image or to mutate convert
the image to a form better suited for analysis by a human or machine.
Image enhancement is applied in every field where images are ought to
be understood and analyzed. The principle objective of image
enhancement techniques is to process an image so that the result is more
suitable than the original image for a speaific application [1]. During
this process, one or more attributes of the image are modified. The
choice of attributes and the method they are modified are specific to a
given task [2]. Contrast enhancement is a method to expand the
contrast of features of interest so that they occupy a larger portion of the
displayed gray level range without distortion to other features and the
overall image quality. The goal of contrast enhancement techniques is to
determine an optimal transformation function relating original gray
level and the displayed intensity such that contrast between adjacent
structures in an image is maximally portrayed [3].

・
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Medical imaging modalities such as computed tomography (CT),

magnetic resonance imaging (MRI), and digital radiography often

contain 12 bit or more significant contrast information .Anatomical

tissues may occupy significantly different dynamic ranges on display

due to difference of X-ray attenuation .By comparison, the human

visual system can only perceive less than 100 different gray levels [4]
.Thus, contrast enhancement is usually needed for clinical readings. In
some CT radiographs, the features of interest occupy only a relatively
narrow range of the gray scale.

The problem of enhancing contrast of images enjoys much attention and

spans a wide gamut of applications, ranging from improving visual

quality of photographs acquired with poor illumination to medical

imaging t5]t6] .Common techniques for global contrast enhancements

like global stretching and histogram equalization do not always produce

good results, especially for images with large spatial variation. A review

of traditional contrast enhancement methods for digital radiography can

be found in [7].
Medical image processing has experienced dramatic expansion, and has

been an interdisciplinary research field attracting expertise from applied

mathematics, computer sciences, engineering, statistics, physics,

biology and medicine. Computer-aided diagnostic processing has

already become an important part of clinical routine. Accompanied by a

rush of new development of high technology and use of various imaging

modalities, more challenges arise; for example, how to process and

analyze of images so that high quality information can be produced for
disease diagnoses and treatment. The influence and impact of digital

images on modern society is tremendous, and image processing is now

a critical component in science and technology. The rapid progress in

computerized medical image reconstruction, and the associated

developments in analysis methods and computer-aided diagnosis, has

propelled medical imaging into one of the most important sub-fields in

scientific imaging [8].
1.1 Type of Medical Images
During the past few decades, with the increasing availability of
relatively inexpensive computational resources computed tomography

(cT), magnetic resonance imaging (MRI), doppler ultrasound and

various imaging techniques based on nuclear emission (PET) (positron

emission tomography)etc have all been valuable additions to the

radiologists arsenal of imaging tools towered ever more detection and

diagnosis of disease. Imaging principles are rooted in physics,

mathematics, computer science and engineering [9].Some type of
medical Image are
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l. (MRI). In medicine radio waves are used in magnetic resonance

imaging (MRI).This technique places a patient in a powerful magnet

and passes radio waves through his or her body in short pulses. Each

pulse causes a responding pulse of radio waves to be emitted by the

patient's tissues. The location from which these signals originate and

their strength is determined by a computer, which produces a two-
dimensional picture of a section of the patient. MRI can produce

pictures in any plane. MRI images of a human knee and spine [10].

2. X-rays are among the oldest sources of EM (electro magnetic)

radiation used for imaging. The best known use of X-rays is medical

diagnostics, but they also are used extensively in industry and other

areas, like astronomy. X-rays for medical and industrial imaging are

generated using an X-ray tube, an X-ray contrast medium is injected

through the catheter. This enhances contrast of the blood vessels and

enables the radiologist to see any irregularities or blockages. The

catheter can be seen being inserted into the large blood vessel on the

lower left of the picture. Note the high contrast of the Perhaps the best

known of all uses of X-rays in medical imaging is computerized axial

tomography. Due to their resolution [10].
3. CAT (computer axial tomography) or CT (computer tomography)

scans revolutionized medicine from the moment and CAT image is a
"slice" taken erpendicularly through the patient. Numerous slices are

generated as the patient is moved in a longitudinal direction. The

ensemble of such images [11].
4. Ultrasound imaging is used routinely in manufacturing, the best

known applications of this technique are in medicine, especially in

obstetrics, and where unborn babies are imaged to determine the health

of their development byproduct of this examination is determining the

sex of the baby. Ultrasound images are generated using the following
basic procedure:
r. The ultrasound system (a computer, ultrasound probe consisting of a
source and receiver, and a display) transmits high-frequency (1 to 5

MHz) sound pulses into the body.
2. The sound waves travel into the body and hit a boundary between

tissues (e.g., between fluid and soft tissue, soft tissue and bone). Some

of the sound waves are reflected back to the probe, while some travel on

further until they reach another boundary and get reflected.
3. The reflected waves are picked up by the probe and relayed to the

Computer.
4. The machine calculates the distance from the probe to the tissue or

organ boundaries using the speed of sound in tissue (1540 m-s) and the

time of the each echo's return."
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5. The system displays the distances and intensities of the echoes on the

screen, forming a two-dimensional image [11].
1.2 Properties of Medical Images

It is generally desirable for image brightness (or film density) to be

uniform except where it changes to form an image. There are factors,
however, that tend to produce variation in the brightness of a displayed
image even when no image detail is present. This variation is usually
random and has no particular pattern. In many cases, it reduces image
quality and is especially significant when the objects being imaged are

small and have relatively low contrast ll2).
2- Implementation of Enhancement Technique
In proposed enhancement technique, we used these steps:

The steps of our enhancement technique are as following:
1. Unsharp masking step: Enhances small structures and bring out the

hidden details in the image by using unsharp masking. It only sharpens

the areas, which have edges or lots of details. Unsharp masking
performed by generating
A blurred copy of the original image by using laplacian filter [3],
subtracting it from the original image

I(i''i) : Io(i,i) - IaG,i) ""' (1)
Where
I (i,j) unsharp masking image, and 16(t,7) bluned copy image
Multiply the unsharp masking image by a fractional contrasted. In this
step, the large features are not changed by much, but the small ones are

enhanced. The result is a sharper, more detailed image.

g(i'j) = Io(i, j) + kt(i'j) ......(Z)
Where: g (i, j) is output image

k is scaling constant. Logical values for k vary between 0.2 and 0.7.
Recently there was an attempt to perform the sharpening by local
analysis of gradients [3].

2. Contrast enhancement step: For a grey scale image sliding 3x3 map

mask moves from the left side to the right side of original image
horizontally in steps starting from the image's upper right corner. A
pixel value in the enhanced widow dependents only on its value that's
mean

a. If the interest pixel exceeds a certain value (threshold) its value
remain unchanged

b. If the value of the pixel is under the threshold then it will be the
process can be described with the mapping function O:M (i),

Where

ミ
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O the new pixel values
i old pixel values

The form of the mapping function M that determines the effect of the

operation is:

M=:* C …

According to (eq. 3) mapping function the new value of corresponding

pixel will be

(i ift>t
o:l I c \ .^. ......(4)

(. ,*(i.r*,;) itt<t

Where
c is a contrast factor determines the degree of the needed contrast.

After map window reaches the right side, it retums to the left side and

moves down a step. The process is repeated until the sliding window

reaches the right-bottom corner of the image. Then apply the slider map

window as where c is a contrast factor determines the degree of the

needed contrast. After map window reaches the right side, it returns to

the left side and moves down a steP.

3. Results
We have use a robust method for contrast enhancement of dark

medical images. The technique is based on the pixels of sharpened

version of oiiginal image the sharpened version is obtained by using

unsharp masking. Then u l*g-.liding window passes over the sharpened

version,. A11 pixels values go over the threshold remain unchanged,

other pixels will remapped according to equation (4). Using two ways to

calculated of contrasi of (input image and image after implantation

algorithm) the values are shown in Table (l). And figers (1,2, 3, 4)

show the enhancement technique apptied on different type of medical

images.
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Table-l:values of contrast for in and out images using two ways to calculated of
contrast

The results from applying our approach on grey scale; medical
images show that the technique is robust and able to recover even

too dark images from blurring and darkness and form table(l)
noted that the values of images contrast decreased after
implementation the algorithm and there are several advantages of using
this algorithm, including
1-The ability to enhance the performance of any still image regardless

of its construction.
2-Provide enhancements that are physically impossible to achieve,
beside its ideal for enhancement of all types of medical images

Future Wore
We suggest applying the technique in an iterative manner and show the

results on real remote sensing panchromatic images.

ミ

ミ

Image in Image in Image out Image out

Image kind %″な′=争話無 Contrast : /, GO"″“′=Z~~ι
...

Contrast :1
Ultrasoundl 0.8012 0.7412 0.5777 0.57011

Ultrasound2 0.9616 0.84321 0.4760 0.45255

X―rayl 0.823 0.873 0.643 0.723

X-ray2 0.446 0.423 0.1471 0.1028

MR11 0.235 0.1854 0.528 0.234

MR12 0.1764 0.5388 0.1484 0.533

CAT 0.2240 0.226 0.197 0.1706

Discussion
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Figure-l: The result of our method ultrasound image.
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Figure-2: The result of our method on An X-ray images
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Figure-3: The result of our method on MRI images
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ABSTRACT
In this paper, we study the problem of scheduling n jobs on a single machine to

minimize total cost of total completion times and maximum lateness of alljobs with
release date. Each job i has a release date r1, processing time p1 and due date dr. We
derive several upper bounds and a lower bound, these bounds are used in a branch

and bound solution method. Because of the computational complexity of the

problem, near optimal solutions are obtained by developed algorithms. All
algorithms are tested and computational experiment are given in tables.

INTRODUCTION
Scheduling theory appeared in 1950. Since this time, problems

became more and more complex due to the numerous practical
constraints they want to take into account. Surprisingly the most
important part of literature on scheduling problems, in practice, is the
use of multiple criteria which often allows to compute a more realistic
solution for the decision maker. A survey on multicriteria one-machine
scheduling problems can be found in [1]. They show that three kinds of
problems have been talked. The first one deals with problems in which a
lexicographical order of criteria is minimized. The second class of
problems considers a convex combination of criteria. The third class of
problems concerns the determination of all strict Pareto optima [2].
Scheduling is a decision-making process that plays an important role in
most manufacturing and service industries. It is used in procurement

and production, in transportation and distribution, and in information
processing and communication. The scheduling function in a company

uses mathematical techniques or heuristic methods to allocate limited
resources to the processing of tasks. A proper allocation of resources

enables the company to optimize its objectives and achieve its goals.

Research on multiple and bicriteria scheduling has been scarce,

especially when compared to research in single criterion scheduling [3].
Recently, much research has been directed to scheduling problems with
multiple criteria. Van Wassenhove and Gelder [4], Hoogeveen [5],
Abbas [6].
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In this paper, we study bicriteria scheduling problem belong to the

second class. In section (2) problem formulation and analysis are given.

In section(3), we propose a branch and bound algorithm for optimal

solution for the problem. Special cases for the problem is given in
section (4). Near optimal solution for the problem obtained by using

some algorithms o given in section(5).In section (6) computational

experience is given. The conclusion is given in section(7). Future work

is given in section (8).

Formulation of the problem and analysis
The general problem of scheduling jobs on a single machine to

minimize the total cost can state as follows: A set of n independent jobs

N:{1,2,3,...,n} which has to be scheduled without preemption on a

singte machine that can handle at most one job at a time. The machine is

assumed to be continuously available from time zero onwards and no

precedence relationship exists between jobs. Each job j, j€ N has an

positive integer processing time P.; , a release date r.; and ideally should

be completed at its due date d.; . For any given schedule (1,2,...,f,),
c1:r1*p1 , c;:moX{r; , c;-r } +p.; for j:2,3,...,n and L,nu*: max1.;sn{f'} ,

Lj: .j :dj, j:1,2,...,n. The objective is to find the schedule that

minimize the sum of total completion times and maximum lateness

costs of all jobs with release dates on a single machine (i.e. minimize

ヽ

the multiple

0iL, c;+ L*"x) .

Our scheduling problem can be stated as follows:
Given a schedule 5:(l ,2,...,1), then for each job j E 6 can be

calculated the completion time C.; and the lateness l. The objective is to

find a schedule , o : (o(f ), o(2), ... ... , o(n)) ttrat minimize the total

cost Z(o) where

Z(o) =Zi=rCr() * L*r*(o).
Let S be a set of all schedules, then we can formulate our problem in

mathematical fb111l as:

И 4{Z(σ))=mm(Σ (アσ(プ)+Z峰 (σ))

s.t.

Cσ O)≧
rσO)+Pσ ci)

Cσ O)≧ CσO_1)+Pσ O)

CσO)=max〔{ら (プー1),■ズブ)〕十ち(プ )〕
L σG)≧ Cσ O)一 dσ (j)
Pσ(1)>0
rσc)>0

objective funct io n( MOF ) d enotedby

j=1,2,..… ,n

j=2,3,....'n

j=2,3,¨ ..,n

j=1,2,3,..… ,n

j=1,2,… .,n

j=1,2,3,...,n

(P)
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The aim of problem (p) is to find a processing order of o of the jobs

on a single machine to minimi ze the sum of total completion times and

maximum lateness (i.e., to minimize fr"ftr+Zmax(o) , o € S ).
j=r

The probtem (p) is decomposed into two subproblems (spl) and (sp2)

with a simple structure as fonows:

Zl=min(Σ Cσ (プ )}
σCS  プ=1

s.t.

εσ(プ)≧ rσO)+′σ(プ)        j=1,2,..,n
εσ(プ)≧ Cσ (j-1)十 Pσ(1)      j=2,3,……

%(プ)=max{{%σ _1)′ 4ズブ)〕十ちσ)} j=2,3,……,n
lt is clear that subproblem(spl)iS NP― hard[7].

(Spl)

ヽ
け

Z2=min(max(zσ (プ )}}
σCS

s.t.

Cσ (j)≧ rσ(j)+Pσ (1)
Cσ (j)≧ Cσ (j-1)+Pσ (1)
Lσ (1)≧ εσO)一 ασ(j)
P60)>0
rσ(j)>0

(sp2)

It is clear that subproblem(sp2)is NP‐hard[8].

Then 1/■ /(Σ卜l Cj+Lmax)iS NP‐ hard.
Theorem l[6]

If Zl,Z2and M are the minimum ouectiv function values of
(sp1),(sp2) and (P) respectively then Zl +22

Branch and Bound (BAB) Method to find Optimal Solution
Our branch and bound algorithm uses a forward sequencing branching

rule for which nodes at level (L) of the search tree correspond to initial
partial sequenced in the first (L) position .First step in BAB is to
calculate upper bound (IIB).
Derivation of upper bound
We can find upper bound for our problem (P) by using :

Heuristic 1

Sorting the jobs (1,2,3,...,n) by non-decreasing order of 11 (i.e. 11( 12 (
....S rn).

If o : (o(1),o(2),....,o(n)) is obtained by heuristic I

j=1,2,… …,n
j=2,3,..… ,n

j=1,2,3,… …,n
j=1,2,...,n

j=1,2,3,… 。,n

い
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n

Then UBI:IC 6U) +Imax(o).
j=t

Heuristic 2
Sorting the jobs by non-decreasing order of r;+p., (i.e. r1+p1S t2*p2 I

If o: (o(1),o(2),....,o(n)) is obtained by heuristic 2
n

Then rJBz :ZcoU) + z max( o) .

j=r

Heuristic3
Choose minimum rr*pr and sorting (n-1) jobs by SPT rule (i.e. Pr S Pz

If o: (o(1),o(2),....,o(n)) is obtained by heuristic 3
,l

Then UB3 :rcoj)+Imax(o).
j=l

Heuristic 4 [9]
Let t be a time at which a machine is available

\(t) :max (t,r1) the earliest beginning time ofjob j at time t.
Cj(t): &(t)+P: the earliest completion time ofjob j at time t.

G(i,t): &(t)+ cj(t)
Given a set ofjobs N:{ 1,2,. . .,n}
Step 1: Initialized F0, A:{l ,2,...,a} and o:0 .

Step 2: Select job j with mlnc(j,t;.Break ties by choosing j

within{min \(t)}, and further ties by choosing j with min d1.

Step 3: Update t, A and o , such that t: C1(t),A:A-[i] , o:( o, oO)
Step 4: If A+ 0 , return to steP 2 .

Step 5: Compute UB4: frt<t>+rmax(o)

Then UB:min{UBl,UB2,UB3,UB4}.
The second step in BAB method is calculate lower bound (LB).
Derivation of lower bound
A lower bound for problem (P) is based on decomposition (P) into two

subproblems (spl) and (sp2) as shown in section ( 2 ), then calculate Zl
to be the lower bound for spl and 22 to be the lower bound for sp2 ,

then applying (theorem 1) to get a lower bound (LB) for our problem

(P).
For subproblem (sp1) we obtained the lower bound by using the lower

which proposed by Al-Zuwaini(2000)[10] depend on relaxation of the

constrained on the jobs, that is relaxed the release date, then

LB(spl): nr*+cr-R
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Where r*: 1nin {7,r} , R: i r,. and o be an optimal
jeN - j=l

solution for l/ri:O/)Ci (i.e. o is obtained by SPT rule ).
For the subproblem sp2 , we relaxed the release date and the problem

become lhi:DlL^u* , then sorting the jobs by EDD rule (i.e. d1 < d2S

....< d") and calculate L*u* :max{L1}:max{Ci-di} , LB(SP2): L.u*.
Then LB : LB(spl) + LB(sp2) .

Special cases for the problems
l- If r;: r , di:d V i:l ,2,3,.. . .,n then the
optimal solution for the resulting problem obtained by SPT rule , L,nu*:
constant for all sequences : (I &+ r -d).

ヽ
け

1L-

optimal for our problem.
J-

If r;:r, pi:p, di:d then any schedule is

If ri:r , pi:p V i:l ,2,3,...,n , then

6-

ICi: constant for all sequences , EDD schedule gives optimal L*u* .

4- If r;:r V i:l ,2,3,..,flthen SPT,EDD
schedule gives optimal for our problem.
and max Lru*: r +!Pi - d,nin

min L.u*: r +lPi - d*u*.
5- If ri:r, d;: coflstant: IPi+ r then L.u*:0
for all sequences and the optimal solution is obtained by SPT rule .

If r: constant , d: npi n ) 1-, then SPT
rule is optimal for fci and Lmax.

Local Search Heuristic Method
In this section we study local search techniques which are useful

tools for solving single machine scheduling problem
Local search is an iterative algorithm that moves from one solution s to
another s' according to some neighborhood structure. Local search
provides a robust approach to obtain high quality solutions to problems
of a realistic size in reasonable time.
Local search procedure usually consists of the following steps.
1. Initialization. choose an initial schedule s to be the current
solution and compute the value of the objective function F(s).
2. Neighbor Generation. Select a neighbor s' of the current solution
s and compute F(s').
3. Acceptance Test. Test whether to accept the move from s to s'. If
the move is accepted, then s' replaces s as the cufrent solution;
otherwise s is retained as the current solution.
4. Termination Test. Test whether the algorithm should terminate. If
it terminates, output the best solution generated; otherwise, return to the
neighbor generation step.
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We assume that a schedule is represented as a perrnutation of job

numbers (jr, jr,...,in).This can always be done for a single machine

processing system or for permutation flow shop; for other models more

complicate strucfures are used.

In Step(l), a starting solution can be specified by a random job

permutation. If local search procedure is applied several times, then it is

reasonable to use random initial schedules.

To generate a neighbor s' in Step(2), a neighborhood structure should

be s-pecified befoiehand. Often the following types of neighborhoods

are considered:
. transpose neighborhood in which two jobs occupying adjacent

positions in the sequence are interchanged:

(1,2, 3, 4, 5, 6,7) - (1, 3, 2, 4, 5, 6,7);

o swap neighborhood in which two arbitrary jobs are interchanged:

(1,2, 3, 4, 5, 6,7)' (1, 6, 3, 4, 5,2,7);

o insert neighborhood in which one job is removed from its current

position and inserted elsewhere:

(1,2, 3, 4, 5, 6, 7)'(1, 3, 4, 5, 6,2',7)'

Neighbors can be generated randomly, systematically, or by some

combination of the two approaches.

In Step (3), the acceptanie rule is usually based on values r(s) and F(s')

of the'objective function for schedules s and s'. In some algorithms only

moves to 'better' schedules are accepted (schedule s' is better than s if
F(s') < f (r)); in others it may be allowed to move to 'worse' schedules.

Sometimes'kait and see" approach is adopted'

The algorithm terminates in Step(4) if the computation time exceeds

the presi'ecified limit or after completing the prespecified number of
iterations.
Threshold Acceptance Method (TQ[l l]:
A variant of simulated annealing is the threshold acceptance method

(Brucker tl ll). It differs from simulated annealing o4y by .the
acceptanc. rui. for the randomly generated solution s'e N. s' is

u...pt.d if the difference F(s') - f (s) is smaller than some non-

negative threshold /. I is a positive control parameter which is gradually

reduced.
The threshold acceptance method has the advantage that they can leave

a local minimum. it.y have the disadvantage that it is possible to get

back to solutions already visited. Therefore oscillation around local

minima is possible and this may lead to a situation where much

computationul ti-. is spent on a small part of the solution set. For

details of threshold acceptance structure see Il l]'
Tabu Search (TS)[12]:
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The use of the tabu search was pioneered by Glover ll2] who from
1994 onwards has published many articles discussing its numerous
applications. Others were quick to adopt the technique which has been

used for such purposes as sequencing, scheduling, oil exploration and

routing.
The properties of the tabu search can be used to enhance other
procedure by preventing them becoming stuck in the regions of local
minima. The tabu search utilizes memory to prevent the search from
returning to a previously explored region of the solution space too
quickly. This is achieved by retaining a list of possible solutions that
have been previously encountered. These solutions are considered tabu-
hence the name of the technique. The size of the tabu list is one of the
parameters of the tabu search.

The tabu search also contains mechanism for controlling the search. The
tabu list ensures that some solution will be unacceptable; however, the
restriction provided by the tabu list may become too limiting in some
cases causing the algorithm to become trapped at a locally optimum
solution. The tabu search introduces the notion of aspiration criteria in
order to overcome this problem. The aspiration criteria over-ride the
tabu restrictions making it possible to broaden the search for the global
optimum.
An initial solution is generated (usually randomly). The tabu list is
initialized with the initial solution. A number of iterations are performed
which attempt to update the current solution with a better one, subject to
the restriction of the tabu list. A list of candidate solution is proposed in
every iteration. The most admissible solution is selected from the
candidate list. The current solution is updated with the most admissible
one and the new current solutions added to the tabu list. The algorithm
stops after a fixed number of iterations or when a better solution has
been found for a number of iterations. For more details of a generic tabu
search see [12].
Memetic Algorithm Approach (MA)[ 3]:
Memetic algorithms (MA), combines the recognized strength of the
population-based methods with the intensification capability of a local
search. In an MA, all individuals of the population evolve solutions
until they become a local minima of a certain neighborhood (or highly
evolved solutions of individual search strategies), i.e., after the
recombination and mutation steps, a local search is applied to the
resulting solutions. A more formal introduction to MA and polynomial
merger algorithms can be found in Moscato [13].
The initialization part begins at initialize Population and ends just
before the repeat command. This part is responsible for the generation,
optimization and evaluation of the initial population (Pop).The second

一　
）
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part includes the so-called 'generation loop'. At each step, two parent

configurations are selected for recombination and an offspring is
produced and, if selected to mutate, it suffers a mutation process. The

next steps are local search, evaluation and insertion of the new solution

into the population. If the population is considered to have lost

diversity, a mutation process is applied on all individuals except the best

one. Finally, a termination condition is checked. For more details of
pseudo-code of a memetic algorithm can found in [13].
The local search methods (TH), (TS) and (MA) stopped when iteration
:500 iterations.

Computational experience
An intensive work of numerical experimentations has been

performed. We first present how instances (tests problem) can be

randomly generated.

There exists in the literature a classical way to randomly generate

tests problem of scheduling problems.
. The processing time Pi is uniformly distributed in the interval

[1,10].
o The release date r; is uniformly distributed in the interval [1,10].
o The due dates di are uniformly distributed in the interval

[P(I-TF-RDD/2) ,P(I+TF+RDD/2)] ; where P:IP' , depending on the

relative range of due date (RDD) and on the average tardiness factor

(TF). For both parameters, the values 0.2 , 0.4 , 0.6 , 0.8 ,1.0 are

considered. For each selected value of n two problems were generated

for each of the values of parameters producing l0 problems for each

values of n.

The BAB algorithm was tested in Fortran Power Station and local

search methods ( Threshold Acceptance Method (TH) Tabu Search (TS)

Memetic Algorithm Approach (MA)) were tested by coding then in
Matlab R2009b and running on Pentium (R) at 2.20 GHz with Ram 2

GB computer processor-type PDCT 4400. In table ( 1) n : 8 jobs and I 1

jobs we list l0 problems for each value of n. Test problems are tested

to show the efficiency of our lower bound (LB) used in BAB algorithm
to obtain the optimal solution. Results of comparing the lower bound ,

upper bounds and the optimal solutions are given in table (1). The first
column is the number of problems. The second column gives the value

of an optimal solution found by using BAB algorithm. The third column

gives the value of the initial lower bound (ILB). The fourth, fifth, six,

seven columns give the value of our upper bounds

(UB1,UB2,[IB3,UB4). The eight column gives the number of nodes

(Nodes). The nine column gives the time in seconds (Time).

ミ
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and computational time in seconds of BAB algorithm

Opt. : The optimal value obtained by BAB algorithm.
ILB = Initial lower bound.
UB l,[rB2,UB3,UB4 : Upper bounds.
Nodes : The number ofgenerated nodes.
Time = Computational time in seconds.
* = The optimal value equal to initial lower bound.

Table (l) shows that the lower and upper bounds, the number of nodes
and computational time for the 10 problems of n:8 , tr:l l jobs, we
observe that whenever n increases the number of nodes and
computational time increase.

Table-2 comparison optimal solutions in BAB with Threshold Acceptance Method,
Tabu Search and Memeti

Optimal= Optimal solution in BAB.
TH = Threshold Acceptance Method .

TS=Tabu Search.

MA= Memetic Algorithm.

⌒
Ｖ

テ

Table-1:The perfollllanCe Ofinitia1 lower bound,upper bounds,number ofnodes

n a

N Number opt. ILB UBl UB2 UB3 UB4 Nodes Time

8

1 89 169 143 152 22692 0.1598

2 66 134 132 160 128 21792 0.00083

170 う
乙 219 ハ

ン
う
４ 23104 0.00066

4 275 219 286 296 299 283 28960 0.000666

242 194 309 265 257 255 28320 0.00050
6 117 69 127 180 136 17757 0.04933

104 170 182 19323 0.01433

204 148 247 う
ん

つ
４

つ
４ 212 260076 0.01766

9 191 124 232 210 243 194 26969 0.000833
10 274 う

４ 285 286 288 288 28960 0.00900
1 253 205 355 291 17132069 0.409000
2 387 477 429 ハ

ン 388 27607860 0.63200
J 216* 216 308 297 15787054 0.38600
4 367 482 453 394 367 23622829 0.544333
5 397 284 489 512 405 20628934 04826667
6 225 184 う

４ 194 11255923 0.28750
7 う

‘ 214 394 327 391 ハ
υ 15461978 0.37800

8 340 281 426 359 355 22235133 0.52366
9 259 334 278 319 291 11423946 0.290166
10 324 234 443 400 411 325 21960225 0528333

cA m.

N Number Optimal TH TS MA
1 328 340 340 340
2 210 246 246 210

う
４ 300 300 280

4 213 224 224 224
う
Ｚ 283 284 284

6 260 300 300 263
251 292 292 う

Ｚ

つ
４ 212 212 212

9 257 265 265 2s7
10 336 380 354

No. of optimal

‐
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Comparative Results for Local Search Methods
Table (3) shows the comparative of local search methods which

are TH, TS and MA .

The results in table (3) show that (MA) has good performance results
followed by (TH) and (TS).

Table-3: on between Local Search Methods

87417

001451

2533676 2537109

2550317 2521801 2521801

10451115

10701567

10571121

10144201 10144201

10355671

10410195

184

N=50
N MA TH TS Best

5229 5220

5390 5325

5043 5126

5694

527 +

5127

4451 4610 4451

No. r est

Av lnlc 0282623 0009904

N=200
83844 83844

87318 87318

87825 87417

88496 87028 89707

89366 90079 89366

84250 84056

84473 85929

85334

93733 93939

82144 83566

No. ofbest 1

Av. time 1265881 0030966

N=1000
2492995 2516663

2496571 2567825 249(

2488072

2473856

2486050

2523447

2523077
2375832

2418306 2417588

2539757

No. ofbest
Av. time 7962432 0196053

N=2000
10180780

10492722 10622499 10503469

10640560

10597336

10470588 1050848

7 10571121

ｉ５８７
一脳 10657006

10658294 10663512

10427466

No. ofbest
Av. time 2274968
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MA= Memetic Algorithm.
TH : Threshold Acceptance Method .

TS=Tabu Search.
Best: The best solution by using MA, TH and TS.
No. of best : Number of best solutions.
Av. time = Average time of ten examples.

It is clear from the results in table (2) and (3) algorithm MA is the best
in case of number of best as well as average time.

CONCLUSIONS
In this study, the problem of scheduling jobs on one machine to

minimize bi-criteria with release date is considered. The two criteria to
be minimized are lCl and L.u*.
we present a Branch and Bound algorithm to find optimal solution for

the problem of minimizing a linear function (i.e., ICi + L_* ). A
computational experiment for BAB algorithm on a large set of test
problems are given and BAB algorithm solve our test problem up to
(11) jobs . The NP-hardness of this problem and the optimal solutions
of the BAB algorithm are not always quickly. Hence , this problem is
solved by using local search methods Memetic Algorithm , Threshold
Acceptance Method and Tabu Search. Also , we report on the results of
extensive computations test of local search methods.
The main conclusion to be drawn for our computation results is that

MA is more effective method for our problem followed by TH and TS.
whereas the computational time of (TH) is very small followed by the
computational times of (TS) and (MA).

Future Work
An interesting future research topic would involve experimentation

with the following problems:
F2/ ri I ZC, * Lmax.

I lq /ICi + L*,** E-u*.

i

,

N=5000
1 67160733 67096125 67313807 67096125
2 66594548 67080140 67084417 66594548
3 67230227 67491103 67286350 67230227
4 67099756 67579581 67581732 67099756
5 66919533 68159105 67892903 66919533
6 67390319 67445367 67340144 67340144
7 67292694 67618130 67480314 67292694
8 67166577 67288419 67332743 67166577
9 66543462 68262964 68278332 66543462

67079040 68339866 68247116 67079040
No. ofbest 8 1 1

Av. time l149944 0153073 1256968
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ABSTRACT
In this、vork, 、ve introduced the notion of purely Baer property of modules as a

generalization to that of Bacr property.This notion depends on studying the relation

bet、veen the modules and their endomorphism rings through the purity of
annihilatorso Wc show that direct summands inherit this property and that, every

flnitely generated abelian group is purely Baer if and only if it is serni― silnple or

torsionfrec.We provided examples to show that direct sums of purely Baer rnodules

are not so.But arbitrary direct suln ofrnatuany subisomorphic purely Bacr inodules

is purely Baer,and that every frec module over purely Bacr ring is purely Baer.We

give number of characterizations and properties of purely Baer rnodules and extend

some useful results of Baer rings to the general module theoretic setting.

(2010) Mathematics Subject Classification: 16D10 , 16D!q

INTRODUCTION
All the rings are assumed to be with unit, and not necessarily

conlrnutative.The rnodules are unital right rnodules.We usually denote

the base ring by R,the inodule by M and its endomorphism ring by S=

EndR(M)・ The right annihilator of X⊆ M in R(i.e.all elements r∈ R so

that Xr=0)iS denOted by rR(X)'the left arlnihilator of X⊆ M in S(i.e.

all elements α∈ S so that αX=0)iS denoted by ls(X);the right

annihilator of T⊆Sin M(i.e.all olements m∈ M So that Tm=0)is

denoted by rM(T)and the lett annihilator ofP⊆ Rin M(i.eo all olements

ln∈ M sothat mP
=0)iS denOted by lM(P).

A submodule N of an R… module Mヽ calLd essenial in M(or M is
essential extension of N),if N has non… tr市ial intersection with every

non―zero submodule ofM.N is closed in M,ifN has no proper essential

extension in M.

CoS.Roman in[1]intrOduced and studied Baer modules as a generalized

case of Baer ringso An R-1■ odule M is caned Baer rnodule,if for each

lett ideal A of S,rM(A)is a direct summand in M.He gave a number of

very interesting properties ofBaer rnodules.

‐

,

‐
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The notion of purity for abelian groups was generalized to modules

over arbitrary rings in several ways, of which the best-known is Cohns

purity l2l. Asubmodule N of M is pure if the sequence 0 --- N I E-
M@E is exact for every R-module E. This is equivalent to saying that

for each n. : Imir.;r € N where r;i€ R , *, € M, j : 1,...,k, there exist
J

X1EN, i:1,...,n such that n : Xx;r;i for each j. It is well-known that

every direct summand of a module is pure [3].

In this work, we introduced and studied purely Baer modules as a
generalization of Baer modules. An R-module M is purely Baer, if the

right annihilator in M of any left ideal of S is pure. It is clear that

Baer
For properties and characterizations of purely Baer property of modules

More generally, we introduced purely Baer module relative to a

submodule, we proved that an R-module M is purely Baer if and only of
for every direct summands A and B of M with A is a subset of B, A is
purely Baer relative to B. Conditions are investigated under which
purely Baer property is equivalent to the regular property in the sense of
Fieldhouse [5]. Direct summands inherit the properff of purely Baer,

unlike for direct sums, so conditions are considered under which finite
direct sums have this property. Regular rings are characterized as those

every module is purely Baer. Finally we describe purely Baer modules

in the case of finitely generated modules over principal ideal domains.

N 
= 

M means N is a submodule ofM, N S'M means N is essential in
cM, N< Mmeans

P

summand of M, N <
N is closed in M, N .o M means N is direct

M means N is pure in M.

FirstryweintroduLn-ffi#-',*:*J"1,""L',iH.,modures
Definition (2.L) z An R-mod ule M is called purely Baer if for each left
ideal /ofS : Endn(M, r^lD 

=P 
M . Aring R is called purely Baer ring

if Rn is purely Baer R-module.

Alt Baer modules are purely Baer. The converse is not true by the

foltowing example which is appear in( [3].Example7.54) and we list it
as a counter example. Of course, a Baer ring (e.g., a domain) need not

be von Neumann regular. We construct here a ring R that is von

Neumann regular and hence it is purely Baer, but not Baer. But R is
necessarily neither right self-injective nor left self-injective . Let Fbe a

field, and A : F x f x ... . This ring is commutative, von Neumann

regular, and is Baer ring by ([3],Examples(7.47)-(4)). Now let R be the

subring of ,4 consisting of "sequences" (at , az, ...) e A that are

C
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eventually constant, that is there exist a positive integer fr such that o,:
b Vn>k. For any (at, az, ... ) e R, definex: (xr, xz, ... ) by : xr:
an-r rf ant'0,andxn:Oif an:0. Thenx e -R anda: ox a. Therefore,
R is von Neumann regular and hence R is purely Baer. Let ei e R
denote the ith "unit vector" (0,0,...,0,1,0,...), and let N: { €1, €3, e5,

), that is N consists of ei with i is odd. Then ,n0'0 consists of
sequences a : (at , az, ...) which are eventually zero, and such that a,
: 0 for n odd. Now to show that rp(N) cannot be principal ideal of R.

Suppose that rp(N) -- bR for some b : (b, , b2 , ...) e rp(M), then there
existabig integerftosuch thatb,:0for n>ko. nowforeach i :2,4
, ..., the ith "unitvector" e; e rp(l!). In particular ezm e rp(Af, thus e21,s:
br for some r e R, implies that 1 : bzm r2k0 :0, a contradiction, hence
rn(M) can not generated by an idempotent so rR(1V) can not be a direct
summand. Thus R is purely Baer ring which is not Baer, so the purely
Baer property is a proper generalization of Baer property.
Recall that an R-module Mis F-regular, if each submodule of M is pure

[4]. It is clear that every F-regular module is purely Baer. The converse
is not true for example Z as Z-module.
A submodule of purely Baer module may not to be purely Baer module.
Let M be a nonsingular module over a commutative ring R such that M
is not purely Baer (see below) and let E(M be the injective hull of M
and M is essential submodule of E(M Then E(M is
nonsingular([5],proposition 1.22),but E(14) is injective and hence E(M
is extending, thus E(lv) is Baer module by ([],theorem 2.2.2) and
hence E(M is purely Baer while M is not purely Baer. As an
application of above let K be any field, consider the factor ring R :
Klx,yU@y), where K[x,y)is the polynomial ring of two commuting

indeterminates x, y, and (xy) is the ideal of xlx,yl generated by ,y. R is

nonsingular and ,*(i): (r) is not pure in R.

It is an easy matter to show that isomorphic R-module of purely Baer R-
module is purely Baer, but homomorphic image may not, Z as Z-
module is purely Baer, bfi Zq is not, since for the endomorphism of Za,
f which defined by (x):2x for x in Za, we have 22, which the
annihilator of f in Za, which is not pure in Za.

In the following we characterize purely Baer modules:
Theorem (2.2) z An R-module M is purely Baer rffft, eachfamily {ai^
61 of endomorphisms of M, where I be an index seL n 1.1 Ker(a) SP

M.
Proof: Given M is purely Baer and let {airct be a family of
endomorphisms of M, where I be an index set . Let 1be the left ideal of
S : Endp(lt4) generated by the family {ot}^.r, since Mis purely Baer
thenrfiI) 4 M, but each a1 € d then r^41) Srfia;): Ker(a;), thus

,

,
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絶` ≦∩λ∈И κθ″(的).Now if″ ∈ ∩λ∈И κθ″(αλ)then鉤(″)=θ fOr
each λ∈И,if/∈ r implies″ =ΣllS,名 Where sI∈ S and α′∈(鉤 )λ
∈И,for each′ =1,… ,″,then■o)=alノ iα′(″)=農 L′■(0)=O implies
″∈ろズの,Then wc have rズの=∩λ∈/κθr(αλ)ゴν.

Conversely,let r be a left ideal of s then″ 潤 =∩α∈′κθ″(α).By
hypothesis″ xの ≦

P」ほ

Corollary(2.3):√νお′夕/θ夕Bαθ″R―″οグタルα′グ″″α∈/bθ α力″′タ
グ″rθεr s″″″α″冶グ■4″あθrθ И bθ α′′ηグθχ sθちr力θ″∩α∈И Иαゴν
Prθの「:Since for each α∈И there is a submodule 3a ofル

rsuch that ν

=Иα① iBα .Now consider πα:Aイ ーーー→■イbe the proJection map onto

Bの since」ビis purely Baer then by Theorem(2.2)we haVe that ∩α∈И

κθ″(亀)=∩α∈И Иα≦
′M

From Theorem(2.2)we can deduce that an R― moduleルイis purely Baer

if and only if for each subset χofS=E″ぬ(め,″ズめ ≦
P」И

l)The COnverse of Corollary(2.3)is not true in general.For example

consider z p∞ as z-1■odule,its indecomposable so the only direct

surrllnands are O and z p∞ ,then O∩ zp∞ =0≦ P zp∞ (in fact the
only pure submodules are O and z p∞ ),but zp∞ is not purely Baer.

Consider the Z‐ homomorphism α:zp∞ __→ zp∞,deflne by α(
′/′ +々Z)=r/ノ・ +Z fOr each ′∈Z,た ∈∞,then then κθ

o③ =(

″′十Z)WhiCh iS not pure subFnOdule of z p∞ .

Recan that an R― module M is said to have surrmand pure intersection

propeゥ if the intersection oftwo direct surrunands is pure submodule

of M[6].So frOm cOrollary(2.3)we can deduce that purely Baer
modules have surrmand pure intersection propeゥ 。

More generany,we cOnsiderthe foHowing

Derlnition(2。 4):Let ν  be an R‐rlllodule and let Ⅳ be a submodule of

Z」И iS Calledルpurely Baer orル イis purely Baer module relative to二
if for each sub set r of肋″R(ル

`′

り, ぬ` ≦
′ν .

Examples and Remarks:
1)It iS Clear thatル ris purely Baer iffttris purely Bear module relat市 e

to M
2)Every module is purely Baer relative to the zero submodule ofitseli

3)□ as z‐ mOdule is purely Baer module relat市e to cach submodule И

of itsel■ Since each subset r of HO″ R(□ ,И ), r/(I)=И ∩ r□ 0=
И∩ 0=O is pure in И.

4)For each prime numberρ  and integer″ >2,zノ as Z‐mOdule is not
purely Baer lrlodule relative to z′ ″

~′

。 Consider the Z―

homomorphism /: zノ ーー→Zノ‐l deine by/(プρ・+Z)=

^
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tl po-' +Z for each t€ Z, k eo, then rro,-,(.f): (tl p+Z) : zp which

is not pure in zpn-'.
Proposition (2.5): For any R-module M, the following are equivalent:

l) M is purely Baer,
2) For any two direct summands A and B with B < A, A is B-purely

Baer.
3) M is purely Baer module relative to any direct summand of itself.

Proof: (1)=(2) Let I be a subset of Homn(A,B), since A and B ate

direct summands of Mthen there are a submodules C and D of M such

that M: A @ C : B @ D, now consider xc and xo are the projection

maps onto C and D respectively, since for each a € I, a can be

extended to a by putting d(q : 0,since M is purely Baer then by

Theorem(2.2)wehave KerxcO Kerro O ( O,. rKera): A n B n (n,
er Kera) AP M where Kerttg : A and Kerxp: B. Now to check that

Kera: C @ kera, it's clearthat C @ Kera<Kerd'letm e Kerd",

thenm: a* cforsomea € Aandc e C, but0 : a(m): d(a* c):
a(a) + O: a(a), thus a € Kera implies thatm e C@ Kera. Bythe
help of modularlawwe have A) Kera: AO C + Al Kera: Kera,
thenBO (O,. lKera): B ttAa(n,e1Kerd,)<e p7.But 16(I): Bl
(Ooe r Kera). Thus ra(I)SP M.
(2) = (3) = (1).It is clear.
Proposition(2.6): An R-module M is purely Baer if and only if for any

two direct summands A and B of M and for each subset I of
Homp(A,B), re(I) 4 U
Proof: Since A is a direct summand of M, then there is a submodule C
of M such that M : A@ C since for each a € I, d, can be extended to d
by putting d,(q : 0, now consider ttc be the projection map onto C,

and by the similar way of the proof of Proposition(2.5) we have ra(D:
Oaer Kera : A fi( O,. r Kerd) : Kerrgl ( O,. r Kera) 

=' 
M

Conversely:putA:B:M.

Corollary Q.1)z Let M be a purely Baer R-module . Any decomposition
M: A@B and any subset I of Homp(A,B), re(I) 

=P 
A

Corollary(2.8): Let M be a purely Baer R-module. Any decomposition
M : A @ B and any R-homomorphism a: A ---+ B, Kera SP A.

Recall that an R-module M is called quasi-Dedekind if each non-zero R-

endomorphism of M is a monomorphism [7]. It is an easy matter, to

show that every quasi-Dedekind R-module is purely Baer, but the

converse may not true, for example, the Z-module Zz@Zz is
semisimple, so M is purely Baer, but M is not quasi-Dedekind, since the

projection mapping onto Zz is not monomorphism. However, the
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converse is true if M is pure-simple( the trivial submodules are only

pure in M ).
Recall that an R-module M is cogenerator, if for any R-module A,(0/:

f\ker(fl, where the intersection runs over all R-homomorphism of A into

M [s].
In the fotlowing we consider conditions under which purely Baer

modules are equivalent to regular modules in the sense of Fieldhouse'

Proposition(2.9): Let M be a cogenerator R-module' Then

(1) l: ry(ls{A) for each submodule A of M.
(2) M is purelt Baer if and only if M is regular.

Proof: It is clear that A e rrtl{,A)). Let me A. Since M is cogenerator,

then A:O ker(f), where the intersection runs over all R-homomorphism

of IwA into M.Then there is fo:IwA-' M such that fs(m+A) +0. Now

let z: M-r IWA be the natural epimorphism, then fo(r(A)):O, thus fo r€
ls{A), but fo zr(m):f6(m+A) +0, then me r,v{ls{.A)), therefore A -
ru{l{,A)).
(2)LetN be a submodule of M. Then KN) is a left ideal of S, Since M

is purely Baer, rfililD) ! U. By (l), N is pure in M and hence M is
regular. The other direction is trivial.
Recall that an R-module M is purely extending, if each submodule of M
is essential in a pure submodule of M. This is equivalent to saying that

every closed submodule of M is pure. A ring R is called purely

extending, if R is purely extending R- module[8].

Remark: A right nonsingular purely extending ring R is purely Baer.

Proof: Let A be a left ideal of R.By ([l], lemma (1.2.12)), rp(A) is

closedright ideal of in R. But R is purely extending, then rn(A) is pure in

R.
DIRECT SUMS (SUMMANDS) OF PURELY BAER MODULES

In any algebraic concept, a natural question arise is whether the concept

is inirerit by direct summands or direct sums. The following result

shows that direct summands of purely Baer modules inherit the concept.

Theorem (3.1): A direct summand of purely Baer module is purely

Baer.
Proof: Let Mbe a purely Baer R-module and let I be a direct summand

of tut.Now let 1be a left ideal of Endp(,4) to show that r1(I) { A, since

there is a submodule B of M such that M: A@fi, then for each aE I, a
can be extended to d,e s : Endp(M by put d(B) : 0 . But M is purely

Baer then by Theore m (2.2) we have that A o (o,. r Kerd,) : Kerx 6 ff
(ooer Kerd,) < M, where x abe the projection map onto B. Now for

each cr € 1, Kera : Kera@(EB and by the help of modular law then

AO Kerd,: A o(Kera@B): AA Kera @ A n B: Kera, therefore

OoerKera: 2 n 1n,. rKera){ u.ButrA(l): ooe r Kera{ U
and r/I) <,4, thus ,n(D S'l . Then I is purely Baer.

へ
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The following corollary provides a source of example of purely Baer

modules

Corollary Q.z)t Let R be a purely Baer ring, and let e 2 : e e R be

any idempotent of R. Then M : eR is an R-module which is purely
Baer.
Proposition(3.3): If a purely Baer module can be decompose into a

finite direct sum of pure simple summands, then any arbitrary direct
decomposition is a finite.
Proof: Let M: Ml @Mz@... @Mn, where ne @, be a finite direct sum

of pure simples. Assume now that M also decompose as M : @,.,N,,

let 0l mi € M, j : l, ... , fl,thenry: Z,u,,nf'), where n{i )e ly';, vie

11, and 1, is finite subset of 1, v j:1, ... , fr,thus mie Mi O(@,r,4)

since I41 and @,.,,N,are direct summands of M then by Corollary(2.3)

we have that Iv[n(@,.,,N,) is pure submodule of M, thus 0 + Mj n(

o,.r, { ) =' M,but A[1is pure simple then A41O(@,.r, N, ): M implies that

Mia@,.,,N,, then we have M: @i=,M, S @,.g,_,,,{, hence we actually

have equality, but the union of It, Iz, ..., I, is finite set, hence only
finitely many 14 are non zero, i e I.
Proposition(3.4)z Let {M,},.r be a class of R-modules, where I be an
index set. If @,.,M, is purely Baer, then the following hold :

1) M, is purely Baer,Y ie I.
2) V i, j e I andfo,r eachfamily {o,"}^.n of an R-homomorphisms

of Homp(M;,M), where I be an index set, Ote ,t KerataP Mi .

3) V i+ jeI,Y R-monomorphismg:Mi<uM, ------+Miand R-

monomorphism y : M' a@ M ------ Mi . Then the set A : {(q'
' 
(o), - W|(a)) t a e Im(@ n Imfu) ) is a pure submodule of Mi

@M',.

Proof: The elements of the endomorphism ring of @,.,M , are matrices,

for which the (ij) entries are homomorphisms M 
- 

M,.(1) follows
fro* theorem(3.1). (2) Set 1 : {at}rc,t then by Proposition(2.7) we
have rr,(I): Ot".rt KerallP Mi

(3) Observe that as p is defined on a surnmand of Mi, it can be extended
to the whole Mi, by considerinB g7r, where zr is the canonical projection
of Mi onto M',; similarly with r4. To simplify notation, we use the same

symbols for these new homomorphism. Consider the following matrix
(ari,) i,j, e rt with: l) ari,:0, v (i i j') + (i, j), (i, i); 2) dii : g ;3) au: V.
Then Ker((aii)) : y :{(b,c)l p@) + Vk): 0}. Notice that Ker(rp)@
Ker(y) < K. Moreover, since both the kernels of g and V/ are direct
summands, we have Mi : Ker(rp)@Mi and At[ : Ker(ty)@M'. Note

●
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that rp is monomorphism on Mi and ty is monomorphism on Iv['. We

have 9(b) + wk): 0 only it p(b) : - w@)e Im(p) n ImQfi. For (0, c)
. (Mi' @ Mj) o K, we get (b, c) e {((rpwi,)''(o), -(vtri) /(a))l ae Im(v)
n ImQfi| - A. Now (Ker(fi @ KerQfi) n A: {(0,0)},obviously.
Given the fact that any pair (b,c) e K can be written uniquely as (D,c) :
(b',r) + (b",c') with (b',c) e Ker(g) @ Ker(r4) and (b",c')e (Mi @

l4). we have that K : Ker(g) @KerQfi @1, since @,er Miis purely
Baer then K : Ker((aii' D is pure submodule of @;e I Mi but K < Mr
@ M,, then K aP Mi,@M,and A 3 f implies A <P K.' M, thus I <P

Mi,@Mi'.
Finite direct sums of purely Baer modules are not necessarily purely
Baer modules. The Z -module Z@Z2is not purely Baer, even though Z

and z, both are purely Baer z-modules, since define/: z -+2, by /(x)
: t V x e z.If z@z,is purely Baer, by corollary(2.8), Kerf :22 aP

Z, a contradiction.

Theorem(3.5): Let Mrand Mzbe a purely Baer R-modules. If u,e have

the conditions:
1) V N < Mr@ M2 implies that N: Nr@N2, where, Ni < Mi Y i

_t -r
- lrZ'

2) )ouuo^*1u,.1{,)Ker(d) 
: 0 (i +i, i, i : 1,2 ).

Then Mr@ Mz is purely Baer.
Proof: Let S : End(M1g Mz), and let I be a left ideal of S. Then by
(l), ru(I) : Nr @Nz where, Ni S Mi(i:1,2) . By similar way of the proof
of ( [],theorem(3.3.2)) we can showthatNr : Ni O ( O,pe r,, Kerry)
: Ni - rr,(I) aP Mr because Mr is purely Baer also N2: N;n ( lver

,, Kery ) : N:: rM, (I) 4 Mz. Then we have r^,,*^,,(1) : Nr @Nz sP

Mt@Mz. Then Mr@Mz is purely Baer.

Even though there is no connection between purely Baer modules and

modules which satisff the pure intersection property (intersection of
pure submodules is pure). In the following, we show that they share in
many properties.
Proposition (3.6):Zlet M be a pure simple R-module and let N be any

R-module. If M@N is purely Baer then

1) Homp(M,N) : 0 or Every non zero R-homomorphism.fro* M to
N is monomorphism.

2) M is Quasi Dedekind.
Proof:(l) Assume Homp(M,Itl) 10, then letf : M+N be a nonzero R-

homomorphism, since M @ N is purely Baer then by Corollary(2.8) we

have Kerf SP M,but M is pure simple andf # 0, then Kerf :0, thus/is
monomorphism .

4
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(2) M is direct summand of (M @ AD, then by Theorem (3.1) M is
purely Baer. If f(+0)'M------+M, then Kerf ! M, since M is purely Baer.

But M is pure simple andft'O,thus Kerf:O. This shows that M is Quasi
Dedekind.
Proposition(3.7): Let M be an R-module. If R@ M is purely Baer R-

module, then every cyclic submodule of M is flat.
Proof: Let 0 * m . M. Now consider the following short exact

sequence

0 
->Kerf 

--:+ R -1 mR ----+0
Where ir is the inclusion homomorphism and/is defined as followsflr)
: mr) for each r e R.Let iz : mR-+ Mbe the inclusion homomorphism,
now consider izof : R -+M. Since R@ M is purely Baer then by
corollary(2.8), Ker(i2ofl is pure in R. But iz is monomorphism therefore

Kerf : Ker i2of, since R is flat R-module and Rl Kerf = mR. we have

mR is flat.

Recall that a ring R is flat if every finitely generated ideal is flat [9]
Proposition (3.8): Let R be a ring. If @:=,R is purely Baer R-module,

Yn€!,thenRisflatring.
Proof: Let I = Zi=,r,R be a finitely generated ideal of R. Define

f' @ll1R -+ R by /((r)i=) : Zi=,r,r,, it is clear that f is an R-

homomorphism and Im(fl : 1 . Since @lliR is purely Baer R-module,

then by Corollary'(2.8), Kerf SP-@:,R, but @i=,R is flat R-module and

@i=,Rf Kerf = I, so 1 is flat and hence R is flat ring.

Proposition (3.9): Let R be a ring such that every finitely generated

flat R-module is purely Baer . Then R is flat.
Proof: Let I be a finitely generated ideal of R. Then there is a finitely
generated free R-module Fand an epimorphism /: F->1, now consider
i : I -+R be the inclusion map, then io,f : F-+R and F@R is flat R-

module. By hypothesis F@R is purely Baer, then Ker(iofl ! F,but i
is monomorphism then Ker(iofl: Kerf and FlKerf = I*f : I,but F
is flat then 1is flat ideal . Thus R is flat ring.

In the following we characterize regular rings in terms of purely Baer
modules.

Theorem(3.10) z Let R be a ring . Then the following statements are
equivalent:

l) R is regular,
2) All R-modules are F-regular,

‐
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3) All R-modules are PurelY Baer.

Proof:(l) e (2) See [10]
(2) ==, (3) It is clear.

i:i = e) Let M be an R-module and let l/ be a submodule of M.

COnsider r'. M -+ MIN be the natural epimorphism, now by

assumption M @ MIN is purely Baer and by Corollary(2.8) we have 'l/
: Kerr ! U. Thus M is F-regular, in particular R is regular.

Let R be a regular ring which is not semisimple then there is a purely

Baer module that it is not Baer. For, since R is not semisimple, there

exists an R-module M (say) which is not Baer

;([1],proposition(2.4.14)), but R is regular, then theorem (3.10) implies

that M is purely Baer.
Theorem(3.11): Let R be a
statements are equivalent :

1) R is field.

principal ideal domain. The following

2) All R-modules are PurelY Baer.

3) All divisible R-modules are purely Baer.

Proof: Since every regular and principal ideal domain ring is field, so

by Theorem(3.10), we have (l)<+ (2).

(2) = (3) It is clear.
(3) = (2)Let Mbe an R-module, then there is an injective R-module E

and a monomorphism p: M -+E.Let r: E -+MlImlt be the natural

epimorphism, since E is an injective then E is a divisible and the

epimo.pf,ic image of divisible is a divisible and hence E @ MlImlt is a

divisible R-module, thus E @Mllmp is purely Baer. Now by

Corollary (2.8), Kerx is a pure in E, but Kerx : Imp, so Imp is a pure in

E, Thus Y r(+0)eR we have (lm1t)r : Mrl Imtrt,but M is divisible then

Mr: M, and hence (Im1)r: Imp is divisible, but R is principal ideal

domain then Imp is injective, thus Imp is a surnmand of E. Since E is

purely Baer, then by Theorem (3.1) we have that Imp is purely Baer '

But M = I*lr,then M is purelY Baer.
proposition(3.12): Let { Rt}rc,t be afamily of rings, where I be an

indixset. ThenR: @ rc,tR1is purely Baerringif andonly f Rlis
purely Baer ringfor each Lel.'froift: 

It is cleai that Rr is a direct summand of R and R is purely Baer

then by Theorem (3.1), Rl is purely Baer ring .

Conversely, Let I be a left ideal of R. Now consider rh : R+Rr be the

projection map onto Rr, for each ).etl, since / is a left ideal of R then

,rr(0 is a leftldeat of R1, since R1 is purely Baer then r^ (rr(/))is a

pure right ideal of Rr . Now we claim that rR(| : @ re ,1r*^(n^(I))' let

a : (at)rca e rn(D then Ia: 0 implies that x{Dat: 0 for each Letl,

義
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4,

thusal e ro^(n^(I)),so a e @te,rr^,(n^(I)).Nowletb:(bircte @r

.tr (n,Qr^(I)), then we have x1(I) bt: 0 y Lel. Now ln: Lte,r nt,

then I b : lR( I b): D.,,t q(Ib) : Lt,.,t x{D bt: 0, thus be rp(I).
Then rn(D :@rc,t ro,(zcr(I)). But ro,(n^(I)) is a pure right ideal of
R;, v )"e1, so by Lemma(l .1.4), rp(I) is a pure in Ra .

In the following we characterize purely Baer modules in the class of
finitely generated modules.

Theorem(3.13): Let M be a finitely generated module over principal
ideal domain R. The following statements are equivalent:

l) M is purely Baer.
2) M is semisimple or torsion-free.

Proof:
(1) = (2) Assume that M is finitely generated purely Baer module
which is not semisimple to show that M is torsion-free. Now by ([ll],
Corollary 8.3), we can always decompose M: t(M@/(M where t(tr4)
is the torsion submodule of M andflA/) is the torsion-free submodule of
M . Assume t(A4) + 0 and /(M + 0, and by (tl llTheorem 8.14) we
have t(tr4): @n.rMp"('), where P c R is a finite collection of primes

(irreducibles) and Mp'(ot is a non-trivial cyclic modules of prime
power order On(r) *1r"re n(p)eE . Also bV (tlll, LemmaB.lT) we have

the only submodules of Mp'{nt are: 0 = pn(D Mp"o'a pn(p)-] 1s4rn{r)( .. ,.(
p Mp"o'. Mp'(ct . Let po be a prime so that n(p)+O and let cp : R-+
Mp"{nt be the R-homomorphism define by p(r) : i, for x € R, then 0
* Ker(rp) : p['^tR is not pure in Ra, but M is purely Bear and by
Corollary(2.8) then Ker(rp ) is pure in Rp, a contradiction. Then t(A[): 0
or J(M : 0. Assume /(M : 0.Then M : t(M ; it is a direct sum of
modules of the form Mp'(o)which is describe as above,therefore by
Theorem(3.1) Mp'(p) must be purely Baer. since M is not semisimple,
then M can not decomposition as a direct sum of simple modules, then
there is a prime number p such that no@) > l. Let 0 : Mp\@) - 74rn@)

define by e(i): pi, thus 0 +0 because O(Mp'n,or): pMp^@, +0,
since Mpn<et is purely Baer, then Ker(O) : p'o<n'-' Mp'o'o,is pure in
Mp't{nt which is contradiction because Mprc{nt is pure simple. Then we
have t(Al): 0, thus M : fl!4).
(2)+(l) rt M is semisimple then M is obviously Baer and hence purely
Baer. rf M is finitely generated and torsion-free then M =R, for some n

い
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eE, thus by proposition(3.12), R'is purely Baer ring and hence Mis
purely Baer.
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ABSTRACT
The current paper considers the cstirnation of shape parameter in Burr type XII

distribution.The classical estimators"Maximum Likelihood estimator,Unifollllly

Minirnunn Variance Unbiased estirnator" and Bayesian estirnators are discusscd.

Bayes cstilnators are obtained using Jeffrey's and modifled Jeffrey's Priors under

sylnmetric and asymmetric loss functions'lsquared error and precautiona理
/''.卜/1can

squared error(MSE)of the esumators are calculated and compared for small,

moderate and largc samples using sirnulatcd data sets.It is obscrved that Unifbllllly

ⅣIinimum Variance Unbiased estimator gives smallest values of MSE followed by

the lBayes estirnator under squared error loss function、 vith modifled Jeffrey's prior

――一一
――― infomlЯ

“
∩n翼止h運動鋒理叩亜

―

趣Jェ』翼曇墨糞曇 alsO It is_― ―― 一observed that performances of loss functions with modified Jeffrey's prior are better
comparing with Jeffrey's prior.

1. INTRODUCTION
Burr introduced twelve different forms of cumulative distribution
functions for modeling lifetime data or survival data [1]. Out of those
twelve distributions, Burr Type XII and Burr Type X have received the
maximum attention due to its application in the study of biological,
industrial, reliability and life testing, and several industrial and
economic experiments [10].
The Burr Type XII has the following distribution function for X > 0 :

I
F(x;0,1\ - 1')= t-@ ; o)0,)r

>0
Therefore, the Burr Type XII

(1)
has the density function for X > 0 as :

1,

/(χ ;θ′D=θλ χλ
~・

(1‐+χ
λ
)θ
+1 ;θ >0,λ >0   (2)

where 0 and i. are the shape parameters of the distribution.‐
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Inferences on the Bun type XII distribution have been studied by many

authors. Evans and Ragab (1983) [2] obtained Bayes estimates for shape

parameter , 0, and reliability function on type II censored samples.

Mousa (1995) t5l obtained empirical Bayes estimation of the shape

parameter and reliability function based on accelerated type II
censored data. Mousa and Jaheen (2002) t6l obtained Bayes

approximate estimates for the two parameters and reliability function

based on progressive type II censored samples. Soliman (2005) [13]
investigated properties of Bayesian estimates of reliability and hazard

functions. Yarmohammadi and Pazira (2010) [14] compared the

classical estimators of the shape parameter with the minimax estimators

under weighted balanced squared error, squared log error and special

case of pr-cautionary loss functions. Makhdoom and Jafari (2011) [4]
compared empirically using Monte-Carlo simulation the point and

interval Bayesian estimators for the shape parameter rvith the special

form of the distribution when (l - 1) using grouped and un-grouped

data. Nasir and Al-Anber (2012) t7l did comparative study for the

maximum likelihood estimator, median estimator and Bayesian

estimators for estimation the reliability function under Jeffrey ,

modified Jeffrey and extension of Jeffrey priors information with

squared error loss function. Also, Rastogi and Tripathi (2012) [10]

obtained several Bayesian estimates against different symmetric and

asymmetric loss functions such as Squared erTor, linex and general

entropy considered on the basis of a progressively type II censored

sample.

2. Different Estimators of Parometer
In this section classical and Bayes estimators of the shape parameter, 0'

has been determined with the assumption that the other shape

parameter, L, is known.
2.1 Maximum Liketihood Estimator (MLE) of 0
Let X1,X2,.....,Xn be a random Sample of size r drawn from the Burr

type XII distribution defined by (2). Then the Likelihood function for

the given random samPle is given bY:

r(e,\y.)= I'l f@lo,t) = W (3)

i=1 IIiLr(1 + *!)'*'
From which we calculate the log-likelihood function:

\e,xlg.) = nln 0 *nlnL* (l- 1)lilrln(x;) - (a +

1) XiL, tn(r + x/)
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Finding the maximum with respect to g by taking the derivative and

setting it equal to zero yields the maximum likelihood Estimator of the

0 parameter, denotedby 0uL:
n

AvML- 
tgrrn(r +*!)

2.2 (Iniformly Minimum Variance Unbiased Estimator pMVaQ of

3n. f,rn.rion of Burr type XII distribution is belongs to exponential

family. Thereforf,i=rln(1 + x!) is a complete sufficient statistic for 0

[4]. If Xhas a Burr type XII distribution, then:

\irtn(t + x?) - Gamma (r, o)

Now, depending on the theorem of Lehmann-Scheffe [3], taking the

-, mathematical expected of the complete sufficient statistic yields the

Uniform Minimum Variance Unbiased Estimator of the 0 parameter,

denoted by iuturyus:
れ -1

(4)

θυM7υ =
f,i=r ln(1 + x!)

2.3 Bayes Estimation
In this subsection we studied Bayes estimators under two loss

functions. One is symmetric "squared error loss function" and the

second is asymmetric "precautionary loss function". The squared error

loss function associates equal importance to the losses due to
overestimation and underestimation of equal magnitude. However, in
real applications, the estimation of the parameters "or function as

reliability function" an overestimation is more serious than the

underestimate; thus, the use of a symmetrical loss function is

inappropriate. In this case, an asymmetric loss functions must be

considered.
2.3.1 Prior and Posterior Density Function of 0

For Bayesian estimation we need to specify a
distribution for the parameter. We consider two different
distributions for θ[7]:
■

effrey's Prior lnformation: θ(θ)(X:

・ Modined Jeffrey's Prior lnformation:θ (θ)∝ 藤     (7)
Now the Posterior density function of θ for the given random sample χ

with Jeffrey's prior information is given by:

Π[1√ (χ:;θ)g(θ )

(5)

"

ｒ

　

ｒ

０

　

０

ｒ

　
　
ｒ

ｐ

ｐ

(6)
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0" )," fli=rx!-l t
_ fll=,(r + rl)o*' o

ぽ
膊  :dθ

g"-, Jliar(1 + x/)-to+tl

ぽ e"-r ll1=t(t + xl)-@+l) do

gn-t 
"-@ 

+r)Li!, rn(r+zf)

ぽ gn-t r-(o+r)Zi,tn1+x!) 49

6n-r ,-d XiL, rn(r+:f )

ぽ  
θ
7t-l 
θ
~θ
Σた 1ln(1+χ l)dθ

⇒  π
(θ lェ)ノ =訃 θ・

~lθ―θ ΣLlln(1+χO           (8)

which implies that:(θ
lχ )ノ
～Gα777771α (■ ,ΣLl:れ (1+χF))

By the same way,the posterior densiッ functiOn Of θ for the given

random sampleジ F、vith modifled Jeffrcyls prior infollllation is given by:

Πたlf(χ :;θ )θ (θ )π
(θ L〕 Mノ
= ff |li=,f(*,;q s@)do

Π Ll(1+χ F)θ
+1

0" )," llirx!-1 上
√

π
(θ L〕 Mノ =

f滲 赤dθ

θ・―: 11:Ll(1+χ′)~(θ
+1)

ぽ  θ・
t~: 11に
1(1+χ F)~(θ

+1)aθ

θ・
―
: θ
―(θ +1)Σ Lェι・ (1+χ 4)

ぽ  
θ・
~: 
θ
~(θ +1)ΣLl171(1+χ l)dθ

θ・
―
: θ
―θΣたュI・ (1+χl)

=ボ
 
θ・
~: 
θ
~θΣLュ :7t(1+χ l)aθ

1

⇒  π
(θ lェ)″ノ

= (Σ
鷹・
17t(1+χ O)・

 2θ
71_: 
θ
―θΣLl:71(1+χ l)     (9)

which imメおs伍泣
(θ lJMノ～⑫″″α(■―:′ ΣLlれ (1+χF))
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2.3.2 Loss Functions
Here we have determined Bayes estimators of 0 for squared effor and

precautionary loss functions.
Squared error loss function defined as [10]:
L(0,e) - (0 - q'
For squared error loss function Bayes estimator is the mean of posterior
density function. From (8) posterior density function is a Gamma

distribution with parameterr (r,XlL, tn(t + -!)) Hence the mean of
posterior density function is 

til-,. r.Gm.Therefore the Bayes estimator

of 0 under squared error loss function with Jeffiey's prior information

(10)

lS:

^           
■

Qド =Σ
Llln(1+χF)

From (9) posterior density function is a Gamma distribution with

parameters
(η
一
: ′ Σ】:Llιれ(1‐十χ′)). Therefore the Bayes

estimator of 0 under squared error loss function with modified Jeffrey's
prior information is:

1

θMJs=i西
百」ll「1再り

(11)
‐

(12)

Now suppose the loss function is precautionary, which is defined as [8]:

(θ
_θ
)2

一　
”

The Bayes estimator under this asymmetric loss function is denoted by
0p and may be obtained by solving the following equation [8]:

鐸 =E(θ
21二
)⇒ ら =

For(8)posteriOr density

as:

Jt("lr)
function the Bayes estimator of 0 is obtained

Л

／
ト
ー
＼

〉
、
り
　
　
＋

２
ヽ

ｌ

′

ノＰ

(Σl:Llln(1+χ F))2

+ ol, - s(er6), - n(n + 1)
tP (XL, tn(r + *?))'

Therefore the Bayes estimator of 0 under precautionary loss function
with Jeffrey's prior information is:

E(θ
21x)ノ

P=yαr(θ lx)ノP+(E(θ l

(Σ[1ln(1_十 χF))2 XL, tn(t + x/)
,)2

n*n2

‐



れ(■ +1)

)l!r ln(1 + *!)
Now, for (9) posterior density function the Bayes estimator of 0 is
obtained as:

E(e'lt) r,, - var(olt) *,r+ (E(a lt) r,r)'
1
71-2

(Σ::Llln(1+χ F))2

⇒αttP =E(θ
21こ
)MノP=

(ΣLlln(1+χ F))2
Therefore the Bayes estimator of 0 under precautionary loss function
with modified Jeffrey's prior information is:

θMノP= filr ln(r + x!)
Jo S′″
“
ル滅,″ SJ″″α″″Rω

“
Jrs

To compare the estimators θML,θ υMyυ ,らs,ら P,θ MJs and θMノP We
一■h狐祀戸αttБ責に薫元

~詢
無殖Ⅱ¬歓喜la薫刻

「
EΠυ薦
「
o頭SE)of the~優両面爾蔽万T司諭画

~~~

MSE of an estirnator is deflned as:

MSE(θ )

=Σ
足1(∂i― θ)2;R is tたθ71ttabθ r οf rθρliCαι:οη
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らP= (14)

(15)

(16)
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・ト
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ｆ

‐

ヽ

＼
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ヽ
１
，
ノ

２
＼

、

‐

′

／

ヽ
ｌ

ノ

，
，

こ
χＤ

劣
壮
　　↑

１

　

＜

‐
ｎ
＜

↓乳
い

／

１

ヽ

屁

１

一４一
２

■

The number of replication used was R : 3000 samples from the Burr
type XII distribution of sizes n: 5, 10, 15, 30, 50, 100 to represent

small, medium, and large dataset. The values of the parameters chosen

were 7=2 ,0:1.5 and 3. The results of simulation study are

summarized in the tables 1,2 and figures l, 2.

From results we observed that MSE of the Bayes estimator of 0 under

precautionary loss function with Jeffrey's prior information,0lr, is high

for small sample but declining and becoming closer to other estimators

with increasing sample size. Among Bayes estimators, the Bayes

estimator of g under squared elror loss function with modified Jeffrey's

prior information, 0rrr, gives smaller value of MSE. Also, the

performances of loss functions with modified Jeffrey's prior are better
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comparing with Jeffrey's prior. Among classical estimators, we note that

the performance of i,MVU is better than iyy for all sample sizes.

Among classical and Bayesian estimatorc 0uyyu gives smallest values

of MSE followed by 0*1, and hence they are preferred respectively for

all n. Also, we notice that the formula of the Bayes estimator of 0 under

squared error loss function with Jeffrey's prior information, 01r, is the

same as 0,qy, so, the Bayes estimator may give the classical estimator

in some cases. When 0:1.5 and n > 30, the MSE values of 07a1p are

equal to that values for 07s and, 0rr, while with d:3 we notice that

0*to:0rr:4s when n:100. For all cases, as the sample size increases

the mean squared error decrease. From tables 1 and 2 we see that all

methods give estimated values greater than true value of 0 exception

UMW where give estimated values smaller than true value of 0 with
<15.

Table-l: Estimated value and MSE of different estimators of the shape parameter of

‐

10n

ra Cr′′ι″′α 6*, θυ″vυ
（ら らP aw, Aut,

5

Estimated
value

1.8470 1.4776 1.8470 2.0232 1.6623 1.8377

MSE 1.1016 0.6285 1.1016 1.4513 0.8212 1.0855

10

Estimated
value

1.6517 1.4865 1.6517 1.7323 1.5691 1.6496

MSR 0_361 0_2740 0.361 04259 0_3099 0.3596

一　
ｒ

15

Estimated
value

1.6002 1.4935 1.6002 1.6527 1.5469 1.5993

MSE 0.2092 0.1735 0.2092 0.2357 0.1883 0.2088

30

Estimated
value

1.5529 1.5012 1.5529 1.5786 1.5271 1.5527

MSE 0.0912 0.0826 0.0912 0.0975 0.0862 0.0912

50

Estimated
value

1.5321 1.5015 1.5321 1.5474 1.5168 1.5320

MSE 0.0532 0.0501 0.0532 0.0555 0.0515 0.0532

100

Estimated
value

1.5153 1.5001 1.5153 1.5228 1.5077 1.5153

MSE 0.0237 0.0229 0.0237 0.0242 0.0233 0.0237

Burr Tvpe XII distribution、vhcn λ=2,0=1.5

し

く
υ
ハ
υ
う
乙



Burr XII distribution、vhcn λ:

″ Criteria θ″ι θび″ソυ
（θ
′ θ′P θlrJ∫ θMJP

Esrimα′ι″

ッα′″ι
3.6939 2.9551 36939 4.0465 3.3245 3.6754

MSE 4.4066 2.5141 4.4066 5.8052 3.2846 4.3420

10

Es″″α′″

ッα′

“

′
3.3034 2.9730 3.3034 3.4646 3.1382 3.2992

irsE 1.4444 1.0962 1.4444 1.7035 1.2397 1.4386

15

Estimated
value

3.2004 2.9870 3.2004 3.3054 3.0937 3.1986

MSE 0.8366 0.6939 0.8366 0.9428 0.7530 0.8350

30

Es″″αrιご

ッα力″′
3.1059 3.0023 3.1059 3.1572 3.0541 3.1055

MSE 0.3648 0.3304 0.3648 0.3901 0.3448 0.3646

Es″″α′ι″

ッαル
`

3.0643 3.0030 3.0643 3.0947 3.0336 3.0641

MSE 02130 0.2006 0.2130 0.2220 0.2058 0.2129

100

Estimaled
value

3.0306 3.0003 3.0306 3.0457 3.0154 3.0305

MSE 00947 0.0919 00947 00968 0.0931 0.0947
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Table-Z: Estimated value and MSE of different estimators of the shape parameter of
0=J
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Figure-l: MSE of different estimators of the shape parameter of
Burr Type XII distribution when l.=2, 0=1.5

Figure-2 MSE of different estimators of the shape parameter of
Burr Type XII distribution when L=2,0:3
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4. Conclusions
In this paper, we have addressed the problem of Bayesian estimation for
the Burr type XII distribution, under symmetric "squared error" and

asymmetric "precautionary" loss functions with different prior
distribution "Jeffrey's and modified Jeffrey's" and that of classical
estimators "maximum likelihood estimation and Uniformly Minimum
Variance Unbiased estimator". A simulation study was conducted to
examine and compare the performance of the estimates for different
sample sizes with respect to their MSE. From the results, we observed

that in all cases, iu*r, estimator and 0y1s have the smallest mean

squared error values respectively. As the sample size increases the mean
squared error decrease. From the above results of simulation study
according to the values of MSE the relation among the estimators is:
From table (1) when 0:1.5:

1urr, 10r1, 1irt, 10rr-- 0,r a0,, forn < 1s

iurnu 10r1, 10rr:itr:irto a0ro forn > 30
From table (2) when d:3:

0rrr, 10rt, 10*t, 10rr= 0tr a0,, f orn < so

iurru 1 0*t, 1 0rr: 01, : 0utp a 0,, f or n: Loo
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ABSTRACT
In this paper, Adomain decomposition method use to solve system of nonHnear

Fredholrn integro― differcntial equations with fractional order.Lcibniz follllulation is

used to solve the integral for different values of fractional order are given in

numerical examples.

INTRODUCTION
System ofintegral equations are used as mathematical rnodels for rnany

physical situations,recently a great deal ofinterest has been focused on

application of the Adonlian decomposition method to solve a wide

variety of problerns.Convergence theorern of Adomian decomposition

method for nonlinear Fredholm integral equations is presented in,[1].A

computational method for solving a class of nonlinear Fredholln

integro―differential eqations of fractional order which is based on cosine

and sine wavelets presented in,[2].Discrete Adomian decomposition

一 ― ― 一 ― ■ Ю ttЮ d一 優 Ю d― 掟

「

sd神 e■ 聯 o¬ 苗 粛 Ю 樹 轟 ∝ 翅 正 I寺                 
―

equations in,[3].HomOtOpy perturbation method is applied to solve

nonlinear FredholFn integro― differential equations of fractional order in,

[4].

In this paper,fractional calculus about fractional integral operator

with its properties are given in prelinlinaries.Adornian decomposition

method is used to approxirnate nonlinear systerrl of fractional Fredholin

integro―differential problems,by substituting Adornian polynonlials to

solve nonlinear part ofthe problem is presented in section 2.Numerical

results show the approach of the FnethOd to exact solutions is described

in section 3.

1。 Preliminaries

ln this section we introduce some basic deflnitions and properties

of fractional integral which are used in this paper.

Deflnition(1),[5]:

A rea fnctionヵりis said tO be in the spaceの ,β ∈R if there
e対sts a real number p>β ,Such that f(χ)=χρfl(χ),Where fl∈
ε[0,∞ ),and■ S`ddto be h the spaceり i∬ f(・)∈ %′ れ∈Ⅳ・
Deflnition(2),[5]:

‐

ワ
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The Riemann-Liouville fractional integral operator of order

a ) 0, offunction f e Cp, P > -7, is defined as :

x
lf

Id f (x) - ,,") J 
(, - t)d-lf (t)dt < a

0

where f (. ) is the Euler gamma function.

this integral operator has the following properties:

(i) Iof(x) - f(x)
(ii) P1a - Y+F = IFII , d,F > 0

(iii) Id(x- a)v =#fi+ (x- a1o+r, a ) o, y > -L
Definition(3), [2]: Fractional Leibniz Formula

rtDif@) - f(x) -/(0), 0 I a < t
Ditff(x)=f(x), 0(a<1

2, The Adomian Decomposition Method
In this section we extend the work presented in, [l] to solve

system of nonlinear Fredholm integro-differential equations with
fractional order. Fractional calculus is used to solve the fractional

derivative and Adomian polynomials to solve the nonlinear part of the

problem.
Consider the nonlinear system of fractional Fredholm integro-

differential equations:
-A

Dd F (x) - G (x) + [ : v (x, t, F (t)))dt, x e la, b], a e 10,71

… (1)

where:

7(χ′t,F(3))=(υ l(χ,t,F(ι )),υ2(χ′ι,F(0)),¨・,V7t(χ ,t,F(t)))T

F(ι)=σl(ι),/2(ι),… ,■ (t))T

:盟風鰍:争:偶品
′
斜TT

Dα l(χ)=θ ,(χ)+″■(χ ,ι ,■ (ι),f2(t)′ .̈′几(3))dι
…(2)
Lcibinz follllula(deflnitiOn(3))of fractional integral for(2),wc haVe:

1(χ)-1(0)=rαθル )+rα ィ .(χ′ι,fl(ι),f2(t),¨ .,■ (ι))α =
…(3)
The Adomian equations can be written as,[1],[6]:

1(χ)―■(0)=θ i(χ )十 鳩(χ )
….(4)

whcre:

鳩(χ)=鳩 (fl,/2,¨・′■)(χ)十 fαイ■(χ ,ι′fl(ι ),/2(ξ ),¨ .′几(ι ))dι
… (5)

210



Al- Mustansiriyah J. Sci. Vol.24,No5,2013

●

Let:■ (χ)=Σ親=。■m(χ)and Ⅳi(χ)=Σ親=0 4im
whereス im′ m=0,1,2,… are the Adomian polynomials.Hence(4)can
be written as

Σ親=Ofim(χ)=Jι (χ)+Σ凧=。 4imσ10,f11′・・・′f17n,・・・′几0'°・・,几.)
…。(6)

Deflne■ 0(χ)=θ二(χ)-1(0)
■,m+1(χ )=4im(f10′ …′flm′ …,几0,…′几m)j=1,2′ …′れ;m=
0,1,2,...    …°(7)

The appro対 mation of the solution■ (χ)=Σ親=。■m(χ),truncated by
the following series u:た (χ)=Σ精乳■m(χ),With:
limk→∞uた (χ)=元
…。(8)
To determine the Adomian polynomials,[7]:

・          Fiλ (χ)=Σ親=。 Fim(χ )λ
m

…。(9)
and

Ⅳιλ(f.,f2,…′几)=Σ親=。Иim λ
m

…。(10)

where λ is a parameter introduced for convenience.From(10),We
obtain

4れ①=希嚇銚λ続′ん,… ,用 ]た。
… (11)

For example,the following two nonlinear functions,(WhiCh are

polynonlials.

Assume the nonlinear part of(1),iS/2,then:

ス。=月
2,ス1=2fo f.,42=2fo f2+″ ,ス3=2fO f3+2flf2,…

Ⅲ  覚導胃冗l生電得
『

°

"≧

七八・
颯

″fO+3斤ん,43=f+3斤 /3+
6f1/2fO,…

3。 Numerical Results

ln this section,we applied the presented method in this paper for

solving nonlinear systern of Fredholin integral equations of the second

kind with fractional order and solved some examples.The computations

associated with the examples were perforrrled using MathCad14
sottare.

Example(1):

歯
　
　
　
　
　
２‐

ヽ
‥
ノ
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ι

′
‥
ヽ
ん
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―
ノ
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ι

′
‥
ヽ
■

ｌ

ｒ

Ｉ
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1

Dα/2(χ)=g2(χ )+∫ i・(t)/2(ι )dt

where=0.5,fl(0)=F2(0)=°

gl(χ)=論 χ
°5_:

g2(χ)=艦 χ・
5_:

By fractional Leibniz follllulation ofintegral:
1

fl(χ)==χ
―-4Γ
(1.5)χ

05+′α

∫
fl(ι )f2(t)dt

■

/2(χ)=χ
2_5「
(1.5)χ

05+′α

∫
ノ′(t)/2(ι )at

Now let,f10(χ )=rαθl(χ)and f20(χ )=′
α
θ2(χ),then:

f10(χ)=χ ―
轟
χ05

/20(χ)=χ
2_轟

χ
05

2お T鳳 需 那
鋼°n mdh°tねH恥 flrst i∝面oL wc havα

_ o.11oe62+j,0.,

fx(x) = Azo(fro,fro)
1

- t' I fr'ol)fro(t)dt = td(o'o6szs7)

0

= o.ooszsz+rro.,

For the second iteration, we have:

frz(x) = ArrUrr, frt, fro, fr'',)
1

r
= t" I fro(t)frl?) + fzo3)fl{t)dt - Id(0'040725)

0

_ o.o+ozzs*rro'

う
ι

う
４
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一

fr(x)=x and fr(x)-x'
Table(1) and figures(1) and (2) illustrate the results of example(l):

一
〕

Table:1- Results of
X Frα , ″′α) んω―均ω f,ft) u/x) んω―″2ω

0 0

0.021

0.029

0267 0033 0.054

0362 0.119

0.458 0.25

0554 0.36 0310

0.650

0.747 0.053 0.058

0844 0748 0062

1 1
1 0935
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Figure-l
Example(2):

Do, ft(x) _ g{x) +

Figure-2

Nabaa ヘヽ

ヽ
１
ノ

０

洗
　
　
　
　
以

Do'fz(x) - gz@) +

where dr = 0.5 and

e{x)=r(1.5)-12
r(2)

gz@) = 

-*0.,

_Q

By using fractional Leibniz formulation of integral and Adomian
decomposition method, after three iterations, the solutions are:

u(x): fto(x) * fi (x) + frr.(x) * fs(x) - L.1-ffi\fx - 0.134x1's
uz(x) = fzo(x) + frr(x) * fzz(x) + frr(x)

- x - o.O27xo'7s 4 g.g13rr'zs

where the exact solutions are:

fr(x) - {x and fr(x) = x
Table(2) and figures(3) and (4) illustrate the results of example(2):

'able2-Results of
ir f ,(x) u,(x) ん夕,‐ ″′rxp f,k) ulx) 0- ulx)

0316 0.370 0095 4.57e10-r
0447 0517 7301e10‐

0626 0078 9.374e10-'
0.632 0714 0.082 0.389

0789 0.012

0.07 0.587 0.013

0.837 0.686 0.014

0.894 0962 0.786 0.014

0.059

1 1 1 0.986 0.014
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Conclusion
System of nonlinear Fredholm integral equations with fractional

order is usually difficult to solve analytically. In many cases, it is

required to obtain the approximate solutions. For this purpose, the

presented method can be proposed. We approximate the nonlinear parts

by Adomian polynomials. The method gave better approximations with
less iterations when applied to solve the problem presented in this

paper, As shown by numerical examples, the accuracy of this method is

reasonable.
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ABSTRACT
The main of this paper is to classify certain geometric structures, called k-sets, in a
particular setting, namely the projective line of order seventeen PG(1,17). The
basic tool is the fundamental theorem of projective geometry; there is a unique
projectivity of the projective line transforming three points to any three other points.
Each of these k-sets gives rise to an error-correcting code that corrects the

maximum possible number of errors for its length.

1. INTRODUCTION
On PG(1, q), a (k;L)-arc is just an unordered set of k distinct points
simply called a k-set. A 4-set is called a tetrad, a 5-set a pentad, a 6-set
a hexad, a7-set a heptad, an 8-set a octad, a 9-set a nonad. A (k; 2)-arc
in projective plane PG(z,q) is a set of k points no three of which are

collinear.
k-sets in PG(1, q) for q - 2,3,4,5,7,8,9,11,13 have been classified; see

[3] and k-sets inPG(1,,16) are classified see [4], k-sets inPG(L,19) are

\,

classified see [5]. We are looking atthe line of order seventeen, as it is
the next in the sequence, see [1].
We answer the equestion: How many projectively inequivalent k-sets in
PG(L,q) are there and what is the stabilizer group of each one?

Associated to any topic in mathematics is its history. Arcs were first
introduced by Bose (1947) in connection with designs in statistics. In
1981 Goppa found important applications of curves over finite fields to
coding theory. As to geometry over a finite field, it has been thoroughly
studied in the major treatise of Hirschfeld 1979-1985 and of Hirschfeld
and Thas 1991) and Hirschfeld, G. Korchmdros and F. Torres (2007).

The 18 points of PG(1,,17) are P(*o,xt), xi. € IFr7. So

PG(1,77): {Uo - P(1,0)} u [P(x, 1)lx eF17].

Each point P(xs,xr) with x1* 0 is determined by the non-
homogeneous coordinate xsf x.,; the coordinate for Us is oo. Then, withい
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F17U{∞〕,each point of P6(1,17)is represented by a single element of
F17U{∞〕・Thus

P6(1′ 17)=(P(ι′1)lt∈ F17U〔α)〕〕;
Here,P(∞ ,1)=P(1,0)。 A pr● ect市 ity ζ=M(T)Of

Pε (1,16)is giVen by y=χ T,where X=(χ。,χl),1/=(yO,yl)and

T=(: :)・

Let s=y。 /yl and t=χ O/χl;then s=(αt+C)/(bι tt d).If Ot=Piζ

fOr i=2,3,4 and Pi and σ:have the respective coordinate ti and sI,
then ζ iS giVen by

(S~~S3)(S2   S4)   (ι
~ι
3)(ι2   ι4)

(S~S4)(S2~S3)   (ι
~。
麟)(ι 2   ι3)

2。 PREVIOUS RESULTS
DerlnitiOn(2.1):Let S and Stt be two Subspaces of PC(■ ,κ),A
′″げθσ′ル′クβ:S→ S・ is a bjection g市 en by a matr破 T, necessarily

non― singular,where P(χ
*)=P(χ

)β if tχ
Ⅲ
=χT,with t∈ κ.Write

β=M(T);then β=M(λT)fOr any λ in κ.The group of pr● ectiVities

Of P6(■ ,κ)iS denOted by P6L(η +1,κ )。
DerlnitiOn(2。2):A group G acts on a set A ifthere is a map A× 6→ A

such that given g′ g′ elements in C and l its identity,then

l.χl=χ ′

2.(χg)g′ =χ (gg′ )fOr any x in A.
DerlnitiOn(2.3):The Orbit ofx in A underthe action of G is the set

xG={xglg∈ G〕 .

DerlnitiOn(2.4):The Stabilizer ofx in A underthe action of G is the

group
Gx=〔θ∈61χg=χ )・

Theorem(2。 5)「31: There is a unique pr● eCt市iサ  Of PC(1′ 9)
transfornling three points to any three other points.

Derlnition(2。6):An[れ ,た,d]q COde c is a subspace ofソ (71,9)=(Fq)・′

where the dirnension of ε is dirn ε=た ,and the ininiFnurn distance is

d(σ)=d=min d(χ ′y)・
Derlnition(2。7):For any[η′た,d]qC°de wc have d≦ 71-d+1.

Derlnition(2.8):Letthe group G act on the set A.

1. Ify=χg,for χ,y∈ G,then

● yG=χ G;
● Gy=g~lGχ g.

2.IGχ l=161/lχεト
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Deflnition(2。9):A′ 4j′θ′θ″ iS a ield with only a flnite number of

elements. The characteristic of a flnite fleld スr is the least positive

integer ρ,and hence a priine,such that
pz=z+… +Z=0

一
ρ

For all z∈ κ.

Deinition(2.10):The set denoted by FP,with P prime,consists of the

residue classes of the integers rnodulo P under the natural addition and

multiplication.

Theorem(2.11)131:There exists a praCCt市 e[η′た,α]q―COde if and

only ifthere exists an(■ ;れ ―α)―arc in Pε (た -1,9).

3. Results and lDiscussion

3.l The Algorithm for Classiflcation oftheた ―Setsin PG(1,q)

On P6(1,17),aた ―Set can be constructed by adding to any(た -1)‐ Set

one point   from the other 9-た ■‐2 points. According to the

Fundamental Theorem of PraCCt市 e Geometry,Theorem(2.5),any

three distinct points on a line are prdect市 ely equ市alent;so choose a

flxed triad 4.A4‐ set is fbrrned by adding to 4 one point from the other

9-2 points on P6(1,9);that is,from PC(1,9)-4=46・ A5-set is

formed by adding to any tetrad B one point from the other 9-‐ 3 points

on P6(1,9).

The stabilizer group GB flxes B and splits the other 9-3 points into a

number of orbits;so,different 5‐ sets are formed by adding one point

frorrl each different orbit.The procedure can be extended to constrllct

6,7,8′ %¨ ち (1:1)SdS h P6(1,9)。 Theぃ
-1卜 SubSas Of tt nsa tte

classined according to their praect市 e type。

Let iκ  and R:′  be two pentads. To check they are equivalent the

fonowing Steps are used.

1.Classitt tetrads in both pentads.

2. If the classiflcations of iK and K′ are different then they are

proJectively inequivalent.

3. If the classiflcations of κ and κ
′are the same, then the

transformations matricesス α are constructed from a tetrad T

with highest recurrencc in the algebraic structure of κ to

tetrads L in κ With same types ofT.

4. Ifthe action of one Aα on the remaining points of T are equal

to the remaining points of T′ ,then κ and κ
′
are pr● ect市 ely

equivalent.If not,it means they are prdeCtiVely inequivalent.

This procedure can be extended to check the equivalence between k‐

sets,

守
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た=6,7,8,9r… ,(サ)and dSO Can be usedわ cacuhe■e stabu乾 er
group of each k― set,for more details sce[6].

3.2 Preliminary to PG(1,17)

On PC(1,17),the pr● ect市e line over Galois fleld of order 17,there are

18 points.The points of PC(1,17)are the elements ofthe set

F.7U{∞)={∞,0,± 1,± 2,± 3′±4,± 5,± 6,± 7,± 8).
The order ofthe pr● ectiVe grOup P6L(2,17)is 18.17.16=4896.This is

the number of ordered sets ofthree points.In the follo、 ving sections,the

k―sets in PC(1,17),た =4′…・,9;are classifled by giving the prdectiVely
inequivalentた ―sets with their stabilizer groups.

3.3 The Tetrads

Let S be the set of an different tetrads in P6(1,17).Then the Order ofS

IヽSI=(T)=3060.
The cross― ratio of four ordered points Pl,P2,P3,P4With Coordinate

tl,ι 2,t3,t4iS

〔Pl,P2;P3,P4)=〔ιl,t2;ι3,t4)=
(t~t3)(ι 2 ~ι4)

(t-t)(tr-tr)'
If PL, P2, P3, Pa are distinct points, then P, and P2 separate P3and Pa

harmonically, wriffen h(P1, P2i Ps,P4), if {tr., tr; tz, t+} - -L.
So,

h(Pr, P2i P3, P+) e h(Pr, P; Ps, Pn).

In this case, the permutations of the points only give three values of the

cross-ratio , -l,2,ll2.Let a be the cross-ratio of a tetrad in a given order.

The tetrad is called hormonic (H) if tt -1'- o),a/(a - 1) or al =
l/a.It is called equianharmonic (E) if a = L/(1- to) or r,) _ (a -
1)/ to, and it is neither harmonic nor equianharmonic (N) if the cross-

ratio is another value. Consider the tetrad [o,0,1-, r] with t € F17{0,U.
Let

Xt = { class of H tetrads },
Xz = { class of E tetrads },
Xs: I class of N tetrads ].

Since t7 t 0,L(mod 3), there are no equianharmonic tetrads. So X2is
empty. The tetrad {o,0,1, a}eXt for a= -L,2,-8. The tetrad

{m,0,1, c} e x, for
c = -2,3, -3,4, -4,5, -5,6, -6,7, -7,8.

As a tetrad of type N has six possible values of its cross-ratio, the class

X3 is partitioned into two subclunses C, with c = -2,3,-5,6,-7,8. and

the other C, with c : -3,4,-4,5,-6,7.If we now call the three classes

C1,Cz and C3 where C1 = X1,CzU q = X3, then the tetrads within each
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class C. are projectively equivalent. So there are three projectively

distinct tetrads: one of type H and two of type N, called N1 and N2.

1. Consider the tetrad H = {@,0,1,-1} chosen from the class

Cr. Then the projective group of H is isomorphic to dihedral

group oforder 8.

2. the tetrad N1 = {oo,0,1-, -2} chosen from the class C2' Then
the projective group of N1 is isomorphic to the direct product

of Z2 andZ2.
3. the tetrad Nz = {oo,0,1, -3} chosen from the class C3. Then

the projective group of N2 is isomorphic to the direct product

of 22 andZ7.

3.4 The Pentads
To construct the pentad in PG(1,L7), it is enough to add one point from
each orbit that comes from the action of the projective group of the
tetrad G7 on the complement of T, where T = H,Nr,Nr. All orbits of
the tetrads are given in Table 1.

Table tetrads

According to Table 3.1, there are thirteen pentads constructed by adding
one point from each orbit to the corresponding tetrad. Each pentad
contains five tetrads. In Table 3.2, for each pentad {o1,o2io3,o4,a5)
the classification of its tetrads in the order {a1, a2, o3, a4},

{ay a2, as, a5}, {a1, a2, a.4, C.s} , {ar, o31Q4t qs} , {a2, a3, a4, C"s} is

given. Also the stabilizer group of each pentad is given.

)artition of Pε (1117)bv the prOiectivities o

7 εT Partition ofTC

″ lχ -1
(万′χ+1)

１

つ

“

３

{2,-2,3,‐ 3,6,-6,8,-8}

(4,-4)

(5,-5,7,-7}.

Nl

僣 ′
・
２

一
χ

1.(-1,2,4,8}

2.(3,5,6,-6}

3.{‐ 3,-4,‐5,-8}

4. f7.-7).

嶋

僣 手
1.{‐ 1,3}

2.(2,4,5,7}
3.{-2,-6,-7,-8}

4.(43-536.8).

"
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Table… 2 Pentads on P6(1,1

No. The pentads Types of tetrads Stabilizer

1 〔∞,0,1,-1,2〕 ″″NIⅣlⅣ2 l-xzz=( r )

つ
４ 〔∞,0,1,-1,4〕 ffN2N2N2N2 Z4=(γ

+1)
3 〔∞,0,1,-1,5〕 〃N2ⅣlⅣlN2 Z2=(1+γ )

4 〔∞,0,1,-2,-1) NlffffⅣlN2 -x-lzz=( r )

5 {∞,0,1,-2,3) NININ2N2Ⅳ l
1-χ

Z2=( 1 )

6 {∞,0,1,-2,-3) N■ N2NlN2〃 -x-2zz=( r )

7 {∞ ,0′ 1,-2,7) N1N2N2NlN1 -2
Z2=(瓦
戸)

8 〔∞′0,1,-3,-1) N2″NIHNl Z2=(γ _1)
9 〔∞,0,1,-3,2〕 NzHN2N2N2 2x-2z+=( 

" )

10 {∞,0,1,-3,-2) lV2NlNIN2″ -x-2zz=( r )

{∞,0,1,-3,4) N21V2NllVINl
l-xzz=( r )

According to the Upes of the five tetrads, the pentads fall into

{1,4,8),{2,9},{3,6,10},{5,7,11}. The pentads 6 and l0 are the

those pentads with an equivalent sets of tetrads, Table 3

four sets,

same. For
gives the

proj ectivities between them.
Table-3: The equivalence of pentads

No. Equivalent pentads Proiective equation

1 1-→ 4 (千)

９

“
1-→ 8 1+χ

(1 _χ)

3 2-→9 1+χ
(デ

4 3-→6 1+χ
臓 )

5 5-→ 7 χ+2
(軍∂

6 5-→ 11 7χ -3
(    1    )

ヘ

ヘ
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Table 3 gives the following conclusion.

Theorem (3.1): On PG (1,,L7) there are precisely four projectively

distinct pentads, given with their stabilizer groups in Table 4.

Table -4: Inequivalent pentads on PG(1',17

Type The pentad Stabilizer

Pl {∞,0,1,-1,2) 1-χ
Z2=( 1 )

P2 〔∞,0,1,-1,4〕 Z4==(2χ
-2)

P3 {∞,0,1,-1,5) Z2=(1+γ )

P4 {∞ ,0,1′ -2′ 3)
1-χ

Z2=( 1 )

3.5 The Hexads
The projective group Gpi splits Pi.',i = 1,2,3,4 into a number of
orbits. The hexads are constructed by adding one point from each

orbit to the corresponding pentads. All orbits are listed in Table 3.5.

Table… 5:Partition of Pσ (1,17)by the prQieCtiVities o

P′ Partition of Pic

Pl {-2,3) 2.{-3,4}3.{-4,5)

{-5,6} 5。 {-6,7}61(-7,8)7.{-8}

１

４

P2 1.{-2,3,-6,-8}

2.(2,6,-3,-8}

3.{-4)
4. {5,… 5,‐ 7,′7)

P3 1.{2,-6)2。 (-2,-3}3.(3,8}4.{4,-4}
5。 {… 5,7) 6.{6,… 8}7.(-7}

P4 1.{-1,2}2.{-3,4}3.(-4,5}4.(‐ 5,6}

5.{-6,7}  6.(-7,8}  7.{‐ 8}

Therefore, 25 hexads can be formed ( the total number of all orbits) by

adding
one point from each orbit to the corresponding pentad.

According to the types of the six pentads, the hexads fall into ten sets.

This gives the following conclusion.
Theorem 3.2: On PG(1,17) there are precisely 10 projectively distinct

hexads, given in Table -6.

し
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Table-6:Thc distinct hexads

Type The hexad Types ofpentads Stabilizer

″1 (∞ ,0,1,-1,2′ -2) PIPIPIPIP3P3
一χ 2

Z2× Z2~〈~丁′γ

″, f∞,0,1,-1,2,-3) P4R ttP4RP4 I=(χ )

″3 {∞ ,0,1,-1,2,-4) PIP2P3PIP3P2
2χ +2

Z2=(γ _2)
″4 (∞ ,0,1,-1,2,-6) PIPIP3P4P4P3 Z2=(1+χ )

″5 (∞′0,1,-1,2,-7) PIP3PIP4P3P4
χ-2

Z2=(γ _1)
″6 〔∞′0,1,-1,2′ -8) PIPIPIPIPIPl 鴫=に,無〉
〃 7 (∞,0,1,-1,4,-4) P2P2P2P2P2P2 助=(善′害 )

″8 {∞′0,1,-1,4′ 5〕 P2P3P2P4P4P3 1-χ
Z2=(1+4γ )

〃9 〔∞,0,1,-1,5,-5) P3P3P3P3P4P4 ―χ 5
Z2× Z2=(~T′

T〉

〃 1。 {∞,0,1,-2,3,-6) P4P4P4P4P4P4 島=に,善〉
3.6 The Heptads

The projective group Gp, splits Hr',t -- L," ',10 into a number of
orbits. The heptads are constructed by adding one point from each orbit
to the corresponding hexads. All orbits are listed in Table 7.

Tablc-7:Partition of PG(1,17)by the ptteCtiVities of

〃 , Partition of rfiC

〃1 1. {3,‐ 3,5,-5}2.{4,-4,8,‐8}

3.f6.‐ 6)      4.{7,‐7}

〃2 Gp, splits Hr' 5 into l2 orbits of single points

〃3 1.{-2,‐ 8}2.{3,8}3.{‐ 3,-6}
4.f4,5}   5.{-5,6} 6.{7,-7}

比 1.{‐ 2,‐3}2.{3,8}3.{4,‐4}4.{5}

5。 {-5,7}6.{6,-8}7.{‐ 7}

〃5 1. {-2,7} 2.{3,-8)  3.(-3}  4.{4,-5}

5.{-4,8}  6.{5)     7。 {6,-6}

〃6 σ″̀ fixes H5'
〃7 GHヮ fixes H7c

H8 1.{2,‐ 2}2.{3,‐8}3.{‐3,-5)

4.{-4,-6} 5。 {6,-7}  6.{7,8}

月9 1.{2,-2,6,-6}2.{3,-3,4,‐ 4}3.(7理
〃ln 1.{-1,-5,5,6,8,-8)2.{2,-3,4,-4,7,-7}
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Therefore, 49 heptads can be formed by adding one point from each

orbit to the corresponding hexad.

According to the types of the seven hexads, the heptads fall into ten

sets. This gives the following conclusion.
Theorem 3.3: On PG(I,L7) there are precisely 10 projectively distinct
heptads, given in TableS.

｀
able‐ 8:The distinct he

Type The hetad Types ofhexads Stabilizer

L f∞,0,1,-1,2,-2,-3) ″1〃フ〃1″R″,″R″4 Z,=(―χ-1)

Ъ f∞,0,1,-1,2,-2′ -81 ″1″4Ha″,〃2″,ff4 I=(χ )

73 {∞,0,1,-1,2,-2,6) HlHzH4H2H+HuHa
つ
４
　
一　
γ

〓
Ｚ

T4 〔∞,0,1,-1,2,-2,-7) ″1銭 If4Jf4〃4為朽 -2Zz = (;l
■ f∞,0,1,-1,2,-3,41 ″,〃,ff,″,″4″4″4 Zフ =(1-χ )
■ {∞,0,1,-1,2,-3,-4〕 ″,″RffRIR″ 4″9〃2 I=(χ )

乃 {∞,0,1′ -1,2,-3,5} HzH3H2HTHeHzHa x*3Zz=(*t)
L f∞,0,1,-1,2,-3,61 〃,″,〃4″彙″1。″。〃R I=(χ )

T9 〔∞,0,1,-1,2,-3,-7) 〃2″4″4″2H10〃4〃10 Ъ=仔 )

■0 {∞,0,1,-1,2,-4′ -7〕 ″3ff4″8〃4〃4〃3″8
'Zx-3

zz = \-=rl

3.7 The Octads
The projective group Gri splits Tr',i = 1,"',10 into a number of
orbits. The octads are constructed by adding one point from each orbit
to the corresponding heptads. All orbits are listed in Table 9.

Table-9:Partition of Pσ (1,17)by the prQieCtiVities o

爵 Partition riC

Tl 1.{3,‐ 4}2.{4,-5}3.{5,‐ 6}

4。 (6,-7} 5。 {7,-8)6.{8}

T2 G7, splits lrc into I I orbits of single points.

T3 1.{3,-5}2.{-3,5)3.{4,-8}

4.{‐ 4,8}5。 (-6}6.(7,‐ 7}

T4 1.{3,5}2.(-3,-5}3.{4,8}

4.{-4,… 8} 5。 {6,-6)6。 (7}

T5 1. {-2,3}2.{-4,5}3.{-5,6}

4.{-6,7} 5。 {‐7,8}6.{-8}

76 Gr. splits luc into 11 orbits of single points.

77 1.(-2,-6}2.(3}3.{4,8}

4.{‐ 4,7}5。 (‐5,6}6.{‐ 7,-8}

T8 G7" splits Trt into 1l orbits of single points.

Ъ 1.{… 2,7}2.(3,-8)3.{4,… 5}
4.f‐ 4、 81  5。 (5)6.f6、 -6)

T10 1.{-2,6}2.{3}3.{‐ 3,-5}

4。 (4,-6} 5。 {5,8}6.(7,‐ 8)

heptads

守
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Therefore ,75 octads can be formed by adding one point from each orbit

to the colresPonding hePtad.

According to the ry-p.r of the eight heptads, the octads fall into 17 sets'

This gives the following conclusion'

Theorem 3.4: on rc(t,ul there are precisely 17 projectively distinct

octads, given in Table 10.
Table -10: The distinct octads

3.8 The Nonads
The projective grouP Goi splits 0f ,i- 1,"',L7 into a number of

orbits. The nonads are constructed by adding one point from each orbit

to the corresponding octads. All orbits are listed in Table 11'

Tvpe The octad Type of heptads Stabilizer

θl {co, 0,L, -1,2, -2, -3, -41 T・Ъ&T4■ OT276TS Z,=(一χ― ll

θ2 (∞ ,0,1,-1,2,-2,-3,4) TIT27571T27572T2 Z2=(暑 )

TITIT773T7T3T10T10 2
Z2=(1)θ3 {co, 0,1, -L,2, -2, -3,5}

θ {m, 0,1, -!,2, -2, -3, -71 TI T4T9LT6T8T6T8 I=(χ )

θ5 {m, 0,1, -1,2, -2, -3, -8} TIT2T274T6T6TIT4 颯響 )

θ {oo,0,1, -1,2,-ft}.,9 T4Ъ TRT2T7T8=も Z2=(一χ一 ll

θ7 {oo, 0,1, -L,2, -2, -8, -4} T2T272T979T2T979 Z2X Z2

諷ギ ,暑)

θR {o,0,1, -7,2,-2,-8,6} LTRЪ T4■ 7676T■ 0 I=(χ )

θ9 (∞,0,1,-1,2,-2,-8,-6)
T273T278T6T6T378 L2=(嘉 )

θl。 而 ,-1,2,-2,-8,7) T27472T10T8T107874 申鶏 )

011 〔∞,0,1,-1,2,-2,-8,8〕 T27272T27777T3T3 票Ъ=4,■
θl, {oo, 0,1, -1,2, -2,6, -71 TRT4■T9797LTLTa I=(χ )

θ13 {∞,0,1,-1,2,-2,-7,7〕
T47474T474T4T4T4 ′ギと

θ14 {m,0,1, -1,2,-3.,!5i-- ■77767877T8T■LT6 I=(χ )

θ15 {co, 0,1, -!,2, -3,-4,5} T6T777T677767677 22x22
x-5

- l--\_r_1, 轟
θ■6 {m, 0,1, -7,2, -3, -4, -7} 76T9T10T1078797678 L=(当

ο17 (∞,0,1,-1,2,-3,6,8)
T878787878787878 L百(手′笠
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)s of octadsTable-11:Partition of PC(1,17)by the prO;eCtiVities o

θi Partition of θiC

θl 1.{3,-5}2.{4,-6}3.{5,-7)4.{…
θ, 1.(3,7}2.(-4,-6}3.{5,-7}4.{-5,8}5.{6)7.{壁

θ. 1.{3,-5}2.{4,-8)3.{-4,8)4.{6}o.{-6)6.{7,-7}

θ4 Go, splits 0n' into l0 orbits ofj,ngE_P9,nts

θs 1. {3,5}2.{4,-5)3.(‐4,-7}4.(6,7}5.{-6,8}

θ6 1.(3,-4)2.(4,-5}3.(5,-6}4.(6,…
θ7 1. (-3,-5,6,‐ 6)2.{3,4,5,8}3.{7,-7)

θ8 Gο 8 Sメ・
S θ8ε hЮ 10 2rblsOfShge pOml

θ9 1.{‐ 3,8}2.{3,7)3.(4,‐ 7)4.{-4,-5)5.〔墨
θl。 1.(-3,-7}2.{3,-6}3.(4,8

θll 1.{3,-3,6,‐ 6}2.{4,-4}3.{5,-5,7,-7)

θ12 G6,, splits 0rr' inlo 10 orbits of single points

θ12 1.(3,-3,4,-4,5,-5,8,-8}型

θ14 G6., splits Ornt into l0 orbits of single points

θlく 1.(… 2,-5,6,-7}2.{3,-6,8,‐ 8)3.{4,7)

θl 1.(… 2,5)2.{3,6)3.{4,8)4。 (-5,‐ 8)5.{-6,7)

θ17 1.{‐ 2,3,5,-5,-6,7,-7,‐ 8}2.(4,¨4}

According to the Upes of the nine octads, the nonads fall into 17 sets.

This gives the following conclusion.

Theorem 3.5: On PG(L,1,7) there are precisely 17 projectively distinct

nonads' given in Tablel2'ble 
-12: The distinct nonds

Type The nonad Tvpe of octads Stabilizer

St 01∪ f31 0101θ ,05θ 2ο8οSο Bθ 2 Z2=(~χ ~1)

S2 ο2∪ (6〕 θ2ο4ο8ο 12θ4ο9θ 12θ8θ 9
x*3

Z, = \_, _,tl
St 0,∪ f31 0.θ l θ,0110Aθ 14θ9θ1008 I=(χ )

S4 ο3U{6) ο3ο4ο4θ14θ12θ14ο12θ16ο16
つ
４
　
一　
γ

〓Ｚ

Ｃ
Ｄ θ3U〔~6) qo3030so3030s030s 恥=“′ギ )

S` θtt u f31 04οl οヽ θフθ908ο 4ο 16θ12 I=(χ )

S7 Qu〔 4〕 θ4θ ,θl。 01,θ.θ l θ14θ 5 θ6 I=(χ )

S8 04∪ f51 ο4θ3θ Sο 6θ llο 15θ9q≦14 I=(χ )
Ｃ
０ ο6U(4〕 o6020700020fl)00607

ろ =(響 )

Sl 06∪ f-61 θκθRθttθ401 014014θ 15θ 16 I=(χ )

Sll θ
`∪
f-71 θ6θ4ο 10ο 16θ 9θ14ο17θ14ο■2 I=(χ )

Ｃ
Ｄ ο8∪ (~3〕 0s080401j01s0g0a050:j L=(等 )

S13 θ10∪ 〔6) θ10ο 8θ 12ο 7θ8ο 12θ16θ16ο10
χ-1

Z2=(2γ _1)

S14 ο12U(~3) θ12θ4ο4ο12ο12ο4θ12ο4ο 17
4x-7Z+=(- t )

S15 ο12U{~8) θ12ο8ο8θ8ο 12θ 12ο14θ14θ14
1

Z3=(_χ
+1)

S16 ο13U(6) 0 B0 tz) 720 D0 tz0 00 120 e0 fi L=伴 )

S17 θ15U〔4) o $o 740 Mo 7s0140 740 r40 140 $ 颯嘉 ,評〉

＾
し

し
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The Partitions of PG(1,17)
The stabilizer G5rof Si also fixed the complement.S,'. The nonad S; is

projectively equivalent to its complement S;t, except that Se is not

iqrirratentio Sr' and Sr2 is inequivalent to Srr' '

This gives the following result on partitions into nonads.

Theorem 3.6: The projective line P6(1,L7) has 17 projectively distinct

partitions into two equivalent nonads by Table 13'

able‐ 3: Partitions of PG(1,17) into two

No. Symbol Stabilizer of partition

1 tSr; Sr'] 瓦×甲署 ,塾
う
ん [S2; Sz'] ′鋤
3 〔S3;S3C〕 L=(斜
4 (54;S4C} 瓦×甲嘉 登
5 〔Ssi SsC} 瓦8諷暑 'ギ )

6 {S5; Ss'} 狽嘉 )

7 {57,S7 〕 狽暑 )

8 〔S8:S8C} Z2=(2χ +1)
9 〔S9;S12ε〕 引昌 )

10 〔S10:SloC〕 狽ギ )

〔S11:SllC) 颯響 )

12 (S12'S9C) Z2=(斜 )

13 {S13;S13C} 瓦 諷嘉 ,純
14 {S14;S14ε〕 囃 署 ,竿 )

〔S15;S15C) 亀
=(嘉嘉

)

16 (S16;S16C〕 手(等,ギた
17 {S17;S17C} 瓦諷等 ,評 )

In above Table, we note

generated bY two elements,

its complement, while the

complement.

that, for the stabilizer groups which are

the first generator transforms the nonad to

second generator fixes the nonad and its

nonads
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The transformations
given in Table 14.

Table-14:Classi

between the nonads

Yol.24,No 5,2013

and their complements are

ofthe nonad in Pε (1,17)fication of the S

No. Eouivalent nonads Proiective equation
1 Sl‐→ Sl 8χ -6

(~1「 lIF7ヨ

~)

2 52~→ S2 χ-3
(4γ _ 1)

3 S3~→ S3 ―χ-8(T"
4 S4~→ S4 -x-4

\)r+1)
S5~→ S5 3χ +4("

6 S6~→ S6 ―χ-6
中

7 S7~→ S7ε (糾
8 S8~→ S8 ―χ+3

(,γ
J「 1)

9 S9~→ S12 χ-3
(幕却

10 S10→ S10 ―χ-8
(■γ斗 1)

Sl.―→Sll
(1:ll[11:l)

12 S12→ 59C χ-3
(4γ _ 1)

13 S13~→ S13

嚇
14 S14→ S14 8χ -6

( 
γ _只 )

Srs - Srst ―χ+3
(,γ +1)

16 S16~→ S16 4χ +2
(耳J

17 S17~→ S17
(11:::|:!;)

3.9 MDS Code of Dimension Two
As in Theorem 2.11, an (n;n - d)-arc in PG(k - 1,q) is equivalent to

a projective fn,k,d]o -code. So, if k :2 afid n - d - 1, then there is

a one-to-one colrespondence between n-sets in PG (l'77) and projective

ln,2,n - lfrz -code C. Since d(C) of the code C is equal to n - k *
L, thus the projective code C is MDS.
In Table 3.15, the MDS codes corresponding to the n-sets in PG(7'17)
and the parameter e of errors corrected are given.

▼

229



The Geometry of The Line of Order Seventeen and its Application to Error-Correcting Codes
H irschfeld and Al-seraj i

able -15: MDS code over )σ

n-set MDS code θ

Triad 13,2,217 0
Tetrad r4,2,3f17

1

Pentad 15,2,411? 1

Hexad [6,2,'f17
つ

一

Heptad 「7,2,d17 2

Octad 「8,2=7117 3

Nonad 「9,218117 3

7,17)

If C has minimum distance d, then it can detect d - t errors and correct

e - l(d - 1)/2) errors, where [m.l denotes the integer part of m:
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ABSTRACT
In this paper, sufficient conditions for controllability of nonlinear system in

Banach spaces are established. The results are obtained by using semigroup theory
,'compacisemigroup"and some techniques of nonlinear functional analysis, such as,

Schauder fixed point theorem. Moreover, example is provided to illustrate the

th

l.INTRODUCTION
The theory of semigroup of linear operators lends a convenient

setting and offers many advantages for applications. Control theory in

infinite-dimensional spaces is a relatively new field and started

blooming only after well-developed semigroup theory was at hand.

Many scientific and engineering problems can be modeled by partial

diffeiential equations, integral equations, or coupled ordinary and

partial differential equations that can be described as differential

Lquations in infinite-dimensional spaces using semigroups. Nonlinear

equations, with and without delays, serve as an abstract formulation for

many partial equations which arise in problems connected with heat

flow in materials with memory, viscoelasticity, and other physical

phenomena. So, the study of controllability results for such systems in

infinitrdimensional spaces is important. For the motivation of abstract

system and controllability of linear system, one can refer to the [1, 2]'

in this paper we discuss the controllability of mild solution of the

following nonlinear control problem in arbitrary Banach spaces.

..llr.!.., (Bu)(t)+f (t,x(t))+Q(t,K(t,x (r))), t e J =to,6ll

where the state x (.) takes values in the Banach space X and the

Control function u(.) is given irL L2(J,U ), a Banach space of

admissible control functions, with u
a Banach space. Here, the linear operator -A generates a compact

semigroup T(t),t> (, onaBanach spaceXwithnorm ll 'll , and

B is a bounded linear operator from U into X. The nonlinear operators

0)

´
ヤ
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f eC (JxX,X), K eC(JxX,X) and Qe C(JxX,X ) are all

uniformly bounded continuous operators.

Controllability of the above system with different conditions has been

studied by several authors. The case where p = 0 and I generates an

analytic semigroup is discussed in [3]. Where Q:0 in (l), Yamamoto

[4], studied the controllability for parabolic functions with uniformly

bounded nonlinear terms. Al-Moosawy [5] discussed the controllability

of the mild solution for the system (l) by using Banach fixed point

theorem, where/: 0, I generates a strongly continuous semigroup (C6-

semigroup) on X and the operators K, Q are satis[ing Lipschitz

condition on the second argument. The work in [5] extended to study

the controllability in quasi-Banach spaces of kind Lp, 0 < p < I' in [6]
by using a quasi-Banach contraction principle theorem. The case where

the operator p in (1) is an integral operator is established in [7,8] by

using Schauder fixed point. From all the above we find a reasonable

justification to accomplish the study of this paper. The purpose of this
paper is to study the controllability of nonlinear system (1) in Banach

spaces by using the Schauder fixed point theorem.

2. Definitions and Theorems
Before proceeding to main result, we shall set in this section some

definitions and theorems that will be used in our subsequent discussion.

Definition 2.1 I9l :A family i" (t ), 0 <l < o of bounded linear operators on a Banach

space,f, is called a (one - parameter) semigroup on X if it is satisfies the following

conditions :

I (r +s ) =r 6 ; 7 1r ),V t,s >- 0 ffid T (0) = / ( 1 is the identity operator on x ).

Definition 2.2[9]: The infinitesimal generator / of the semigroup I(t)
on Banach
space X is defined by Ax - limr-or(1/t)(T(t)x - x),where the limit
exists and the domain of / is D(,4) - {x e X: limr-o* (1/t)(T(t)x -
x) exists\.
Definition 2.3[9]: A semigroup f(f), 0< I < co of bounded linear

operators on Banach space X is said to be strongly continuous

semigroup (or Ce-semigroup) if:

llT(t)x - xllx - 0 as t -'r 0+ for all x € X.

Definition 2.4 ll0lz A semigroup T (t),0 < I < 
"o is called compact if

T (t) is a compact operator for each t > 0.

Definition 2.5 [11]: Let X be a Banach space, a subset E ofX is said to

be totally bounded (or precompact ) iff for every € > 0, E may be

covered by a finite collection ofopen balls of radius e.
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>
Definition 2.6llllz A subset E of C la, bl is said to be equiaontinuous,

if for each 6 > 0 there is a 5 > 0, depending only on 6, such that for all/
e E andallx, yela,b)satisffing l* -yl ( 6 we havelf (x) - f 0)l <
e. Note that 5 does not dePend on/
Lemma 2.1 llllzLet X and I'be normed spaces. Then;
(a) Every compact linear operator T: X---Y is bounded, hence

continuous.
(b) If dimX: co, the identity operator I; X--+X (which is continuous) is

not comPact.

Remark 2.1 [9]: A semigroup T(t),0< I <oo on Xis called

continuous in the uniform operator topology if:-
1. llT(t + flx - T(t)xll 

""(D -0, as d-0, Vx e X.

_ ,2. llf(|x - T(t - Axll ,(h+0, as d*0, Yx e X.

Theorem 2.L ll2l. @anach Theorem): Every contraction mapping of

i i#ff*' i.T i,f fi :',I,ffi T'ffi".m;i 1x'll c o nti nu o u s o p e rato r
that maps a closed convex subset of a Banach space into a compact

subset of itself has at least one fixed point.
Theorem 2.3 I8l: (Arzela-Ascoli,s Theorem) suppose x is a Banach

space and E is compact metric space. In order that a subset M of the

Banach space C (8, X) be relatively compact, iff M be equicontinuous

and that for xeE,the set M(*):V (x) = f eM )be relatively compact in

X,

3. Controllability of Nonlinear System (1)
In this section we will study the controllability of the mild solution

to the problem (1) in Banach spaces by using semigroup theory

"compact semigrop", and Schauder fixed point theorem.

3.1. Preliminaries
'r Consider the linear sYstem:-

i Q) - A* (t)+ Bu(t), x (0) =x o , (2)

where A generates a strongly continuous semigroup of bounded linear

operators T(t) on a Banach space X, and B is a bounded linear operator

from a Banach space U into X. Now, if x (.) is a classical solution of (2),

then x(l) e D(A) (domain of A) for all r e [0,b][9]. So, in the general

case when ,4 is unbounded, D (A) I X, which means that the system

cannot be steered to all ofX. Therefore, only the mild solution [9],

ヤ
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′

χlr)=rlr)χ O+∫r〔―S)3"lS)漁
0

will be considered in this paper with the following definition oflexact

controllability.

Definition 3.1 [9]: The system (2) is said to be exactly controllable on -I

: 10, bl if, for any two points x6 , x1€ X there exists a control il €
L'(J,LD such that x(b) : x1

The following hypothesis is Elssumed throughout the paper:

(I) The linear operator W from L' (J, t/) into X defined by;
b

wu - I, fu -s)Bu(, ) ,k,
0

induces a bounded inverse operator li ' defined on L2g, q/ ker(l/).

Then by using the control u (t) : li' [*,-T (b) xs] (t), in Eq. (3),

hypothesis (I) yields x (D) : x1, vrrd so (2) is exactly controllable on -/.

Remark 3.1. The construction of li " is outlined as follows [13].
Let Y = L'V,Ul /ker ( l/ ), since ker(LV) is closed, )'is a Banach space

under the norrn;

llt,lll, =,,:i,t,ll uli,,7,.,1=liill ,.,)ll 
L,v.u),where 

[rz]aretheequivalenceclassesoru.

Define li : Y +X by Wlu)= ltru, ue[a].

rhen, tf rsone-to-one *d 
ll 
wl"7 ll" = ll wlllll"] ll, Also, v:Range(w)

is a Banach space with the norrn ll , ll" = llri 
-! 

ll ,
To see this, note that this norrn is equivalent to the graph norrn

on D(lt-' )= Range(/ .W is bounded, and since D(W )= I'is
closed, tf "it closed. So, the above norrn makes Range(W)= V ,a
Banach space. Moreover

llw"ll"--ll, -' ,"11, =llrr -' w 1"7 ll=ll t,J ll=g51 , ll<1 ,ll,

so, W e g (L2[J, UJ, Z). Since L'IJ,(4 is reflexive and ker (ll) is

weakly closed, the infimum is actually attained. Therefore, for any v 6
V, a control u e L'IJ, ([can be chosen such that u: li -'u.
Remark 3.2. Triggiani [4] proved that, if X is infinite dimensional,
then the system (2) is never exactly controllable when B is compact or
when Z (r) is compact for all , > 0.

(3)
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3.2. Controllability Result of the system (1)

We assume the following hypotheses for the system (1).

(i) The linear operator -A generates a C6 compact semigroup T (.) such

that max,rollr(Oll < M, ;

(ii) The linear operator W from Uinto X, defined by;
,b,
ll'u: lf (b -s)Bu(rVr,

0

has an invertible operator W 
-t defined on L2(J, LI) /kerl4t, and there

exists positive

constants M ,,M rsuch that 
ll 
, 

ll 
3M r" ll* ' ll= 

r,
(iii) The nonlinear operators -f (t, x (t)) & Q Q, K(t,-r (l))), for t e J
satisff;

llf (,,*(r))ll < t,, llQ{t,K(t,x(/)))ll . L,where LrromdLr>o.
Now we want to define and find the mild solution of the problem (1).

By assumption (i), T(t), / > 0 is a C6 compact semigroup generated by

the linear operator -A,letx (.)e Xbe the solution of (1), then we have I
(r) x is differentiable [ 9 ],that implies the X-valued function H(s):T(t-
s)x(s) is differentiable for 0< s< t

, and

4=r Q -s){x(s)+x trl*r fr -rldS dS dS

dH
;;=r Q -s)l-Ax (s)+(Br,r)(s)+/ (s,x (s))+0(s,K(s,x (s)))l+x (s)[Ar (r -s)]

dH
;;=r (t -s) (Bu)(s)+r (t -s)f (s,x(s))+r(r -s) p(s,K(s,x(r))) , (4)

Integrating (4) from 0 to t, yields

H (t)-rr(0) --'J, (, -s)(BuXs)d, *'1, 1, -s)f(s,x (s)ps
00

*'1, 1r-s ) g (s ,K (s ,x(s )) ds
0

Since 11(s) =T (t -s)x (s); then

"

▼
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1t
T (t -t) x(t)-T(r -0) x (0) =lr (r -s)(Ba)(s) ds + [r Q -s)f (s'x (s)) ds +

00
t

ia 
t, -tl QG,K(s,x (s)))ds, then

1t
x(t)=7 Ox, +lr (r -s)(Ba)(sPs +lT (r -s)/ (s'x (s))ds +

00
t ,. I{(o '/.\\Vc 

(5)jr( -r) g$,K(s,x(s)))ds '

0

So according to the results above, the following definition has been

presented.

Definition 3.2. Acontinuous function x e X given by (5) will be called

a mild solution to the Problem (l)'
Definition 3.3. The system (1) is said to be controllable on the interval J

if ,for every xs, x1 € x, there exists a control u e L27J,U) such that the

solution x (. ) of ( 1) satisfies x(b) : x1'

Remark 3.3. The exact controllability result for the system (1) depends

on the exact controllability of the linear system (2)' It is assumed that

the system (2) can

be steered to the subspace v, then, Rang (w) contains z It can be

assumed without loss of generality that Rang (tn : V and that an

invertible operator V/ -' 
"unbe 

constructed.

Usinghypothesis(ii),foranarbitraryfunctionx(.),definethecontrol,
6b

uQ) =tf 'lx, -T(b )x o -i, O-s ) / (s,x (s )ps - [' 0 -s ) I (s,K (s'x G )yt ](/ )
-00

It can be shown that (see, section 3.3 main result), by using this control'

the operat or @ : C (J,X ) - C (J ,X)'defined by 
'stt

(ox Xr ) -T (t)x o* [, 
(t - s)(Bulfu ) ds +'[oT (t -s )/ (s 

'x 
(s )) ds + fr 6 - 9

Q(t ,K (s,x (s )) ds ,

has a fixed point, this fixed point is then a solution of the system (l)

and satisfies the condition x(b): x1 '

3.3 Main Result
In this section we will explain the ideas in remark 3'3, and prove the

theorem that deals with the controllability of the problem (1)'
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? 
Theorem 3.1. If the hypotheses (i)-(iii) are satisfied then the system (l)
is controllable on.,/.
Proof:

Using the hypothesis (ii) for an arbitrary function x (.), define

the control,

u(t)= W -1 l* r-T 
(b)x 

o

bb
- Io, (U -s)f (s,x(s))ds - !0, fU -s) Q$,K (s,x(s)))dsl0)

Now, we shall show that when using this control the operator defined

by,
tt

, (Ox Xr) =T (t) x o+ IT (t -s)(Bu)(s) ds + lrr Q -s) f (s,x (s)) ds

t
+ 

[r Q -s) p(s,K(s,x (s))) ds

has a fixed point. This fixed point is then a solution of (5).
ClearlY, ((Dx)(b)=x,

which means that the control z steers the nonlinear control system from

the initial state x6 to xr in time b, provided we can obtain a fixed point of
the nonlinear operator @ .

LetY =C(J, X) md YO={r:, eY , x(0) = ,0, llr(/)ll< r,for t eJ\,

where r is a positive constant given by,

r = M rll x oll +lr, M rM rtll x,ll+ M,ll x oll+ ru,n (L, + Lr)l b + M,b (L,+ Lr)

) Then, Ye is clearly a bounded, closed, convex subset of Y [11]. Now we
define a mapping,
@:Y -+Y, by ,

t
(orXr) =T (t)x n*'[r (r -s)f(s,x (s)) ds +!T(r -s) p(s ,K(s,xG))) ds +-0 

0

t,b
+[or Q -riBW -'l*fT (6)ro - lor @ -s)f (s,x (s)) ds

b
- lr (b -s) 9(s ,K@,x (s))) dsl(ri dq (6)

0

Taking the norm of both sides of (6)

▼
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bounded, the set

Furthermore for x e Y g, we have ;

ll ro,xrl-ro,,Xr) ll<

l[i.. 
-rDBW'tl*t-r <u>"-'y (b-s).f(s,x(s))ds i, *-s) p(s,K(s,x(s)))ds](ryrrll-

[i., 
-s)/ (s,x,,,*ll.lfi, (, -s) o(s.K (,,, (")))d,ll

ll fo,l (r)-(@6xl f,l ll = aM,MrMrlllr,ll*-,llr.ll+turrrrb+M,Lpf+dMr(Lr+Lr),

which implies that Y6(t) is totally bounded, i.e., precompact in X. Now,
we want to show that
O(o) = {Ox :x . Io} is an equicontinuous family of functions.For that ,let t", > lr > 0 .

Then we get that

llto, )tr,)-to, x,,)ll< l[ r,,i-r 0,)llll,,il.lli v (t,-,t)-r (t,-,i] Btr ''1x,-r (b)x o-

lr。
―Sy。 ,χ。)lJs_l『ψづD(S'κ O,χ O))ン ](ηソη‐∫r02‐ηフ〃・レ1‐rO)χ 0

イ
1

{rい しⅢ
Mlrの 26Kい 激 懃冽 す

‖
m―Sう lTけJい )

り0,た 0,χ O)))い―∫r02~S)rO,χ (s))+2(S,κ (S,χ (S))】漁‖

ヤ

赤Ｚ十二ＳＣレ
ｒ

′
２

ｒ

ｉ

Ｊ

‘
―

十ゐＺ＋ＺＳ↑ｒＳＣレ
ｒ

′
ｌ

ｒ

‥

Ｉ

Ｊ

０

０

(7)

′
l
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Sinceスの,′ >θ iS a compact, then ar)is continuous in the uniform
operator topology for′ >θ .

Thus,the right― hand side of(7),whiCh iS independent ofχ  ごIら,tendS
to zero asち―

`′

→ 0.So,aる )is an equicontinuous family offunction。
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Atso, @V i is bounded in I' , and so by the Arzela-fucoli theorem O(f o) is precompact.

Then by Schauder fixed point theorem, <D has a fxed point in f o [ 9 ].

Anyfixedpointof O is amildsolutionof (1) onJ, satisffing (OxX t ) = x(t )e X.

Thus, the system (l) is controllable onJ .

3.4. Example:
Consider the partial integrodifferential equation of the form

! ,Q .,x)= y ,,(t ,x)+(Bu)(t)+o,1t ,y,, (r,x ))
,-t

+Jo,(r,s,/r, (s,, ),Jor1t ,t,! rr(r,x ))d r) ds,x €/ =(0,1),t eJ, (8)
00

and given initial and boundary conditions '
/(0,r)=y(1,/)=0, (9a)

.y(x,0) =/o(x), x el, (9b)

where B:U -+X, with U c J andX =Lzll ,R], isalinearoperatorsuchthatthere

exists an invertibled operator W -t onflJ,U)lkerW,where I{z is defined by,

w, =\r(D -s)Ba(s)r/s
i

f (r) is a compact semigrouP,and

or:J xX -+X
or:J xJ xX ->X
or:JxJxX xX -+X
are all continuous and bounded by positive constants.

The problem (8)-(9) can be brought to the form (l), by making suitable choices

of A,B ,f ,K ,Q pfollows , -

Let X =Lzll,R), Az =z,,,8 :U -+X , and

D(A)={z eX ,2,, eX;z(0)=7 (1)=0 } be such that the condition in hypothsis (ii)

is satisfied,and let/ (t,z )(x ): 6,(t, z - (x )), (t, z ) e J x X, K (t, zxx) = ! 
o r(t, t,' - (x )Y t,

0

I

eQ,z, p)(x)= Jor(r,r,2,, 
(x), p(x)Pt,x e I .

0

Then the system (8)-(9) becomes an abstract formulation of (l). Also by [15, theorem (3)],

the solutions are all bounded.Further, all the conditions stated in the above theorem 3.1 are

satisfied. Hence the system (8X9) is controllable on"/'

Remark 3.4. If we assume that the nonlinear operatorsf,K ,and I in the

problem (l) are satisfied Lipschitz condition on the second argument,
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we can prove that the system(l) controllable on -/by using Banach fixed
point theorem. The results are obtained by showing that the operator @

in section 3.3, is an contraction mapping, i.e., for
x t(t ),x 2Q) eY, llor, (, ) - <Dx rflll< q lF, t, I - * zQ)ll, o < q . 1.

4. Conclusion
1. Generalize nonlinear control problem by takingf,K,and p in system

(1) any nonlinear operators , and study the controllability of the
problem (l) by using semigroup theory(compact semigroup) and
Schauder fixed point theorem .

2. The idea of studying the controllability of problem (1) by using
Banach fixed point theorem is introduced.

1. Future work
2. The observability and optimality for the problem (1) may be

considered.
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ABSTRACT

This study considers the problem of scheduling n-jobs on m-machines with
transportation time between machines to minimize the maximum completion

time, Makespan.
This problem, when there is no transportation time, is considered NP-hard, while

the problem with transportation time is considered more difficult to solve.

Theoretically, we derive and prove l3 results concerning optimality of special

cases for the problem with ten algorithms.

INTRODUCTION
There are many definitions for machine scheduling, but the simplest

one for understanding is that, scheduling is the allocation of resources

over time to perform a collection of tasks []. Resources and tasks are

called machines and jobs respectively and both of them can take many

forms. For example; we can consider a computer aS a machine and the

programs that are to be run on that computer as jobs.

Sotving machine scheduling problem means finding the decision that

makes us determine which job should we sequence first and on which
machine. The aim is to find a good (near optimal) or if possible

optimal schedule which gives an optimal solution and that enables to

minimize the time spent on the problem which will minimize the cost

for the problem.
In most manufacturing and distribution systems, semi-finished jobs

are transferred from one processing facility to another by transporters

such as automated guided vehicles (AGVs) and conveyors. Most
machine scheduling models assume either that there are a finite
number of transporters for delivering jobs or that jobs are delivered

instantaneously from one location to another without transportation
time involved. This study is studying machine scheduling problems

with explicit transportation considerations.

Problem and Notation
The machine configuration inside a manufacturing facility can be

flow shop, job shop, open shop, or other Upes. This study considers

the transportation mainly in a flow shop environment.

"
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Our problem can be described in general as follows: We are given a
set of n jobs to be processed on m machines in a flow shop. Each job

must first be processed on machine M1, then machine M2, etc., and

finally on machine M.. The processing time of job j on machine M1

is P3s. We assume that all of the jobs start at machine Mr. After a job

is processed on machine Mr, it is transported to machine Mr*r by a

transporter. There are total of n identical transporters initially located

at machine Mr. Each transporter has a capacity of c:1, i'e. it can

carry up to c:l job in one shipment. The transportation time from

machine Mr to machine Mr*r is denoted bY l*.**, which is assumed to

be independent of the jobs being transported.
Let C;3 or Cp( j ) denote the completion time ofjob j, that is the time
when job j is completed on the last machine Mr. We are concerned

about minimizing makespar Cru*.

We follow the commonly used three-field notation ul\ly for machine

scheduling problems.In the a freld, the notation 'TF' will be used to
denote a flow shop problem with transportation between machines.

The problem considered by this study can be denoted as

TF^l(.i,r,...,1,.^-rlC^o, where ( i.k, k =1,...,n:-l denote the n transporters

time, each transporter with capacity I job from machine Mr to

machine Mr*r.
The Calculation of Makespan

For any sequence o:(i1,i2,...,in), let CK(iq) be the completion time of
job io on machine Mk,q=1,2,...,n, k=1,2,...,m. Then since the start

time of the processing ofjob io on Mp is the same as the completion

time of job io-r on M1 , 9=2,3,...,n and the job io can be processed

on M1 as soon as possible after both are completed on M1-1 and

arrived to Mland the job iq-r is completed on Mr,q=2,3,...,n;

k=2,3,...,m. The next relation would follow:

Cl(iq) = C1(io-r)*&0, r

CK0q) = max {Ck-l(iq)+/io,r-r,C1(iq-r)} *&o,k

where (q = l, 2, ..., fr', k--2, 3, ..., m), C*(i6) = 0 , (k = l, 2, ..., m)

Hence, the Makespan of the sequence o is equal to C*(in).
Machine Flow Shop Problem with Transportation Time
It is known that the classical m-machine flow shop makespan

problem without transportation F.// Cn,* is strongly NP-hard for (m
>3) [2], while the Z-machine problem Fzll C^* is polynomially
solvable by Johnson's rule. Thus, any m-machine problem with
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transportation must be strongly NP― hard. The transporter in a nl‐

machine flow shop problem with transportation may be viewed as a

``machine''(whoSe duty is to transport jobs)betWeen each two real

machines(whOSe duty is to processjobs).

Johnson's Rule for■ //cma PrOblem

An optiinal sequence forthis problem was given by Johnson 1954.It is

deterinined by the fbHowing theorenl:

Theorem[3]:
An optirnal sequence is deterrnined by the next rule:If a criterion:

Min(Rル 1,2)≦ Min(島,1,R,2) …。(1)
Hold with an inequality thenjob iit precedesjob J.If equality holds in

(1)either Ordering is optimal.

This theorem can be stated in a different form as shown in the

fonowing theorenl:

Theorem[4]:
Lct  the  set  of n jObs  be  decollnposed  into  its  two  subset,

Jl={ilR,1≦ R,2},J2={i11,1>R,2} then an optimal se quence is

deterrnine by the next rule:

1.After thejobs in Jl,arrange thejobs in J2.

2.In Jl arrange the jobs in increasing order of Pi,1.If a tie occurs

either ordering is optimal.

3.In J2 arrange the jobs in decreasing order of Pi,2・ If a tie occurs

either ordering is Optiinal.

The Solvable Special Cases fbr in― lllachine:

Some special cases that are solvable in polymoniany bounded
computational effort can be identifled. The following sufflcient

optimality conditions(SOc)Will be stated for a g市 en schedule to be

optimal.

FliFSr CαSι

Theorem(1):   In   ttЪ
Iィ
′1,¨ノ,,″ _11CmⅨ    problem,   If

詈筆{4,た +イ
`,た

}≦晋L{4,た・ }た =1,¨っ″-2 and[4,″ 4≦ち,“・ +PJ,″. or
イメ,“ .≦ιノ,″→+PJ,″ ∀J,ノ ], then there e対 st an optimal sequence

determined by the next rule which presented by algorithm(1).

Theorem(2):   In   rら /′ ,1,¨ノノ,″ ./Cma   problem,   if

ら,た +ち ,1≦イj,1+4,1■ ,∀ブ,ノ ,∀■,た =L¨ "″ -2, and[イ′,“ .≦ιブ〃4+ら ,″ J
or イ′″J≦ち,"J+ら ,″ ∀′,ノ ],then there exお t an optimal sequen9e
determined by the next rule which presented by algorithm(1).

▼
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Aleorithm (ll
t- Lat w1=(1,2,...,r) be a sequence on the last two machlnes

and M,, was obtained by applying Johnson's rule on

Niran

ν

"_1

the

lfprocessing time (■ ,"_1+ι j,"_1,イ J,"_1+島 ,")・

冨
Q√ +イレ)=出{冨 G/+ι′「

》,then wヽ optimd on ML tO

Mm.If not,read(2).

2‐ There exist at moSt(n-1)Sequence wq=(q,1,… ,q-1,q+1,… ,n)

obtained by mO宙 ng the qth jOb 90≠ 1)WhiCh SatiS取

うゴcP9,r+ι9/)≦ 7(・ /十ιl「 )tO the irst ofthe sequence lν l=w9.
3- The sequence w which gives ,!Tl-c,,-,*(*q) is the optimal

l<q<n

l;葛

'ル

あ上 fOr any pelulutttbn of the aboVe proЫ em,the
Cm欲 compute as follows:

Cma級 )=脱 J'10/十 ιけ )十
か "J十

ち″J+を 4″ }

=写 Q/+ち√)+催γ五{か″・+ι仁"判十ン″)
The flrst terrn is as sman as possible,and the second get the optimal

value by using the fol10wing theorem and corollary(see[11):

nf電 [鷺驚置l軍:胸∬駆1盟∬」Ⅷ£:計 i¶電器il:
νland ν2'andイ′be transpottation time forjob i■

Om M:tO M2・

Now We consider the following theorern and corollary to good use in

the fbl10Wing special cases.

Theorem lll:

In rF21`JICma problem,If We haVe`f≦ %+ち ∀′,ノ・Then there e対
sts

癬蓮‖ittI 群胤蠍
timeし +イ ,,4+り 。

Corollary lll:

In rF2ン jlCmⅨ problem,IfWe haVe ιj≦
bノ +ち ∀f'ノ・Then there e対 StS

l盤聾麟 群胤蠍
time C+で ,,イf+り。

sequence.
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Theorem(3):In

″′-1

″=2
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個竃芳(4,1+1+イブ,た }≦遮署)(■ ,た } 
た=2,… ,“ -1

problem, If
and ll,,r<1i,1+Pi; or

l,,rsli.r+Pr.2Yi,i), Then there exists an optimal sequence

determined by the next rule which presented by algorithm (2).
Theorem(4): In TF*l!, i.1,...,[, ,*-rlC *u* problem, If
l,,t *P,.t *rsPr.t, *l j,o , k =2,...,m-l and f!,,r<.(.i.1+Pi,t or

{,.1slr,r+Pr.2Yi,i), Then there exists an optimal sequence

determined by the next rule which presented by algorithm (2).
Aleorithm (21

1- Let w n =1,2,...,n be a sequence on the first two machines M,

and Mz was obtained by applying Johnson's rule on the
processing time (4,r + (, .r, I , ,r + p, .z). If

T F^l{. i,1,..., 1,,^_rlC 
^o

‐

“

-1

Z(,,, *Pn.,*r)=,Ti-n {11.1,,, +p,.,*r)}, then w is optimal on M1,
r=2 't'tn ,=2

to M*. If not, read (2).
2- There exist at most (n-1) sequence w n =(1, ..., Q -1, q +1, ...,n, q)

obtained by moving the qth job q @ + n) which satisfy

Z(r,,*Pq,,*)<Z(1,,,,*Pn.,rr) to the last of the sequence
″ -1

″=2

1ク ″ =1ク 9.

3-The sequence″ which g市 es l里ln Cmax(wq)iS the optimal

sequence.

'31 and (4t : For any permutation of the above problem, the
Cmax compute as follows:

力         ′     ″ _1

CmaO)=脱
塔
も +イ岬 +思 42+Σ C″/t/J》

′=2
カ         ″     

“

_1

=脱塔ち
十イ却+Σり+Σ

“
″/+鳥 /刊D

′=力       ″=2

The flrst terrn get the optimal value by using the previous theorenl and

corollary,and the second is as small as possible.

Theorem(5):In rみ
ンプン…ノブ,″ .ICma prOblem,If llnax(4,だ }≦響鼻(4,/・ }

∀′  for  sOme  た′,た′=2ο″...0″″-1  ,  4,た ≦4,た+1,  and
ら,た +ち ,た ≦イ′,た +4,た., ∀%,た =1,¨ "〃 ,た ≠た

′.Then there exists an
optilnal sequence deterrnined by the next rule which presented by

algorithm(3).
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Alsorithm (3)

1- L"t w 1=(1,2'...'n) be a sequence was obtained by ordering jobs in

non‐ lncreasing      Order
″ -1″ -1

1(与
+ι 1/)=薔」{EQ√ +イア/)},

of      `′
,1′

.

then w is optimal on M1, to

1瑠]nCma(wq)iS the Opumal

If

Mm.If not,read(2).

2‐ There exist at most(n‐ 1)Sequence w9=(9,1,… 9-1,9+1,¨ "“ )

obtained by mO宙 ng the qth jOb 9o≠ 1)WhiCh Satis取

,c「 +ι 9′ )≦

'cPl′

+ι
l√ )tO the irst ofthe sequence lッ l=w9.

′=1

3-The sequenCe w Which g市es lmin Cmax(Wq)iS the optimal ヘ~     1<q≦
n        ・

sequence.

PFθOFr fOr any permutation ofthe above problenl,the cmⅨ COmpute

as followS:

c蔭 =2(1,″ +ι l′ )+力 4,"

The flrst terin is sman as pOSSible,and the second iS a constant.

靴 竃 辞 〉 In鴫 ン,ル…,4″ Jrm prOЫ
em,.ら /ぃ ぅ だ ≦鳥 /・ ,

∀′,ノ   fOr  some  r,た'=2θr...Or″
―land PJ,1+ち ,1≦ιf,1+島 ,1+1,

∀た,た =1,… ,″ -1,た ≠た
′.  Then  there  exists  an  optirnal  sequence

detellllined by the next rule which presented by algorithm (4).

/々ο″励 ″ の
1‐ Letソ 1=(1,2,¨ "″)be a sequence Was obtained by orderingjobs

in   nOn‐increasing   order   of   鳥,た
,+′

F,た
,.       If

″ -1 "-1

1CPl,″

+イ 1/)=薔L(lG,″
+ι J√ )),then wお Optimal on Ml,tO

Mm.Ifnot,read(2).

2-There exist at moSt(n‐ 1)Sequence w9=(9,1,… "9-1,9+1,¨ っ
4)

obtained by mO宙 ng the qth jOb 9 o≠ 1)WhiCh SatiS取

,c,r+イ 9′ )≦ iCPl′
+`1「 )tO the irst ofthe sequence w l=w9.

′=1   ~           ″=1

3‐ The sequence w which gives

sequence.

ΠFrZ asι
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Theorem(7): In TF*\t.i,1,...,1,.,_rlC^* problem, If l,,r*p,,zspj,r,
li,r+Pr,rSPj,r, and Pi1, +li,r <1.,,0 +P,.0+r , Vi ,i ,Vk,k =3,...,m-l .

Then there exists an optimal sequence determined by the next rule
which presented by algorithm (5).

Aleorithm (51

1- Let w 1=(1,2,...,n) be a sequence was obtained by ordering jobs

in non-increasing order of P,,r+ (.,,r. If
777-1

ICP1/+で
1/)=置し{I(4/+イァ/)),then w is optimd on Ml,tO

ⅣIm.Ifnot,read(2).

2… There exist at most(n-1)Sequence w9=c,1,… ,9-1,9+1,… ,4)
obtained by mO宙ng the qth job g(7≠ 1)WhiCh satis取
″ -1

ΣO%,″ 十ι9/)≦ΣCPl,″ +ι 1/)tO the irst ofthe sequence w l=ソ 7.
r=1               ″=l

3‐ The sequence″ which g市es l翠
nCmax(Wq)iS the optimal

sequence.

S放
`″

Casι

Theorem(8):In rら
ン,ュ "…ノノ,“ .ICma probLm,If PJ,た

+ち
,た

≦イ′,1+4,1■ ,

∀ノ,ノ ,∀た,た =1,… ,“ -1, Then there exists(n‐ 1)!Of an Optimal sequence

deterrllined by the next rule which presented by algorithm (6).

ИJFaFJ`力″ ρ

l― Let wl=(1,2,… ,4)be a sequence was obtained by orderingjobs
771-1            ″ -1

h my∝

“
L rΣQ計り=普リンμ〕戸hn″おⅢmd″=1

on卜11,to NIIm.Ifnot,read(2).

2- There exist one sequence 1419=0,1,… ,9-1,9+1,… ,“)Obtained by

mo宙ng   the   qth  jOb   90≠ 1)whiCh   Satis取
″ -1

Σ(為 ,″ +ι9/)≦ΣIP1/+で 1/)to the irst ofthe sequence″ 1=ッタ.
′=1               ″=1

3-There exist(n-1)!Such Sequence w which gives cmax(Wq)iS the

optimal value with(n-1)jOb in a different order。

PFοοfr6-O f ltis clear,itis same as in theorem(5).
S′ッι
“̀力
Cαsι

Theorem(9):In rら
kJュ "¨

,ιノ,“ .ICmⅨ problem,If max(4,/.}≦ 習鼻{4,メ }

for sOme  たちた′=l θr… .θr″-l  and  ィi,1+4,tJ≦ら,″ +ι′,た ,∀′,ノ ,▼
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Yk,k =1,...,m -1, k * k'. Then there exists an optimal sequence

determined by the next rule which presented by algorithm (7).

Alsorithm (71

t- L.t w,=1,2,...,n be a sequence was obtained by ordering jobs

in non-decreasing order of 1,,0,. If
m-l m-l'Zrn,, 

* Pn,,*t)= 
,T,11{I 

({ i,, +4,'*r)}, then w is optimal on Mt,

to M,. If not, read (2).

2- There exist at most (n- 1) sequenc Q * o = (1, "', q -1, q +1, "', n, q)

obtained by moving the qth job q (q + r) which satisff
m-l n-l

L(r,,+Pq,,*t)tL(,.,+P,,,*r) to the last of the sequence w n =w q'
r=l r=l

3- The sequence w which gives,[ff"c-*(wo)is the optimal

sequence.

Proof : for any permutation of the above problem, the C..* compute

as follows:
n m-l

c* = Ie,, +\u,.,* P,.,*,)
,=l r=l

The first term is a constant, and the second is a small as possible'

Eishth Case

Theorem(l0): In TF^l{,i,t,...,1,,^-rlC^o problem, If 4,*'*, 3P,.*" Vi and

for some k',k'=lor...or m-1, and l,.r*Pi.**tsP1.1+11,t ' 
Vi'J '

,k =1,.',m -l,k *k, . Then there exists an optimal sequence determined

by the next rule which presented by algorithm (8)'

Aleorithm (81

t-L.twn=l,2,...,nbeasequencewasobtainedbyorderingjobs
in non- decreasing order of4 *' + t i,r" If
m-l m-l'f.U,., 

+ P,,,*v)= ,T,;1{I 
(1,., * P,,,*,)}, then w is optimal on Mt'

r=l

to M*. If not, read(2).

2- There exist at most (n- 1) sequence w n = (1, "', Q -1, q +l' "'' n' q)

obtained by moving the qth job q (q + n) which satisfy

n-l m-l

l1o.,+Pr,,+r) <L(,.,+P,,,*r) to the last of the sequence w n =w q'

a

r=l r=l
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●

3-The sequence w which g市 es l塁lhCmax(Wq)iS the optimal

sequence.

M″
`力

Cαsι

Theorem(11):In rら
ン,1ォ…ノ′,″ .ICmtt problem,If置鬱{4,2)≦ P3{イ '1}'

署鬱
y'1}≦
出 低lL肥 観β}≦出 銭2L Ⅵ,ノ and 4■

+鳥ェい ろ■+ι九た,

∀′,ブ , ∀た,た =3,… ,″ -1,.   Then there exists an optimal sequence

determined by the next rule which presented by algorithm(9).

И々θF滋″ θ)
1-Let w″ =1,2,¨っη be a sequence was obtained by ordering jobs

in   non―   decreasing   order   of   ■,2+イメ,2・      If
′″-1               

“

_1

日(イ″/+ι ,′・)=晋J(I(でノ/+鳥 ,r.l)},then w is optimal on Ml,
to Mm.If not,read(2).

2-There exist at most(n-1)Sequence ″9=(1,… ,7-1,7+1,¨ っれ,9)

obtained by mo宙 ng the qth job 9@≠ 4)whiCh Satis取
″-1           ″1-l

Σ(イ 9,″ +為 /.)≦Σ(ι″/+ζ:ふ )tO the last ofthe sequence
=1″‐1          ″
=

3-The sequence 14/ WhiCh gives ttiLCm欲 (wq)iS the
ll

sequence.
~■
7才 C政

~

Theorem(l2): In TF^I{ i ,1,...,1,,,,_rlc ̂  problem, If
li,r*Pi,rq3Pi1,+l1,r,Vi, j , vk,k =1,...,m-1, Then there exists (n-1)! of
an optimal sequence determined by the next rule which presented by

? algorithm (10).

Aleorithm (101

1- Let 'w 
n =1,2,...,n be a sequence was obtained by ordering jobs

in any order. rc f {t,,, * pn,,*t)= 
,gl*{I (t, ,, +4,,*r)}, then w is

optimal on M1, to M.. If not, read(2).
2- There exist one sequence wr=(1,...,Q-l,q+1,...,n,q) obtained

by moving the qth job q @ * n) which satisfy
″ -1

ZUo,,*Pq,,*t)aLU,,,*Pn,,*r) to the last of the sequence w n =w q .

r=l r=l

3- There exist (n-1)! such sequence w which gives Cma((wq) is the

optimal value with (n-1) jobs in a different order.
Proof(10-121.' is a same as in theorem (9).

夕ヽ″ =ソ 9.

optimal

ロ
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ヽ

Eleッι″ι″Casι

Theorem(13):  In  r鳥ン′ュ"¨ ,イ ,,"JICmパ   problem,  If

[理勇{イ′,1)≦
ιブ,た +ら ,た +land    [理量{4、た+l}+PJ,た +1≦ら,1'    

∀′,ノ ,

∀た,た =1,… ,″ -1. Then ordering jobs by Johnsonis rule on the
″ -1            ″

processing time(Σ (4,々 +′ブ,1),Σ (イ′,..+4,1))tO get an opimJ
た=1              1=2

sequence.

PFθοf: Makespan calculate as:

C暉 =種現蚤{を 41+Σ“
けJ tt ι・+イ辱)+i4′ )

=[f量{iCJ+Σ ri日 十Rょ +ムょ))+ζ
ttCiH+Rょ

+亀 k》 Rm》
堪 Σ

〔 !口 +Rk+4ょ )   ^

″ ″ -1               .

Thetellll Σ Σ (イ F,た _1+ら ,た +`F,た )ls COnstant and the flrst term is an
i=1た =2

optimal value by theorem(3.4)in[5]

CONCLUS10N
In this study,we discus the problem of scheduling m― machine with

transportation time between machines where each machine can
process onejob at a time and eachjob iis transported from machine to

another.This problem is considered NP― hard with out transportation

times.

We have presented a discussion of ways to extend Johnson's two‐

machine result. This result has been extended to derive a special

optimality conditions.The thirteen polynomial solvable special cases

which discussion by this study are the flrst cases  for the          ^

rら /ィ ,1"¨ ,ι ,,“ J/CnEx problem.
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irali,l
Entropy .4llr el\r1.,Lr cr\Y.ej:il rrslt A.L-i Jri^ LUii rrrll Jl ,,,-ltt l.:a eir41
crl-,lri^ ohi go nl;riJ1 ora ,1.:i i* a:rritr ,-,oj rll .4+1-Jt- -urr +Surlr- i;ii,r*,1 L!l3r 6 rr,.,.,t. (MSE) ilrtl 6l,r-l-Jil Ls+$-,yr o+ll..rr., 6" arJr 19+e_$l 6_.,yr.,,rt1 iltr,-,-i j#
r.,. d.lyr .,rs Lls ?$-. o*-,-!,. e ;rt-i.tt Bltroiv aJrr c.,-i']",t ,i ,i 6rr:ilr cr;a_ti
4^ cEsVt 6LS Lts i-iir-,| allr C. al-li4J,+-ill ,''-. r.iil L^i# 6,tslt, a!-J;^lti=.,tr,tr ar*-r

.;:,.i,* i^l! otj ulrlill Lls,l_6 aJLr l'r 6)\i_ll crugJl pg-:l
ABSTRACT

The- object of the present paper is finding the best estimator for the scale parameterof Laplace distribution using Entropy 1or, function with informative and non-informative priors are presented and compared with bayes estimators underModified quadratic Ioss function with the same two priors. The comparison wasmade on the performance of these estimators with resplct to the mean square error(MSE)' The results showed that the Bayes' estimatoi under Entropy loss functionwith Inverted Gamma is the best estimator with a moderate and large sample sizeswhile the estimator under Modified quadratic loss function was better with small

".

INTRODUCTION
In Bayesian analysis the unknown parameter is regarded as being thevalue of a random variable from u giu.., probability distribution,'with
the knowledge of some information about the value of parameter priorto observing the data x1, X2...Xn.
The object of the present paper is to obtain Bayesian estimates of thescale parameter for Laplace distributio, ,rirrg'entropy loss functionwith informative and non-informative priors. rfe comparison was basedon a Monte carlo study. The effici.n.y fo. the estimators was comparedaccording to the mean square effor (USg).
Boyes' Estimators

Let x1, x2, -..,xn be a random sample of size n, the n items have anindependent and. identicaily Laplace distribution, with probabilitydensity function given byttt .

f (xla,b) = *r*ot-#]
-oo<d(o,b>0

where a is the location parameter and b is the scale parameter.
Bayes' estimatorr_ryr l|: scale parameter b was .orrrid...d with Entropyloss function and Modified quadratic loss function *itf, informative loss
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function represented by Inverted Gamma prior and non-Informative

prior which represented by Jeffrey prior'

1. Bayes estimator under entropy loss function

Entropy loss function was first introduced by James and Stein for

the estimation of the variance-covariance (i.e., Dispersion) matrix

of the Multivariate normal distribution. Dey et al. [3],[7] considered

this loss function for simultaneous estimation of scale parameters

and their reciprocals, for p independent gamma distributions'

Rukhin and Ananda considered the estimation problem of the

variance of a Multivariate Normal vector under the E'ntropy loss

and Quadratic loss.[7]

We consider the entropy loss function of the form:[6]

, w)o (2)

棄1:熱≧胤p」∫1:同
3=IEC鶏⇒l…

1

Where E(:|」K)=i電: ん(bl:I)db

LInCtion we 、Vill estimate the scale

lon using  inf01HlatiVe  and non

O POSteriOr distribution using lnverted Gamma prior(IG)

Assuming that b has informative prior as

takes the following form tal:

s ,(D --fr # '-(alb) 
, d ' 9' b>o

So, the posterior distribution for the

(x1,X2,... xr,) is:

(3)

Inverted Gamma Prior which

(4)

parameter b given the data

πLl√ (χilb)θ l(b)た1(bl⊃ =
ff "i=, f 

(xlb) sr(b)db

(
- a[+a)

囲 為一可+→db
(ゞフ置岩可)θ

~τ口=

倒 挽―司+α汗
+β θ―ヨΣ鷹41χ :一αl+α )

豪1+ιβ)f L―ヨΣ]:Lllχ :――αl+α)db

Then the posterior distribution became as follows:
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(8)

た1(bl」K)=
(Σ lχ:一 αl十α)れ +β .θ

~夕Σ卜.lχ [一α卜α)

b(η
+β +1)「

(■十β)
b～ f6(れ 十β,(Σ lχ二―αl)+α )

(5)

No、v,notice that

Let T=b… 1

Thus T～ 6(■ +β ,1/(Σ〕lχ:一 αl)+α )and E(TIこ )= :こ
裏百ゴ[FL両百

=「

l

According to the Entropy loss function,the corresponding]Bayesi estillnator

for b is such that:

b‐1= [E(71ど:)]~1 〓l満 l~1= Ψ

31=                                (6)

F,pOSteriOr distribution using Jeffery prl:II[ll:
Follo、ving the forlln of Jeffrcy prior infl

θ2(θ)==た
:卜
,with k a constant,c∈ R十             (7)

In the same、 vay,the posterior distribution with Jeffrey prior information will

be as follo、 vs:

θ―敷Σ[.lχ i=α l)
れ2(bl∠)=

θ
―:。Llh―のαb

CLlL― 伊 年≒井 〆:CL餞型~Ц
η+σ一つぶ   ‖ 薬山刊働

た2(bl:こ)=
Qた lL一 が

七‐
・
τ畠魔
赫
ΣL同

・一μ
・一碑
ｆ

Thus,T～ 6(■ +ε -1,37二
f五=75)

Hence,according to the Entropy Loss Function、 ve get:

b‐2=

b～ fε (■ +ε ―

Lct r=b-1

「
(■ +c-1)

1),(Σた11χ[一 αl)

2. Bayes estimator under Modified Quadratic Loss Function

For the estimation of the scale parameter of Laplace distribution,
modified form of this loss function may be defined as follows:[1]

(9)

L(0,0)= (2三I:2)2
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(11)

のPOSteriOr distribution using lnverted Gamma prior(IG)

&緊 l雷∫驚 淵 需 拙 l窮憶 黒 概
i肌

留
>間
whc

b～ J6(71 tt β′(Σ lχ二―αl)+α )
And、ve found that:

T～ 6(・ +β′
Σュ=11χ t‐
―αl),Wた
θre r=b~1

E(T)= (12)

var(T) -
Hence:

η tt β

(ΣLllχi― αl+∝)2

E(T2)=

E(T2)=

According to(11):

63=器

33=二
≒ギ幸デ葺1許

三

(.+β)2

(ΣLllχ二―αl+∝)2

(14)

(13)

Substituting(12)and(13)in(14),we get:

b3=

(15)

(iy' Posterior distribution using Jeffery prior'
Th" ,o.r.rponding Bayes estimator for b with posterior distribution hr(blx)
comes out as:

r-G(r* c -l,Ci#) ,wherer = b-l

η+C-1
E(7)=(Σ

Lllχ:一 αl)

■+c-1
υαγ(T)=(Σ摯

=1lχ三
二五|)2

Thus ECり =器

Substituting(16)and(17)in(13),we ind:

(16)

(n+β)(1+n+墜
(Σ[11χ :一 αl+∝ )2
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. (Xi='lxi - al)fu=# (18)- n+c
Simulation Results

In this section, Monte - Carlo simulation study is performed to compare

the methods of estimation by using mean square Errors (MSE's) as follows:

MSE(6)- IL'(6: - r)'

Where R is the number of replications.
We generated R:3000 samples of size n : 10, 20, 50, and 300 to
represent small, moderate and large sample sizes from Laplace

distribution with the scale parameter b : I , 2.

In order to compare the Bayes' estimators under two different loss

functions and two priors, we chose the values of Jeffrey constants; (c :
0.5, 2,3) and for the Inverted Gamma prior (a:1.5,3) with 0 :2.
The results were summarized and tabulated in the following tables for
each estimator and for all sample sizes.

Table-1: Expected values and MSE of the different estimators for Laplace
distribution when b=L and B =2

n criteria
〈ｂ

〈ｂ
〈
ｂ

〈ｂ

α=1.5 α=3 c=0.5 c=2 c=3 α=1.5 α=3 c=0.5 c=2 c=3

10
EXP. 0.9608 1.0858 1.055 0.9H 0.8358 0.8869 1.0027 0.955 0.8358 0.7715

MSE 0.0717 0.0776 0.115 0.091 0.0972 0.0726 0.0598 0.093 0.0972 0.1120

20
EXP. 0.8901 1.0483 1.028 0.955 0.9119 0.9375 1.0027 0.978 0.9119 0.8723

MSE 0.0432 00452 0.055 0.048 0.0506 0.0431 0.0392 0.049 0.0506 0.0555

50
EXP. 0.9905 1.0194 1.010 0.980 0.9617 0.9718 1.0001 0.990 0.9617 0.9435

MSE 0.0187 0.0189 0.020 0019 0.0201 0.0187 0.0179 0.019 0.0208 0.0211

300
EXP. 0.9989 1.0039 1.002 0.997 0.9939 0.9956 1.0005 0.998 0.9939 0.9906

MSE 0.0034 0.0033 0.003 0.003 0.0033 0.0033 0.0033 0.003 0.0033 0.00341

Table-2: Expected values and MSE of the different estimators for Laplace

distribution when b:2 and B -2

n Criteria

，
θ

＾
ｂ ｂ^ ｂ^

α=1.5 α=3 c=0.5 c=2 c=3 α=1.5 α=3 c=0.5 c=2 c=3

10
EXP. 1.7966 1.9216 2.1115 18235 1.6716 1.6584 1.7738 1.9104 1.6716 1.5430

MSE 0.3222 0.2869 04604 0.3653 0.3886 0.3559 0.2904 0.3748 0.3886 0.4481

20
EXP. 1.8919 1.9602 2.0582 1.9107 1.8238 1.8097 1.8749 1.9573 1.8238 1.7455

MSE 0.1829 0.1729 0.2215 0.1959 0.2023 0.1929 0.1724 0.1991 0.2023 0.222`

EXP. 1.9522 1.9810 2.0205 1.9611 1.9233 1.9154 1.9437 1,9805 1.9233

0.∝
下 ＼
1)

νlSE 0.0767 0.0748 0.0826 0.0789 0.0803 0.0788 0.0748 0.0793

300
EXP. 1.9928 1.9978 2.0048 1.9944 1.9878 1.9862 1.9912 1.9978

MSE 0.0134 0.0134 0.0136 0.0135 0.0136 0.0135 0.0134 0.0135
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RESULTS AND DISCUSSIONS
From table (1) It appears that in small samples (n : 10, 2q 6s is the

best estimator which represented bayes estimator with inverted gamma

prior under modified quadratic loss function whena - 3, while 63 and

61 which represented bayes estimator with inverted gamma prior under

Entropy loss function, are closed in MSE's with small value of a
(a - 1.5) also we can say that the estimators under Entropy loss

function with Inverted Gamma prior become the most efficient with the

moderate and large sample sizes.

The results in table (2) showing that MSE's increases for all estimators
when the scale parameter (b) increase. We can see clearly that the bayes

estimator with inverted gamma prior under Entropy loss function D1

became the best with all sample sizes.

In general, we can say that, the Bayes' estimator under Entropy loss

function with Inverted Gamma is the best estimator with a moderate and

large sample sizes while the estimator under Modified quadratic loss

function was better with small sample sizes and when the scale

parameter has a small value.
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ABSTRACT
In this paper、 vc studicd the degree of one sided‐ approxirnation of unbounded

functions by algebraic polynolllials  in the Lρ
,∝
―weighted spaces in telllls of

wcighted modulcs ofcontinuity

l…INTROUDACT10N
In 1997,the authors in[11],[12]and[13] intrOduced an interesting

new concept ofinten″ ining approxirnation which is related to both

copositive approxirnation and One sided― approxirnation.

Lct X=[-1,1], then we denoted by Lρ the space of an bounded
measurable functions f on X such that:

‖/11p:=(だ11f(χ )lραχ)1ん <∞ ′1≦ρ≦∞       (1.1)
The degree of  best approxirnation of   f∈ Lρ  with respect to
algebraic polynonlials of degree r in ιρ一 sρααs iS deflned by:

み(f)ρ :=ιれ4だπrll/一ρllρ ,,1≦ ρ<∞
where π

r iS the set of all algebraic polynonlials ofdegree≦ :r

The best one― sided  approxirnations of   f∈ Lρ with respecttO
algebraic polynorrlials fromι ρ

‐―sραεθS iS given by:

島【f)ρ :=in義∈[_1,11〔 |IP一 σllρ :P,9∈ πγαれαP(χ)≧ f(χ)≧ σ(χ )〕

The たιれ average modules of    f∈ ιρ w、アith respect to
algebraic Polynonlials fronl Lρ 一 sρα

“
s is given by

τたび′δ)ρ :=‖″た(/′χ′δ)|lρ′δ>0
where:

Wた (f′ χ′δ)ρ :=Sup{|△力f(t)|・∈
Iχ
一
号
≒χ+サI力 ≦δ〕′δ>0

Now Let βα:=(■X→ IR:lf(χ )|≦ νθ
αχ
),α >l Such that

鵬=中矧%均がん<∞   0
Theたιれ symmetric difference[21 of f∈ βα iS deined by:
△覧√:=ΣllLO(-1)二 (I)/(χ

‐+た
(:)‐
―:た
)                 (1・

3)

TheたιれLρ′α…modules of∞ ntinuity for f∈ βαiS deined by:

Wたび′δ)∝ :=Suaれ |<δ {||△ I√ |lρ ,α }′δ>0         (1・4)
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Let us  deflne the ¢たιれ LP,α‐ weighted modules of continuity for

f∈ βα y:

w′σ′δ)α :=Suρ {|△ 1¢√(t)θ
~αt卜ι∈

[χ
―ち≒χ+サl,た≦

δ
} (1.5)
Where :

¢(χ)=(1-χ
2)1/2 fOrX=[-1,1]and where:

△脅
た
f(ι):=Σ:に。(-1)i(I)f(χ +¢た(:)‐―ι¢た)
Now ,we shan introduce  the average  modules of smoothness for

f∈ βα
Theたιh average moduに s ofsmoothness for fC βois deined by:

τたσ,δ)α :=‖ Wたび′χ′δ)|lρ ,α         (1・ 6)
Where

Wたび′χ′δ)α FSup{IΔ 1/(ι )θ
~αι卜t∈ [χ―篭≒χ+割 :にδ〕

Then the best appro対 mation of hnction s f∈ βα with p01ynomials
from πr in Lρ ,α_weighted spaces is given by:

尋0つρ,α :=inん∈πγllf一 ρllρ′α       (1,7)
The best one―sided appro対 mations of  f∈ βo With polynomials
frorn πr in
Lρ′α_weighted spaces is given by:

耳0つρ,α :=ini∈卜.,珂〔|IP-011ρ′α:P′σ∈πγ αnd P(χ )≧ f(χ )≧
0(χ )〕(1・ 8)

2¨AU測LIARY LEMMAS
Here,we shall list some Lemmas which we need to prove ourresults。

Theorm(A):(whitneノ 'S Inequality)16】

Let fC Lp(χ ),0<ρ ≦∞.then there e対 sts a polynomial

O.∈ πγ′(7L≦ r)Of degree≦ 71,such that:

|lf-9.|IL(χ)≦ εwたび′χ′δ)ρ ,δ >0・

Here we wantto prove the same result but for f∈ βα:

Whitneys lemma(2。 1):For f∈ βα there exists a polynomial Q∈ πr,
such that:

‖f一 σllρ ,α ≦CWたび′χ′δ)ρ ,α
Where C is an abs01ute constant.

Proo■

|lf― QIlν ,∝=(■11√ (χ)-0(χ )|′θ
~∝′χαχ)1ん

Since lセ
~αχ
l≦ M thenセ

ーαχis a bounded hnction then by

whitneソ 's inequalityヨ σ∈πr SuCh that:

|lf-911′′∝=(111f(χ )一 Q(χ )lρ θ
~∝νχdχ )・/P

260

ヘ

^



Al- Mustansiriyah J. Sci. Vol.24,No5,2013

≦‖fθ
~∝′χ―σθ

~α′χ
llρ ≦CWた (f′χ′δ)ρ′α

Lemma(2.2):13]

For f∈ ιρ[-1,1],0<ρ ≦∞,We have

み(f)ρ ≦εWた (1■
~・

)Lフト引
Lemma(2.3):For f∈ βα there is an absolute constant C such that:

みσ)α ≦CW′ (lδ )α
Proo■

Let P be the best appro対mation polynomial of f∈ β∝then
gr(f)ρ
′∝=‖ f一 PIlρ ,∝
=(∫Lll/(χ )―

一P(χ )lρ θ
~°Cρχ
dχ )1/ρ

Since lセ
~αχ
l≦ Mthenセ

ーαχis a bounded function by lemma(2.2)

(ETσ θ
~αχ
))ρ ≦C(k)しル′′(fθ―αχ′れ

~1)ρ

Hence ET(f)α ≦:CW`(lδ )α
Lemma(2.4):[4]

For f∈ Lρ we getτた(f′δ)ρ ≦C Ilfllρ
Lemma(2.5):For fc βαWe have
τた(f′ δ)ρ′α≦C‖ノЧlρ ,αWhere C is an absolute constant?
Proof:

Let P be the best appro対mation polynomial of f∈ β∝then
grOつ
ρ,∝ =‖ f一 PIlρ ,∝
=(∫Lllf(χ )――P(χ )lρ θ

~∝pχ
dχ )・

/ρ

Since lセ
~αχ
l≦ M then"―

αχis a bounded function hence by lemma

(2.4)we get
τた(fθ

~αχ′δ)ρ ≦C‖ fθ
~αχ
llρ

Therefore

τた(lδ)ρ′α≦C‖ /11ρ′α
Lemma(2.6):for fC βαthen
Wた (f′δ)α ≦δWた _1(fttδ)α
Proo■

By deflnition o■〃た(√′δ)α We get:

|△ I√ (ι )θ
~αι
l==|△覧
~1[f(ι
+χ )θ

~α
(ι ttχ)__f(ι

)θ

~αι
]|

=lAI-1」
|れ

(f′ (t+χ ))dtl

=lit△労
-1/'(t+χ

)α tl

<lllilll)△労
-11f′
(t‐十χ)αι

l

≦ぶ護路
)Δ
l-1び
′
(t)′δ)WherefL(■ t)θ ~∝ι).

‐
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<瑞
ii:II;)Wた―・

(f'(ι),δ )∝ dι

≦δwた_.び tδ )∝
Le面 ma(2.7):For f∈ βαWe get

w′σ′δ)α ≦Wたび′δ)α ≦τたび′δ)α
Proo■

From(1.4)and(1・ 5)we get:

w:(lδ )α ≦Wたび′δ)α

ИttCtt δ)α =Suρ。≦れ≦δ{∫L『
たれ
|△if(ι )θ

~α tlραι)1/P

<suρ
O≦れ≦δ{∫

:i「

krl(1″

Ic(fθ

~αι′χ+|「′δ))ρ dt)1/ρ

=sup。≦れ≦δ{∫ II三れ(いれ(F′
χ′δ)∝)pat)1/ρ

2

=τたび ,δ )α

Thus wfσ′δ)α ≦Wたび′δ)α ≦τたび′δ)α
Lemma(2.8)13卜 For f∈ L′ [‐ 1,11,0<′ <∞ We have

Erσ )ρ ≦rrび )ρ ≦2rE rσ )ρ
Lemma(2.9):17]
If f is a bounded measurable function on[‐ 1,1]then:

∫Llf(χ)dx% 2(■
~・

)】ΣLl√ (χ:)      (2.1)

Where χ二=1鐸
―Lemma(2.10):
For f∈ βα We get:

だlf(χ )θ
―∝χ
dX負
`2(72~1)Σ L1/(χご)θ

~∝χ
i

Where χご=1鐸
Proo'

Since lル
~αχ
l≦ M then セ

ーαχ is a bounded measurable inction

then by equation(2.1)we get

∫1lf(χ)θ
―∝χ
dX食
`2(■

~1)Σ
L.f(χご)θ

~∝χi,Where χ:=1鐸
Lemma(2。 11)[81:

For any polynomial o.∈ πr,(n≦ r)0<ρ ≦∞,We have

lχ 11ん‖9.|IL∞
(χ)～
‖9・ |IL′

(Ю
(2.2)

Also■ is clearthat ttσ′3)ρ ≦喝σ′t)∞

Lemma(2.12)191,1101
ForfC LPand k,μ ∈lV,(0<ρ ≦ 1),We get[9,10]

Σ17~1叫σ′U仁ブχi):≦ ε(′,た,μ)イσ′れ
~1):(2.3)

Where C is an absolute constant

Lemma(2。 13)[31

ヽ
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For f∈ ιρ[-1,1],0<ρ ≦∞,We have

Frび )∞ ≦みσ)∞ ≦2rE rび )∞
Beatson Lemma 13]
Let k≧ 2 be an integer and d=2(k-1)2 ,let T={ι〕稚_∞ be strictly
increasing knote sequence with tO=-1,td=1 , let P,Q betWO
polynornials of degree  less than  r  then  there  exists aspline

polynonlials such that:

i― S(X)iS a number between P(x)and Q(X)fο γ χ∈[-1,1]
五―S(X)=P(X)On(_∞ ′-1]and s(X)=Q(X)On[1,∞ )

3。MAIN RESULTS:
In this paper,we shan flnd the following results about the best

one―sided Appro対mation  of f∈ βα with respect to algebraic
Polynonlials in the Lρ′∝―weighted spaces

Theorm(3.1):For f∈ βα,We have

尋(f)ρ ,α 笙″″(f′ lχ l)ρ′α
Proof:
Let P*bθ the polynomial of best appro対 mation of f∈ βα and let P and
Q are p01ynOmials ofdegree r such that(Q(X)≦ /(χ)≦ P(χ))

みoつρ,α =|IP一 σllρ ,α
=(∫LllP(χ )――C(χ)lρ θ

~αχρ
`ダ

χ)・/ρ

≦21ん'sup{IP(χ)-0(χ )lθ
~αχ
〕

=21ん |IP-011∞ ,α
=21んみび)∞,α (by lemm五 (2.13))
≦2らび)∞,α

By whitney'slernma we get

C Fr(f)ρ
,α
≦ε‖f一 P*||

≦εWた (f′ IXI)ρ ,α
Therefore

み0つ′,α ≦εWた (f′ IXI)ρ ,α
Bylemma(2.7)we get

み(f)′′α≦εw′ (/,IXI)ρ′α
Conversly let oJ be the best approximation polynomial of f∈ βα on
χ:=[Zι′Zι +.]′ :=1,2,… ′r are points in[-1,1]
Now by lemmas(2.13),(2.11),(2.8),and(2.12)we get

w″ (f′ IXI)′ ,α ≦″た(f′ IXI)ρ,α
Bylemma(2.7)we get

Wた (f′ IXI)ρ′α=Suρχ∈[_1,■]‖ΔI fθ
~αχ

llρ

=Σた11χEI Suρ ‖△lfθ
~αχ
llP(χι)

‐

‐
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■

≦Σ区:|||△覧び一のθ
~αχ‖鳴α

≦εΣ141χ:|||(f一 σ二)θ
~α
ll∞,α bylemma(2.8)we get

■

=ε
2:れ
-lE:Cr)∞

,α

:-1

Since[Any two nolllls in aflnite dimensional space are equivalent]we

get

‖σ―PII∞ ,α ≦C‖ Q一 PIlρ′∝
Thus

wfσ ,lχ l)α ≦CΣLl■
~lE:び

)ρ′α byにrrma(2.8)we get
≦2CΣLlE:び)ρ ,α
=2CΣ[111f― Cillρ ,α
≦2CΣ Ll″Ъび′lχ:|)by lemma(2.12)we get
≦εttσ′れ~′ )P,∝
≦路σ)P,α

Hence

みび)ρ ,α ≡W:び′lχ l)P,α
Theorm(3.2)IIntertwining Spline Appro対 mations,0<ρ ≦∞)]

Let f∈ βα,let k≧ 2 be an integer and lets≧ θ,

4=〔ソ′′…′ysヽ yθ =一f<y′ <y2<… <ys<1=ys+′〕.
Let L be a g市 en knote sequence such that there are at least

4(k-1)2 knOte in each open intervals(yル y:+1),j=1,2,… ,s‐ 1,then

there exists an intenvining pair of splines{S, S}Of Order k on  the

knot sequence L,ceS S∈ εた
~21_ノ

,ノ]and       s―
F,S― F∈ Δ

θ
(4))Such that,for i=0,1,_,n-1

11」―SIlρ ,α ≦σlχ二12喝たノび
′
′lχil′χi)P,α ・   (3.2.1)

Where C is a constant depending on k and on the FnaXirnum ratio

ρ=mαχ椰響・
And χi is an interval such that χ:⊆ χi⊆ [z二 _6(た _′ )2,Zi+6(た一′)2]
Proo■

Let d=2(r一 f)2,m=[(n+d‐ 1)d]and Z~i:Zdinote that Z~i=‐ l for i≦

θαれdZ~i=l for i≧ m,we irst constrtlct over lapping polynomial

ptces of degree Lss than r on the coarser partibn■ :{乙准θWe cJl

the intervalえ=[ス ,4+′ ]∞ntaminated.

If Z<ソニ<Z~i+′ for some yi∈ 4.By assumation there e対sts exactly

one yfin each of the contaminated interval χmJj=1,…。,s and there is

aleast one non‐ contaFninated interval be●″een
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χmブandχmJ+′ thatis X7■ブ=[ZJ・′
ZJ・ +′ ]and χπιブ+′

=[ZJ・+ル ZJ・ +2]

乃 <乃 +2≦ 乃 +′ j=1,… っs-1.
If響ブ+′ =響プ+2(i~e)if there is only one non‐ contaminatedinterval

between(Й年.ブ andス年.ブ+f)then the following construction is not
needed and the nexttwo paragraphs can be skipped.

In case■ブ+2≦ γ物+′ by whitneys inequality[6]for apprO対 mation on

each   of the interval [Zi,Zi+2],i=η り十′′・・・′ηり+ノー2there exist two
polynomials a and Q十 ′Ofdegree less than r such that

PI(X)≧ f(χ)≧ Q(χ),∀χ∈ [Zi′ Z二十2]′ by Whitney's Lemma we get

‖Pi一 QIlρ′∝≦」(f)≦ εEr(f)≦ εWた (f′δ)α
≦ετた(f′δ)α .            (3・ 2.2)

We deflned ρi and 9:on[Zゎ Zi+2],,by a=鳥 and 9ι =σ t if(一ゴ)S~′ >θ・
And ρt=ci and 9:=鳥 if(一ゴ)S~ノ <θ

hence(一ノ)S~」
i(a(χ
)一 f(χ ))≧ θ,(一 f)S~プ (9,(χ )一 /(χ))≦ θ

and‖′,-9二 ||′ ,∝ =‖島一QIlρ′∝(by Whitney's Lemma we get)
≦εwf(f,χ′δ)ρ′∝(by Lemma(2.6)we get)
≦εwれノ(ftt δ)ρ′∝。      (3.2.3)

We should emphasize that when we speak of apolynornial on an inteⅣ al

we rnean the restriction to the interval,hence it is considered undeflned

outside  near  each point yゎ we construct  local  polynonlials

differently.more precisely,we appro対 mat fon[ZηlJ_ノ ,Zm′ +2],j=1,… ,S

fronl above and below by two polynonlials.

FIり andёmJ Ofdegree less than r‐ l then fttιJ(X)≧ f(χ)Omプ (X),

∀χ∈ [Zmブ _ノ′ZmJ+2]′ ,and by Whitneys Lemma we get

l鳥町
~σ
mノ
|lρ′∝
≦εW′σ′δ)ρ′∝by Lemma(2.6)we get

≦σw′_′ (ノちδ)′′∝
Deflne ρmブ =鳥句and々mノ =αmブ if(一 f)S~J>θ  and

ρmブ =ё確ブandこれJ=為ブif(一 f)S~ブ <θ

ltis easy to check that

ρ_.(X)=:li氏″凛焼J(ι′)θ
~∝ριノ dtrdt2‐ +fCyι )

9mノ (X)=lit聴iσ tゝ (ι′)θ
~∝ριノ dtrdt2+<y:)

Satistt the inqualities:

レ駒莉 L,√ 肛 12L。
♂ 餞 崎け

I12%0〆 …
l dtFdち

t,∝

=||ぶ氏″θ
―∝ptl[乳ブ(t′)-Om′ (ιノ)]dt′ dt211"
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3 sup{lF-, - Q*,1' e-nP"dtitz}/P

≦ε(乃 )|ヌmノ 1211鳥句―Omブ‖p,∝
≦C(乃 )|アmブ Fwれノ(ノ :δ )pje

To constructed a local polynornials which are"interwning::with f and

have the right approxiination order,we now let the two spline S and S

on the orginal knote sequence■l with the same properties.If both

χ
:一ノandえ are non‐ contaminated and i<m,then ρた′

and PI

ovenapping χ「on,WhiCh contain d‐ l interior iom L by beatOsons
Lemma[3]there exists asplineSi of order r onXこ on the knote connects

With ρたノand P:in ε
r_2 manner Z=Zdi αndz~i+′ =Zd(I+′ )respectively

moreover,the graph of Silies between those of ρl_′ and ρι hence

Sgn(ρι_′ (X)… 【X))=Sgn(ρ ι(X)‐ 【X))=Sgn(SI(X)― 〈X)),X∈ XJ

Siinilary ,considering the overlapping  polynonlials 9二 _′  and 9ι  we

construct spline Si satistting:

Sgn(9:_′ (X)― 【X))=Sgn(qι (x)‐ 【X))=Sgn(Si(X)‐ 【X)),X∈ χ :

Also

,' 
4lp,-, - q,-,1' + |b, - qrl.)

‖瓦一Sillフ ,∝≦εW′び′δ)ρ′∝
≦σlス 12wrび

′
′δ)ρ ,∝

the blending of the overlapping polynornials pieces  involving

contaminated intervals can be done in the same way . The sphne

pieces Siand S:thus produced also satistt the eStimate above with a

slighty larger interval in place of[Zi_′ ス+2]On the righthand side
([ζ-2ス+J aS WOrst),whth Wm■ake no dfferencc h the rest ofthe

proofo We deine the inal splinef on eaChえ as f01lows.If there is

only one local polynonlialρ l over X~iset S~to this polynonlial.If there

are two polynonlials overlappilg on X~ithen there must be blending

local tt set S tO SE.It is clear iom this∞ nstruction that S~― fC△
°
(4)On

//p
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●

the whole interval[-1,1]and」 ∈εた
~2.similary construct S∈

σた
~2

such that

f― S∈ △
°
(4).Now recall that all neighboring inteⅣ als χ:=[ZぉZi+.]in

the orginal partition Lare cOmparable in size and each interval

'1=[Zdi_ノ

Zα∈+ノ)]C°ntains no more than d such that intervals .

Therefore,the inquality(3.2.1)fol10WS directly from(3.2.2)and(3.2.3)

theorm(3.3)[3]: Let f∈ βα′ 0<ρ ≦∞ and let k≧ 2 be an integer
then there exist splines polynonlials Sr and Sr of order k on the knot

sequence rt=={z二〕稚θ SuCh that:
こKx)≧ f(χ)≧ 身(χ),X∈ [一ノ′ノ]
And for i=1,2,… 。,r-1

‖ユ_斗 |lρ′∝≦εレ暉(f′ lχ:|,χ
`)ρ

,∝

,             Where C is aconstant depending on k and on the maximulln ratio

r lχ

`土

ノ|
ρ=mαχ:蜀 面 ,

And χ:is an interval such that
χ:⊆ χ:⊆ [z:_6(た _′ )2'Zι +6(た―′)2]
Proof:

The proof Of the abOve theorm follows directly from the proof of

theorm(3.2),by omitting the inequality(3.2.3).

Theorm(3.4)
For f∈ β∝We get

みσ′δ)ρ,α ≦Q″′(lδ )ρ ,α ,Where C is an absolute constant
Proo■

Let P,Q be the best one一 sided approxiination polynonlials of f∈

β∝then(Q(x)≦ /(χ)≦ P(χ ))
みび′δ)ρ′α=|IP-011ρ ,α

、       And by using theorms(3.2)and(3.3)we get
みび′δ)ρ′α≦‖島_斗 |lρ,∝
≦Q″′(lδ )ρ′α

CONCLUS10NS
By using a knote sequence■ l and Obtarning the interwining pair of
spline(瓦 S)of order k suchthat S~― f,S一 f∈ △

θ
(4))and we

prove that

‖S~― SIlρ′α≦εw′ (ノ与δ)ρ′∝
and ind the degree ofone sided‐ appro対mation of f∈ β∝.

‐
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ABSTRACT
In this article, we introduce the notion of quasi purely Baer modules as a general
case of Baer modules, quasi Baer modules and purely Baer modules. A several
properties and characterizations are given for such modules. We discuss this
property on direct summands and direct sums. Further, we consider conditions
under which quasi purely Baer modules versus purely Baer.

1. INTRODUCTION
All rings are assumed to be associative with non-zero unit, the modules
are unital right modules. We usually denote the basic ring by R, the
module by M, and its endomorphisms ring Endp(M) by S.

The right annihilator of a subset X of M in R is denoted by rp(X), the
right annihilator of a subset T of S in M is denoted by ry(T), and the left
annihilator of a subset P of R in M is denoted by /ru(P). Let M be an R-
module. A submodule N of M is fully invariant, if N is S-submodule of
M, that is a(N) cN for each q ln S. Cohn in [l] called a submodule N
of an R-module M is pure if the sequence 0 - N I E + M @ E is
exact for every R-module E. This equivalent to saying that for each
n:)T=t m;r;;€ N, mie M,riiG R, j = 1,2,3 , ..., k, there exist xi€
N, such thatn;l!=r xiti for each j (l2l,theorem4.89).
C.S Roman in t3] introduced and studies Baer and quasi -Baer
modules which are a generalization of Baer and quasi -Baer rings to a
general module theoretic setting. In fact he studied the relation between
the modules and their endomorphisms ring passing through the
annihilator, an R-module M is (quasi-) Baer if the right annihilator in M
of any left( rwo sided) ideal of S is a direct summand. It is well-known
that every direct summand is pure. This lead to introduce Romans
notion in purity. purely Baer modules were introduced in [4], an R-
module M is called purely Baer, if ry(A) is a pure submodule of M for
each left ideal A of S.

In this work, we introduce the concept of quasi purely Baer module
which is a general case of Baer, quasi purely and purely Baer modules.
we give a characterization of a quasi purely Baer modules in terms of
endomorphisms family. As a consequence, in these module the
intersection of arbitrary family of fully invariant direct summands is
fully invariant pure. Examples are provided to show that quasi purely
Baer modules is a proper generalization of quasi-Baer and purely Baer
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modules. We show that the property of quasi purely Baer is closed

under direct sums. Finally we proved that quasi purely Baer property

versus purely Baer property under semi commutative modules.

2.RESULTS
We start to introduce the concept of purely quasi Baer modules which

is a proper generalization of that of quasi-Baer( and hence Baer) and

purely Baer modules.
Definition(l): An R-module M is called quasi purely Baer, if for each

two-sided ideal A of S=Endp(M), rru(A) is pure in M. A ring R is quasi

purely Baer, if it is quasi purely Baer R-module.
In the following we characterize purely quasi-Baer in terms of

endomorphism family.
Theorem(l): An R-module M is called quasi purely Baer, if and only if
for each family { ax\\ €A} of endomorphisms of M , [lrel rr,a(So,.S)

is fully invariant pure submodule in M.
Proofl Let A be a two sided ideal of S:Endn(M). It is easy to see that

A:|,.,aSaS, so rr.a()o.1 .SaS): floea ry(SaS) , then by hypothesis

rr,,1(A) is a fully invariant pure submodule of M, and hence M is purely

quasi-Baer. Conversely, let { a,.\x 6A} be a family of endomorphism

of M. Put A:lo.a 5a.5, then Ais two-sided ideat in S, since M is purely

quasi-Baer, ry(A) is a fully invariant pure submodule in M, but fl16,1

rM(So,S):rM(A), then nr€^ rv(So"S) is a fully invariant pure

submodule in M.
Corollary(l): A ring R is purely quasi-Baer if and only if for each subset

A of R, naeA rR(RaR) is two- sided pure ideal in R.

Corollary(2): M is purely quasi-Baer R-module and {Ao}o.nbe a family

of fully invariant direct summand of M, then OoE,1 A. is fully invariant

pure in M.
Proof: For each oeA, there is a submodule B" of M such that M:
A.(EB.. Consider po: M---+N,{ be the projection mapping onto Bo, since

Ker(p"): A. is fully invariant in M, but M is purely quasi-Baer, then by

theorem(1), flo.n ker(pu): Oo.rr Ao is fully invariant pure in M.
Examples( 1):

(a) All Baer, purely Baer and quasi-Baer modules are purely quasi-

Baer.
(b) purely quasi-Baer property is a proper generalization of quasi-

Baer property. By 7.54 in [2], there is a commutative von Neumann

regular ring which is not Baer (:quasi-Baer), but each commutative von

Neumann regular ring is purely Baer(:purely quasi-Baer) ring.

(c) purely quasi-Baer property is a proper generalization of quasi-

Baer property. For example, let R:(6 Zr) w tn" upper 2x2 triangular

matrix over Z. Since Z is quasi-Baer, then R is quasi-Baer[5], then R is
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purely quasi-Baer. We claim that R is not purely Baer, if not, let A :

G l) € R, then *re):{ (3 
-!rr) /b e z} is pure rn Rp, this

implies that rp(A)x:R*O rn(A) for each xeR, rin.. (fl !r) , rn(A),

then there a non-zero erement (fl _Z) E rp(A) such that (3 _Zr)

ffi _'r): ([ _1r)i'nnri.e that (3 -n:(, ]r)
and hence -2c:l which is a contradiction. Thus R is not purely Baer.

(d) Let F be any field and R -#be the ring of polynomial in two

commuting indeterminates x and y with coefficient in F modulo the
ideal <x, y>. R is non singular and rp@ R): rR which is not pure in R.
As R is commutative, then R is not purely quasi-Baer. R is not self-
injective, then E(R) is non-singular([6], proposition(|.22)), but E(R) is
extending, so E(R) is Baer R-module([3], theoren2.2.2) and hence E(R)
is purely quasi-Baer.
Theorem(2):Let R be a ring. If any one of R[x] R[[x]l is purely quasi-
Baer then so is R.
Proof: Assume R[x] is purely quasi-Baer and let A be two sided ideal of
R. Consider the following system xi:\l=1my1i V i = I,2,3,...,n
where xiern(A), mi, r;jER for i:l ,2,3,...,fl , j:1,2,3,...,k. Let J -
{It=o akxk l&r €A, neN}, J is two sided ideal in R[x], then
rnl-t(J) is pure in R[x]. It is easy to see that rR(A) is a subset of rp1-1(J)(

in fact rp(A)[x]:rnr-r(J)). Thus x;e rp1*1(J). By purity of rp1-1(J) in R[x],
there are a:(x): Zi'=o o, 0)rijx'e rnr*t(J), j:l ,2,3,. . . ,n such that

*,df=, a;(x)r1; : Xrry=r( Z:'=ra.0)r' ) ri:. Then we obtain :
*'df=, Z:'=oa,o rij*' :XIlo ao 0)r1+)l ,ti'=ra,0) r,j x' which implies

that xi:X|11a6(i) ri.; . To show that ao 
(i) era(A), let fe A, then feJ, but

a:(x): Di1r4.0) 1re rnt.t(J). Thus fu.i(x): L:'=rAr 0) *'-0, so fa;(x):0 for
each j:1, 2, ...,fl and k:0,...,n, therefore fao(i):0 for each j:1,...,n. Then
ao(il .r*,O) and hence rn(A) is pure in R. This shows that R is purely
quasi-Baer.
Theorem(3): Direct summand of purely quasi-Baer module is purely
quasi-Baer.
Proof: Let M be a purely quasi-Baer R-module and A a direct summand
of Endp(A). Let I be two-sided ideal of R. Consider the following
system: xi:Xf=r miril for i:1,...,n where x;era(I), mj e A and r;ie R, for
each i:l, 2, ...,n and j:0,..., k. Since ra(I) is fully invariant submodule
in A, then there is a fully invariant pure submodule of B such that
ra(I)OF is fully invariant in M where M=A@B ([3], Lemma
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l.2.ll), then /5(ra(I)O F) is ideal in S. Since M is purely quasi-Baer,

then ry( /s(rn(AXE F)) is fully invariant submodule of M, but r6(I)c
rr,a( /s(rA(AXE F)), then there is m.; rru( /s(rA(I)O F)) such that

xi:If=rm;ri1 for i:l,...,n. Since mj':aj + bi where a;e[ and b.;eB for

j:l,...,k. We obtain xi:Xf=r air6+\f=rbirti. Thus Xi - Zl=rolrri
:2f=rb1ri1 e AOB:0, so xi:lltojris for each i:1,2,...,n. Now, to

show a.;e ra(I) for each j:1,2,...,k. For each o€I, o can be extended

trivially by putting o'(B):0, if c e re(I)O F, then c:a*b for some a e

re(I) and def, thus cr'(c): o'(a+d): o(a)+0:0 implies that o' e (/s(rn(I)O
F). Since m3':aitb;e r1,1(/s(ra(I)O D), then 0: o'(mj): o(aj). Thus a1 e

ra(I) for j:1,...,k, then we have that rA(I) is pure in A.
Example (2): Finite direct sums of purely quasi-Baer modules may not

be purely quasi-Baer. The Z-module M = z @ zz is not purely quasi-

Baer, even though both of z and 22 are purely quasi-Baet. 22@ 0 is

fully invariant submodule of M and rv(/5QZ@ 0) ):22@ 0 which is

not pure in M.
Theorem(4): Let Mr and Mz be purely quasi-Baer modules. If for each

r/ eHom(Mi, M.i).{(x):0 implies x:0 (i + i,i,i -- L,2). Then MrOMz
is purely quasi-Baer.
Proof: Let S:Endn(MrOM2) and I a two sided ideal of S. Then

rr,.rrel,az(I): Nr(ENz where Ni is submodule of Mi , i = 7,2.

sJ sl Hgsr(M'M') 
)

Hga(M, Mr) s2

where 勁=m血(蝸 )

i=L,?.

Now consider the following sets

I11:{$eS1 I O:f,, with (f;;)1;=r,z€I},I22:{$e32 I O:Fz with (f,ii)r;=r,zeI}

Irz:i ql e Homn(Mr, Mz) I U :Fl with (fii)r;=r,zel) , I.rz:{ t! e

Homn(Mz, Mr) I U :f,, with (fij)r;=r,zel) . As Irr(Izz) is rwo- sided ideal

of Sr(Sz) respectively, let N'1:ry1(I1r) and N'z:htz(Iz2), since Mr and Mz

are purely quasi-Baer, then N'r(N'z) is fully invariant pure in Mr(Mz)

respectively. By a similar way of ([3] theorem(3.3.2)), we can show that

Nr: N'r0(0,re pKer(rlt)): N'l: rr-rr(Irr) and Nz:

N'z0(fl,/e 6Ker(t|)): N'z: ruz(Izz) then we have rprre*z(I): Nr@Nz

which is fully invariant pure in Mr@Mz. This shows that

Mr(EMz is purely quasi-Baer.

Let M and N be fwo R-modules. Recall M is sub isomorphic to N, if M
is isomorphic to a submodule of N.
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Theorem(5): Let M:@1.1Mi be an arbitrary decomposition. If Mi is
purely quasi-Baer R-module and sub isomorphic to Mi, for each i+j eI
then M is purely quasi-Baer.

Proof : Let Si be the endomorphism ring of Mi for each i eI. Then the
endomorphism ring S of M, is a ring of matrices with elements of Si in
the (i,i)-position and the maps
Nt ---+ M1 in the (ii)-position for each i(+i) eI. Let J be a two sided
ideal of S. Since rr,r (J) is fully invariant in M and rr'r (J):@i.r (ri.,a (J)
,^1Mi), hence the column homomorphisms taking Mi into M for each i e
M. By a similar way used in the proof of theorem(4) we have that i th -
column of J is two sided ideal of S has elements from a two sided ideal
Jt of Si in the i th-position, and certain elements from Homn(Mi, Ivt) in
the other places, put A be the union of these sets. rrra (J) OMl: rui (J)
O(fi0.n l{er(S)). But M'i : rr',rr (J) is fully invariant pure in Mi, since Mi
is purely quasi-Baer for each i eI. If 0. A, $ : Mi - Mj (say) i(+j) € 1,

then rfui Q eJi where ry'1t: Ir,'t --+ Mi is the monomorphism taking M; into
M; , w€ obtain this noting that if we multiply a homomorphism in J,

having $ in the (,i)-position with the homomorphism (cr.n)-n.r, where
o.n:O for (m,n) + (1,7) and aij: {ji, then we get a homomorphism in
J with fii 0: Mi* Mi in the (i,i)'-position. This mean that rp.;i 0(Mi'):0.
As t/.;i is a monomorphism, hence 0(M):0 thus Ml'c Ker($) since 0. A
was chosen arbitrary. rr"r (J) OMi:
rui (Ji) O(OO.^ Ker(Q)): Mi' is fully invariant pure in Mi. Using this

argument Vi" e I we obtain that rrr,1 (J) :@i.r Mi' all hence rr,*,1 (J) :Oi.r
Mi which is fully invariant pure in M.
The following corollary follows from theorem(5) and theorem(3)

Corollary(3): A projective module over purely quasi-Baer ring is purely
quasi-Baer.
Definition(2): Let Mz and Mr be two purely quasi-Baer R-modules. If
OKer(o) is pure in M1, when o, €HomR(Mi, I\4) , for i(+j):|,2, we say
that Mz and Mr are relative purely quasi-Baer.

If Mz and Mr are regular in the sense of Field house ( hence semi
simple), then Mz and Mr are relative purely quasi-Baer. While the Z-
modules Z and Zz are not relative purely quasi-Baer, since OKer(a):22
, where cr EHomT (Z,Zz) which is not pureinZ.
Theorem(6): If M:@1.1M; is purely quasi-Baer R-module, then Mi, i\4
are relative purely quasi-Baer for i(+j) e 1.

Proof: Mi is purely quasi-Baer for i€ /, Theorem(3). For sake of
simplifying notation assume we concentrate on M: Mr@Mz. Let
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Kl:OKer(o) when o eHomn(Mi, Nt), i(+j):l, 2. First, we claim that

Kr@Kz is tully invariant in Mr@Mz. Let ":(:rl :n €

Endn(MrOM2) where cri;: Nt - Mi, for ii€{l,2}. It's clear, by the

definition of KlandKz , that o12(K2):0 and ozr(Kr):o. Consider

orr(Kr).Taking any rP e Homn(Mr, Mz), r/(orr(Kr)):{ orr(Kr):0 as

$ an: Mr --- Mz and by the definition of Kr. Hence crrr(Kr) c Kr.

Similarity uzz(Kz) e Kz. Putting the above together, we obtain that o
(KrOKz) c Kr@Kz. But o was chosen arbitrary we get that KrOKz is

fully invariant in Mr@Mz. This implies that Ki is fully invariant in Mi

for i=1, 2. We are complete by claim that Kr OKz is pure in MrOMz.

Let oe /srz(Kr6Kz) where Srz: Endn(Mr@Mz). o is matrix(as above),

we note the following crzr(kr)+ orz(kz): orr(kr):0 - ott€ /st (Kr) and

ozr(kr)+ azz(kz): o22(k2):0-+ a22els2(K2) where kreKr and kzeK2 , Sr:
Endn(Mr) and 52: Endn(Mz). At the same time cre Srz so that orr€ /sr
(Mr), a22e ls2 (Mz) and u.rz , o2r are arbitrary in their respective

Homn(Mz, Mr), Homn(Mr, Mz).Thus for oe /sr (KrOKz),

/sr (KroKz):( l:lTilr,, r,, 
,o*)ky', )

Now consider rr.-,rr@ruz(/sr (KrOKz))' Since /sr (Kr@Kz) is two sided

ideal of Srz, then rr',arOr.,az(/sr (KrOKr)) is fully invariant in MrOMz ,

hence it decomposes on to the two components rr'lr(Er'lz(/sr(Kr(EKz)):
K'r(EK'z where K'i: rut(Er"rz(/51 (Kr(EKz) OMi for i:1,2. Now we

can analyze the two components separately. Consider o e /51

(KrOKzX as a matrix above); o (k'1):0 implies o1 (k'r):0 and

crzr(k'r):0, for k'1e K'1 , thus

K'r: tur(Er,az(/51 (Kr) n (nKer(r/)) when ry' eHomp(Mr, Mz). Since

Krc rur(/sr (Kr)) and OKer({): K, when ry' eHomn(Mr, Mz), thus K'r:
Kr. Similarly K'2: Kz Then rpl0r-rz(/srz (Kr@Kz)): KrOKz. Since

MrOMz is purely quasi-Baer and /srz (KrOKz) is two sided ideal of
Srz, then rur@r',az(/srz (KrOKz)) is fully invariant pure in MrOMz.
Then we have Kr and Kz ar€ pure in Mr and M2 respectively . This

shows that Mr , Mz &r€ relative purely quasi-Baer.

Proposition(1) : Let {R^\xen} be a family of rings. Then R:(Ei.rR' is

purely quasi-Baer if and only if R^ is purely quasi-Baer for each \en.
Proof : for each \€n, R" is purely quasi-Baer, theorem(3).

Conversely , let A be two sided ideal of R. Consider pxl R-R^ be the

projection mapping onto R" for each xen. Then P^(A) is two sided

ideal of Rr. Since R' is purely quasi-Baer, then rRx(px(A)) is a pure

ideal of R^. We claim that rR(A): (E rn^(p^(A)). For this , let a:(a')^.ne

^
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rn(A), then Aa:0 implies that p^(A) a,.:0 for each xeA,thus &xE

rn^(p^(A)), so

ae(E x.nrR^(p^(A)). Now let b:(b')^.n e@'.nrR\(px(A)), then we have
p"(A) bx:0 for each \ en. But Ip:f,^.n P x, then Ab: Ip(Ab):
Xr.n p ^(Ab): Xr.n p "(A)b,.:0, thus be rn(A). Thus rn(A):
Ox.nrpx(p^(A)) . But rnx(p,.(A)) is a pure ideal of R,. for each \eA, so

rn(A) is a pure ideal of R.

Recall that a ring R is semi commutative if rp(x) is two sided ideal of R
for each xeR, [5]. Recall also that a ring R is reduced if R has non- zero
nilpotent elements. Equivalently, if xeR, x2:0 implies x:0. Now we
giVe a generahzation of these concepts for modules.
Definition(2): Let M be an R-module and S:Endn(M) is endomorphism
ring. Then
1. M is called semi commutative if ry(o,):Ker(o) is fully invariant
pure in M (that is for any OeS and meM, o(m):O implies
o 0 (m):0)
2. M is called reduced if for any o,eS and meM, u(m):0 implies that
S',O o(m):O.
Examples(3)
a. It is clear that a ring R is semi commutative if and only if R is
semi commutative R-module.
b. A ring R is reduced if and only if R is reduced R-module.
Proof: Frist observe that S:Endp(R;:BG)-B where R(") is the ring of all
left multiplication by some induced element of R. Let xeR and u eS

with cr(x):0. We can assume that o, is non-zero, then there is a non-zero
element aeR such that u: ur, that is o(y): cru(y):ay, for yeR. Let m
ES*n o(R): S*O aR, then m: 9u(x):ar , so m:bx:ar for some re R.
Thus m2: (bx)(ar):b(xa)r:0, but R is reduced ring, then m:0 and so
S*O oR: 0. Conversely , let xeR with x2:0. Defined u:R---R by
o(r):xr for reR, then u(x): x2:0, but R is reduced R-module, then S*O
o(R): S* O xR:0. Now ln ES, so x: lp(x)e S*n xR and hence x:0. This
shows that R is a reduced ring.
c. The Z-module Q is semi commutative, in general every quasi-
Dedekind module ( each non zero endomorphism is a monomorphism)
is semi commutative.
d. Z@Z as Z-module is not semi commutative, consider the Z-
homomorphism a: Z@Z---+ Z@Z defined by o(a, b):(a, 0), then ker(o):
O@Z.Now consider B defined by 0(a, b):(b, a), thus B( ker(o)):Z@
0 g 0 @ Z . Then ker(o) is not fully invariant.
e. For each prime number p, the Z-module Zp2 is not reduced. Let
aeBndT(Zp2) definedby u(i):px, then o,@):0, but o# peS@Oo(Zp,),
soSpOu(Zp2)+0.
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f. Every reduced module M is semi commutative.

Proof: Let oe S:Endn(M) and me ker(o), then o(m):0. Since S(m)n

cr(m):0, that is for each $eS implies oQ(m)e S(m)Oo(m):Q and

cr 0(m):0. Thus Ker(o) is fully invariant in M.
Proposition(2): Let M be a semi commutative(reduced) R-module.

Then M is purely Baer if and only if M is purely quasi-Baer-

Proof: Let A is a left ideal of S:Endn(M), then rr'.r (A): Oo.n Ker( a)-

Since M is semi commutative, then Ker(o) is fully invariant in M for

each CI, e A, thus Ker(o): ry(SoxS). Therefore rr'l(A) : (-laeA rr',r(SaS)

:rrur(Ioea SaS), it's clear that )rra SaS is two sided ideal of S, but M is
purely quasi-Baer, then rr,a(A) : ru(Iaea SaS) is pure in M. Thus M is
purely Baer.
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ABSTRACT
In this work, the notion of pseudo-injectivity relative to a class of submodules

(namely, closed pseudo-injectivity) has been introduced and studied, which is a

proper generalization of (IC-)pseudo-injective and extending module. This notion is

closed under direct summands. Several properties and characterizations have been
given. We show that over a hereditary pri-ring, every free module is extending. We
discuss the question of when an closed-pseudo-injective module is IC-pseudo-
injective, extending module.

l.INTRODUCTION
Throughout, R represents an associative ring with identity and R-

modules are unitary right R-modules. A submodule N of an R-module
M is essential( or M is essential extension of N), if N has non-zero
intersection with every non-zero submodule of M. In case N has no
proper essential extension in M, then N is called closed. A non-zero R-
module U is said to be uniform, if every non-zero submodule of U is
essential in U( [1], P.85). Let M and N be two R-modules, N is called
(pseudo)-M-injective, if for every submodule A of M, any R-
homomorphism (R-monomorphism) from A to N can be extended to an
R-homomorphism from M to N. An R-module is injective , if it is M-
injective for all R-module M. An R-module M is called quasi(pseudo)-
injective, if it is (pseudo)-M-injectivet2l(t3l). An R-module M is called
IC-pseudo-injective if each R-monomorphism of a submodule of M
which is isomorphic to a closed submodule of M into M can be

extended to a endomorphism of M [4]. A submodule N of R-module M
is said to be a direct summand of R-module M, if M: N@L, for some
submodule L of M. An R-module M is said to be semi simple, if every
submodule of M is direct summand([1],P. 27). An R-module M is
called CS-module(extending), if every submodule of M is essential in
a direct surnmand of M, this is equivalent to saying that every closed
submodule of M is a direct summand [5]. M which satisfies condition
(Cz), if every submodule of M which is isomorphic to a direct
summand of M is itself direct summand[5]. An R-module M is
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projective, if every epimorphism c: A -, B and any R-homomorphism

B: M -+ B, where A, B are two R-modules, there exists an R-

homomorphism y: M -+ A such that soy - p [6]. Let R be a ring and I
any index set. For each i € I, let Ri = R. Denote by R(/)the direct sumO

i.rRi. If 1-{1,2,...,n},thenwrite R(')for R(') If MisanR-module,
then we say M is free, if M is isomorphic to R(')for some index I [6]. In

this paper, we introduce a proper generalization of IC-pseudo-injective
modules( namely closed pseudo-injective modules). Several properties

of these modules are given. We characterize extending modules in terms

of closed pseudo-injectivity and we characterize right hereditary rings in

terms of closed pseudo-injective modules.

2. CLOSED PSEUDO.INJECTIVE MODULES
the concept ofpri-ring R (every right ideal ofR is principal) has been

generalized to modules. An R-module M is called epi-retractable if
every submodule of M is a homomorphic image of M [7]' A ring R is
called right hereditary ifevery right ideal is projective ([8], P.20). In the

following, we show that over a hereditary pri-ring every free module is

extending.
Proposition(2.1): Let R be a right hereditary pri-ring. Then every free R-

module is a extending. In particular, every right hereditary pri-ring R is
a extending as R-module.
Proof : Let M be a free R-module and X a (closed) submodule of M.
Since R is hereditary, then X is projective. By ([7],proposition(2.5)),
M is epi-retractable and hence there is an R-epimorphism a : M + X.

Projectivity of X, implies that there is an R-homomorphism B : X --r M
such that coB - I*. Then X is a direct summand of M by

([9], Proposition(a.2.1)). This shows that M is extending.
In the following, we give a decomposition of projective modules over

right hereditary pri- rings. Recall that an R-module M is hereditary if
every submodule of M is a projective, [0].
Theorem(2.2): Let R be a right hereditary pri-ring. Then every

projective R-module is a direct sum of noetherian uniform submodules,

each with a division endomorphism ring.
Proof: Let M be a projective R-module. there is a free R-module F:
V(EU such that V is R-isomorphic to M [6]. Proposition (2.1) implies

that F ( hence V and M ) is extending. Since R is right hereditary then

M is hereditary extending. Then M : (Ei.1Ni where N, is a Noetherian

uniform with End*(N,) is a division ring, for each I, by ([0],
proposition(9)).
Definition(2.3): Let M and N be two R-modules . M is said to be closed
(pseudo)-N-injective, if for each closed submodule A of N, every R-
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homomorphism ( R-monomorphism) from A to M can be extended to
an R-homomorphism from N into M [11]. An R-module M is called
closed quasi-injective, if M is closed-M-injective [2]. The R-module M
is called closed pseudo-injective, if it is closed pseudo-M-injective .

In [13] studied modules in which isomoqphic copies of
complements are again complements. These are called SlCC-modules.
Remarks(2.4):
1- In [11] proved every uniform closed pseudo-injective module is

closed quasi-injective. While every extending (uniform) module is

closed pseudo-injective and closed quasi-injective, this follows from the
fact that in extending module , every closed submodule is direct
summand .

2- Every pseudo-injective module is closed pseudo-injective, but the
converse may not be true in general. In fact by (1) , for example any
extending module is closed pseudo-injective, but there is extending
modules which are not pseudo-injective ,Z as Z-module.
3- Every IC-pseudo-injective module is closed pseudo-injective, but the

converse may not be true in general. for example ZasZ-ntodule. (of
course, these notions coincide for SlCC-modules).
4. Every closed quasi-injective (extending) module is closed pseudo-

injective . But the converse is not true, in general. For example ([14],
Lemma (2)), let M be an R-module whose lattice of submodules is

Nt

, / Nl (r)N2 

- 

11{

\*,/
where N, is not isomorphic to Nr, and the endomorphism rings of N, are

isomorphic to Z/22. the existence of such modules was shown by
Hallett and Teply. It was shown in [14] , that M is pseudo-injective (
and hence closed pseudo-injective ) which is not closed quasi-injective,
since NrON2 is closed submodule of M and the natural projection of
NrON2 onto N, (i - 1,2) can not be extended to an endomorphism of
M.
5. An R-isomorphic module to closed pseudo-M-injective is closed
pseudo-M-injective.
The proof of the following follows from (Ul, P.l8) and

Definition(2.3).
Proposition(2.5): Let M and N, be R-modules where ieI and I is finite

index set, If Oi.Ni is closed pseudo-M-injective, then V i € I , N, is

closed pseudo-M-injective. In particular, every direct summand of
closed pseudo-injective R-module is closed pseudo-injective.
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Proposition(2.6): Let N be an closed submodule of an R-module M and

N be a closed pseudo-M-injective. Then every R-monomorphism

s from N into M(where Ima is closed submodule of M) splits. In
particular, if M is an R-module whose closed submodules are closed

pseudo-M-injective, then M is CS-module.

Proof Let s; I{ -, M be an R-monomorphism. Consider the

isomorphism a-1 ' o(N) -r N. As N is closed pseudo-M-injective

module, there exists an R-homomorphism g: M --- N, such that I o G =
I". For meM then g(m)eN, there exists a(n)ea(N) such that

a-1(a(n)) - g(m) = g(cr(n)) and hence m- o(n)ekerg. It follows
that m - q(n) + (m - c(n)) e a(N) * kerg. Moreover, a(N) n

kerg = ker(a-1) = 0.ThusM - s(N)Okerg.
An R-module M satisfies CCz, if every closed submodule which

isomorphic to a direct summand of M is direct summand of M [11].
Every C2-condition is CCz-condition. But converse is not true, for
example Z as Z -module. An R-module M is said to be co-Hopfian, if
every injective endomorphism f: M --'r M is an automorphism [15]. An
R-module M is directly finite, if M which is not isomorphic to a proper

direct summand ([], p.165). In [1 1] proved that every closed pseudo-

injective module satisfies Cz, also every closed pseudo-injective
module M is a directly finite if and only if it is co-Hopfian. However
their proofs are incorrect, since Z as Z-module is directly finite and

closed pseudo-injective, but it has not Cz and not co-Hopfian.
Definition(2.il: An R-module N satisfies M - CCz-condition if every
closed submodule of M is isomorphic to a direct summand of N is itself
a direct summand of M.

In the following, we shall show that M - CCz-condition can be

characterized by lifting monomorphisms from certain submodules of M
to N.
Lemma (2.8): Let M and N be R-module and K be a closed submodule

of M such that K is isomorphic to a direct summand of N. Then K is a
direct summand of M if and only if every R-monomorphism 9: K -+ N
can be lifted to An R- homomorphism 0: M -+ N.

Proof, The necessity is immediate. Conversely, let L be a direct
summand of N and, an R-isomorphism f: K --'r L. Then there exists an R-
monomorphism irof : K --+ N such that f(K) is a direct summand of N,

since (K):L and L is direct summand of N. By hypothesis, f can be

lifted to an R-homomorphism g: M -+ N. Let n: N '-r f(K) denote the

canonical projection. Then p = nog: M -+ f(K) is an R-homomorphism.
Notethat BG) = ng(k) = nf(k) - f(k), each keK, and hence prove
u - K@ker(F).
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Corollary(2.9): Let M and N be two R-modules. N satisfies (M - 6Cz)-
condition if and only if, for every closed submodule K of M which is
isomorphic to a direct summand of N, every monomorphism <p: K -t N

can be lifted to a homomorphism 0 : M + N.

It is well-known a submodule N is a direct summand of M if and

only if N - e(M) for some idempotent e e Endo(M) t5l.

Proposition(2.10): The following statements are equivalent for an R-
module M.
(1)N satisfies (M - CCz)-condition,
(2)For any direct summand A of N, every R- monomorphism f :

A -r M where Imf is closed submodule of M, there is an R-
homomorphism g : M -+ N such that gof = iA, where io: A ->
N is a injection mapping.

(3)For every closed submodule K of M which is R-isomorphic to a

direct summand of N, every R-monomorphism f : K + N can be

lifted to an R-homomorphism g: M --l N.

Proof :(1) -+ (2). Let A be a direct summand of N, an injection
io: A + M and every R-monomorphism f: A -+ M. Then s: A -t f(A) is
R-isomorphism, since A be a direct summand of N, by (1) implies f(A)
is a direct summand of M. Then f - ino,oa: A -+ M, there exists an R-

-l
monomorphism looa : f(A) -r N. By direct summand f(A) of M, there

-t -l
exists an R-homomorphism g:iooo, ofir(o), M + N such that [ooc :
I o ir(e), and hence, g o ir(o)oo = io then gof = io,

(2) - (1). Let A be a closed submodule of M and an R-isomorphism
f: K + A where K is a direct summand of N. Then ioof: K -1 M, by (2),

there exists an R-homomorphism g: M + N such that goioof = i*
where i*: K + N is the injection mapping. We can use the same manner

in the proof of Lemma (2.8). (1) - (3).Immediate by Corollary(2.9).
Proposition(2. 1 1.): Every closed pseudo-M-injective R-module satisfies

M - CCz.
Proof. Let N be a closed pseudo-M-injective R-module, A a direct
summand of N and A = B where B is closed submodule of M. Let f be

an R-isomorphism B + A. By N is closed pseudo-M-injective,
Proposition(2.5) and RemarkQ.Q then B is closed pseudo-M-injective.
Therefore, by Proposition( 2.6), i.s splits, that is; B is direct summand of
M.
Corollary(2.12): Let M be a closed pseudo-injective R-module. Then
every closed submodule of M which is isomorphic to M is a direct
summand in M .
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Proof. Let a : K ) M be an isomolphism. There exists a

homomorphism F, M --t M that extends a, since M is closed pseudo -

injective. V x e M, there exists y eK such that B@)-a(y):
F0) andhence x -yekerp . It follows that x = y + (x - y)eK +
kerB.Moreover, Kokerp - 0.Thus M - K@kerpandKisa
direct summand of M .

In the following, we characterize extending modules in terms of
closed pseudo-injectivity, the proof of the proposition(2.13) follows
from Proposition(2.6) and Remarks(2.4).
Proposition (2. 13): The following statements are equivalent for an R-
module M:
(1) M is extending module .

(2) Every R-module is closed pseudo -M-injective .

(3) Every closed submodule of R-modute M is closed pseudo-M-
injective.

A submodule N of an R-module M is said to be pseudo stable, if
a(N) c N , for each R-monomorphism q : N -: M. In case each
(closed )submodule of M is pseudo-stable, the R-module M is called
fully (closed) pseudo stable [6]. Every fully pseudo-stable R-module
is fully closed pseudo stable, but converse is not true , for example
Z as Z -module.
Proposition(2.14): Let M be a extending R-module. If S _ Endp(M)
is commutative, then M is a futly closed pseudo stable.
Proof Let N be any closed submodule of M and /: N --+ M any R-
monomorphism. There exists a submodule K of M such that M -
NOK. f can be extended to an R-homomorphism g: M --+ M by putting
g(k) = 0 for each k e K. Define h: M --t M by h(x,y) = x for each x
eN and yeK. Let f(x) =y*l for some ye N and leK. Now
hog(w) - hog (x + k) = y, on the other hand goh(w) - y * I, since
hog=goh, then I = 0, thus f(x) e N. Therefore (N) g N, hence, M is
an fully closed pseudo stable R-module.

An R-module M is multiplication if each submodule is of the form
MA for some right ideal A of R [7].
Proposition(2.l 5): Let M be a multiplication R-module. If M is a
closed Pseudo-injective then M is a fully closed pseudo-stable.
Proof: Let N be a closed submodule of M and an R-
monomolphism g: N --+ M. Since M is multiplication, then N - M I for
some right ideal I of R. Then g can be extended to an R-
homomorphism h: M -; M Now g(N) = h(N) - h(MI) - h(M)l c
MI=N.

Remark(2.16): Let M be a fully closed pseudo-stable R-module. Then
every two distinct closed submodules of M are not isomorphic.

つ
４
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Proof. Assume that M is fully closed pseudo stable R-module and M
has two distinct closed submodules Nl and N2 such that N, = Nr. No
loss of generality if it is assumed that N, e Nr.Then there exists a non-
zero element x in N1 not in N2. Letd: N, -+ N, be an R-isomorphism,

consider the following two R-monomorphisms, ir,o?:N,-+M and

ir,o?-t ; N, -+ M , by fully closed pseudo-stability of M, then

ir,oo-t (lrr)E Nr,i*roo (lr,)c ar,. Now let e(*)= ! e Nz, So

ir,o?-t (y)= * e N, which is a contradiction.

The proof of the proposition(2.17) follows from Remark(2.16)
Proposition (2.17): If M is a fully closed pseudo-stable then M has CCz

--condition.
Proposition(2.18): Every closed submodule of multiplication closed
pseudo-injective is closed pseudo-injective.
Proof: Let N be a closed submodule of M and an R-monomorphism
g: N -+ M. Since M is multiplication, then M : NI for some right ideal

I of R. Then g can
since M

be extended to an R-homomorphism h:M -+M,
is closed pseudo-injective. Now

s(N) : n!v) = nQw) = n(u)r c. MI = fy' .

An R-module M is self-similar, if every submodule of M is

isomorphic to M [8]. In the following, we show that the distinction
between closed pseudo-injectivity and extending module vanishes for
self-similar R-modules, and the proof of the following follows from
propositio n(2.13) and corollary (2.12).
Proposition(2.19): Let M be self-similar R-module. Then M is closed
pseudo-injective if and only if M is extending module.

Recall that a ring R is said to be a quasi-Frobenius, if it is a right self
injective Noetherian ring [6]. In the following, we characteize right
hereditary rings in terms of closed pseudo-injective modules.
Theorem(2.20): The following statements are equivalent for a quasi-

Frobenius ring.
(l) Every closed pseudo-injective R-module is semi simple.
(2) Every injective R-module is semi simple.
(3) R is a hereditary ring.
Proof : (l)+ (2). trivial. (2)-*(l). Let M be a closed pseudo-injective
R-module, E(M) injective hull of M. By (2), E(M) is semi simple. By
proposition(1.9), we have M is semi simple.(2)*r(3). By([19],
proposition(3.2)).
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ABSTRACT
In this work, the notion of injectivity relative to a class of closed kernel sub

modules (namely, kemel-injectivity) has been introduced and studied, which is a
generalization quasi-injective module. This notion is closed under direct summands.

Several properties and characterizations have been given. we provide a

characterization of semi simple Artinian ring , Sl-ring and Dedekind domain in
terms of Ker-quasi-injective R-module

INTRODUCTION
Throughout, R represents an associative ring with identity and R-

modules are unitary left R-modules. For an R-modules M and

N, Homp(M, N)will denote the set of R-module homomorphisms from
M to N. The kernel of any p e Homn(M, N) is denoted by ker(p) and

its image by P(M). S:Endp(M) will denote the ring of R-
endomorphisms of M Ul. A sub module N of R-module M is said to be

an essential sub module of an R-module M, if N has nonzero
intersection with every nonzero sub module of M [2]. A sub module K
of R-module M is said to be a closed in M,if K has no proper essential

extensions in M ([3], P.5). We shall use f (R) to stand for the set of all
essential right ideals of the ring R . Given any R-module M, we set

Z(M):{ xe Mlx I : 0, for some Ie f (R)} ([2],P.30). An R-module
M, is singular provided Z(M):M. At the other extreme, we say M is a

nonsingular provided Z(M):0 (12), P.31). A sub module N of R-
module M is said to be a direct summand of R-module M, if M: NOL,
for some sub module L of M [2]. An R-module M is said to be semi

simple, if every sub module of M is direct summand (127,P.27). An R-
module M is called CS-module (or extending ( (C1)-condition)), if M
satisfies any one of the following equivalent conditions (1) for every

sub module N of M, there is a decomposition M :AOB such that N is
essential in A, (2) every closed sub module of M is a direct summand

[4].A CS-module M which satisfies (C2)-condition: every sub module
of M which is isomorphic to a direct summand of M is itself direct
summand, is called continuousf4]. Let M and N be fwo R-modules, N is
called M-injective, if for every submodule A of M, any R-
homomorphism from A to N can be extended to an R-homomorphism

守

285

‐

"



Kemel-lnjective Module 
NIehdi and samer

from M to N([5], P.28). An R-module N is called injective, if it is M-
injective for all R-module M. A right R-module M is (minimal) quasi-

injective, if every homomorphism from a (simple) submodule of M to
M can be extended to an endomorphism of M[6]([7]). Let M and N be

two R-modules, N is called pseudo-M-injective, if for every submodule

A of M, any R-monomorphism from A to N can be extended to an R-
homomorphism from M to N. An R-module M is pseudo-injective, if it
is pseudo-M-inj ective [8].

Ker-quasi-injective module
Definition(2.1): Let M and N be two R-modules. M is said to be Ker-
N-injective, if for each sub module A of N, every R-homomorphism o
from A to M ( where Ker(o) is closed of N) can be extended to an R-
homomorphism from N into M. The R-module M is called Ker-quasi-
injective, if it is Ker-M-injective.
Examples and remarks (2.2)
( 1 ) Every quasi-injective R-module is Ker-quasi-injective.
(2) every direct summand of Ker-quasi-injective R-module is Ker-
quasi-injective.
(3) Every Ker-quasi-injective R-module is pseudo-injective.
But the converse is not true, in general. For example ( [9], Lemma (2)),

let M be an R-module whose lattice of sub modules is

o/ \NroN2-trvr
\",/

where N1 is not isomorphic to N2, and the endomorphism rings of N1

are R-isomorphic to Zlzzwhere i:1,2. The existence of such R-

modules was shown by [9]. It was shown [9], that M is pseudo-injective
which is not Ker-quasi-injective, since N1(EN2 is sub module of M and

the natural projection p : N1@N2 onto N1 (i=1,2) ( so Ker(p) is closed

in M) cannot be extended to an R-endomorphism of M [9].
(4) isomorphic to Ker -M-injectivity is Ker -M-injectivity.
(5) Every Ker- quasi-injective over Noetherian rings is quasi-injective.
Proof (5) : it follows by( [10], theorem 3.6 ), overNoetherian ring R,
module M is quasi-injective if and only if M is pseudo-injective and

CS.
In Goldie [11] and Johnson, Wong [6] they have defined an R-sub

moduleinMforsubmoduleNasfollows: clN - {m e M\(N; m) is

an essential left ideal in R). If cl N = N, then N is called closed. We

call cl(O) the singular sub module of M. Let N be a sub module of M

´
０
８つ
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and B a complement of N. Then M is an essential extension of B(EN.
Hence, cl (B@N) _ M ([12], Lemma 1.4).
Proposition(2.3 ): Every Ker-quasi-injective R-module is continuous.
Proof: Let M be a Ker-quasi-injective R-module, A and B two sub
modules of M with A is a direct summand in M and B is R-
isomorphic to A. Let f: B -+ A be an R-isomorphism. Then A is Ker -M-
injective, Examples and remarks (2.2), B is Ker-quasi -M-injective. The
inclusion mapping ig: B -r M, there exists an R-homomorphism g:
M---B such that Boie: I". Then M - B@ker(g). That is; B is a direct

summand in M, then M has Cz-condition.
Now to prove M is extending . Let N be a closed sub module and B a
complement of N in M. Put M6- BON. Let p be a projection of Mo to N
and Ker p :B is closed in M , since N a complement of B in M. Then
there exists an element g e Hom n(M, M) such that g\ruo:p. Since Bgg-
'(0) and g't(0) fl N = (0),8 - g-t(0). Furthermore, since clM6=
Mby([12], Lemma 1.4), there exists an essential left ideal L for any
elementm e MsuchthatLm c Mo. Therefore, Ls(m) - g(Lm) c N.
SinceclN- N,g(m) e N Hence,g(M) - N. Therefore, M - g-t(0)+
g(M) = B@N. Then M is continuous R-module.
Theorem(2.4): Let M be a nonsingular module such that all sub modules
of M are Ker-quasi-injective. Then M is quasi-injective.
Proof: Let A be sub module of M and let Q: A -r tr4 be a R-
homomorphism By Proposition(2.3), A is cs, A - B(EC where c
contain Ker(Q) as an essential sub module. Since ;;fo; embeds in M,

A

*(0, is nonsingular, and so Ker({) is a closed sub module of A,
A:BOKer(O). It is then clear that Q Ir is a monomorphism. As M is
cS, M:B*@D, where B is essential in B*'. Since B* is pseudo-injective,
0 | r ir extended to monomorphism g: B*-* B*. V x € M. We have x =
b + d, (b. B*, d e D). Using this we define a map 0*:M + M by
setting 0*(x) - g(b). Then it is obvious that 0*'M + M that extends
Q. This shows that M is quasi-injective.
Proposition(2.5): Let M be a Ker-quasi-injective R-module. Then every
sub module of M which is isomorphic to closed sub module in M is
closed in M.
Proof : Let M be a Ker-quasi-injective R-module, K a closed in M and
A a sub module of M with An R-isomorphism f: A + K. consider the
following diagram where io: A + M, Q:K + M are two inclusion
homomorphism. Then f extends to some g in End(M) such that i"of :
go ia, by Ker-quasi-M-injectivity of M. Now let o be collection of the
set of all essential extension of A in M. WO, since Aee. ByZorn's
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lemma, there exists maximal essential member A'. that is; A' is maximal

essential extension sub module in M, which is evidently, it is closed sub

module of M. thus gl4' is an R-monomorphism. Since g(A) = f(A),

hence f - g(A) is essential in g(A'), by A is essential sub module in A'.

Since K is a closed in M. This implies K - g(A), whence A - A'. The

conclusion follows.
An R-module M is multiplication, if each submodule is of the form

M A for some right ideal A of R [13].
Proposition(2.6): Every closed sub module of a multiplication a Ker-

quasi -injective is a Ker-quasi-injective.
Proof: Let L be a sub module of a closed sub module N of M and let a
:L*N be an R-homomorphism with Ker(o) is closed of N . Since N is
closed sub module of R-module M, then Ker(o) is closed of M. By
hypothesis, there exists g: M + M, by multiplication property of M ,

then N = MI for some right ideal I of R, BIN= g(N) : g(MI) - g(M)l

gMI _ N.

Proposition(2.7): The following statements are equivalent for an R-

module M:
(1) M is semi simple.
(2) Every R-module is Ker-M-injective.
(3) Every sub module of M is Ker -M-injective.
Proof. (1) --+(2)--'(3). It is clear.

(a)+(l). K be sub module of M.By (3) K is Ker-M-injective, by The

identity mapping i*: K + K, there exists an R-homomorphism g: M + K

such that goi*= I*. Then M = Koker(g). That is, L is a direct

summand in M.
An R-module M is said to be co-Hopfian if every injective

endomorphism f : M + M is an automorphism [14]. An R-module M is
directly finite, if fog - I, implies that gof = I, for all f ; g e

End(M) ([2], Lemma (6.9)). An R-module M is called weakly co-

Hopfian, if any injective R-endomorphism f: M -r M is essential, that

is; f(M) is an essential submodule of M [15]. In the following
proposition, a sufficient condition for Ker-quasi-injective modules to be

co-Hopfian is given.
Propoiition (2.8): A Ker-quasi-injective R-module M is directly finite if
and only if it is co-Hopfian.
Proof. Let f be injective R-endomorphism of M and Ir: M + M the

identity map. Since M is a Ker-quasi-injective, there exists a map

g: M -r M such that, gof = Iu .By directly finite of M, we have fog -
I, which shows that f is an automorphism. Hence M is co-Hopfian. The

converse is clear.
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In the following proposition, we give a condition for weakly co-
Hopfian modules to be co-Hopfian.
Proposition (2.9): The following conditions are equivalent for a Ker-
quasi -injective R-module M:
(1) M is weakly co-Hopfian.
(2) M is co-Hopfian.
Proof. (l) ---+(2) Let f: M + M be an R-monomorphism. By(l) we have
(M)is essential in M. f splits and hence (M) is a direct summand of M,
since M is a Ker-quasi-injective. Therefore f(M) - M. This shows that
M is co-Hopfian. (2)---+(1) is obvious.

It is well-known that an R-module M is injective if and only if M is
N-injective for each R-module N.
Proposition(2.10): The following statements are equivalent for an R-
module M :

(1) M is injective.
(2) M is Ker -N-injective, for each R-module N.
Proof: (1)---+(2): Obvious, (2)- (1): Let E = E(M) be the injective hull
of M. Let [: M + E be the inclusion mapping and j: E -r MOE the
natural injection. Ker -MOE-injectivity of M , implies that the identity
mapping I, of M can be extended to an R-homomorphism f:MOE + M

such that Bo[ - I* where I = foj. Then E - MOker(g), then M:E,
hence M is injective.

An R- module M is called polyform (or non-M-singular) ie for
anysubmoduleKofMand f : K + M, Ker(f ) is closedinM [16].
Proposition(2.11): Every polyform Ker-quasi-injective R-module'is
quasi-injective.

It is well-known that if R is a semi simple Artinian ring , then
every R-module is injective (121, Theorem(l.18)). Also, Osofsky in
U7l a proved that ring R is semi simple Artinian if and only if every
cyclic R-module is injective. Recall that R is a right V-ring, if every
simple R-module is injective [18].We now provide a characterization of
semi simple Artinian rings in terms of Ker-quasi-injective modules.
Theorem (2.12) : The following conditions are equivalent for a ring R.
(1) R is semi simple Artinian,
(2) R is a right V-ring and every minimal quasi-injective right R-module
is Ker-quasi-injective,
(3) Every R-module is Ker-quasi -injective,
( ) The direct sum of every two Ker-quasi -injective modules is Ker-
quasi - injective. And every cyclic R-module is Ker-quasi -injective,
Proof. (1) -> (2). It follows from([2], Theorem(l.1S)).

(2) - (3). Since R is a right V-ring, every simple R-module is
injective and hence every simple right R-module is a direct summand of甲
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each module containing it. So every R-module is minimal quasi-

injective, hence is Ker-quasi-injective R-module. (3) - (4). It is clear.

(a)+(1). Let M be Ker-quasi -injective module and E the injective hull
of M. By(4) MOE is Ker-quasi -injective. Then Examples and remarks
(2.2), M is Ker-M(EE-injective and Proposition(2.10), hence M is

injective. By every cyclic R-module is Ker-quasi-injective, then every
cyclic R-module is injective , that is; R is semi simple Artinian , by
Osofsky's theorem in [17].

Recall that an R-module M is direct injective, if given any direct
summand A of M, an injection iu: A-+M and every R-monomorphism

f , Aa M, there is an R-endomorphism g of M such that gof =ta
uel.
Nicholson in( [20], Theorem(1.13)) proved that direct injective R-
module is equivalent to Cz-condition. Proposition(2.3) shows that
every Ker-quasi injective R-module is a direct injectiveand every direct
injective R-module is divisible [19]. Then we have the following:
Proposition (2.I3): Every Ker-quasi -injective R-module is divisible.

The converse of Proposition(2.13) may not be true.
Ker-quasi - injectivity is not closed under direct sums in general, as we
see in the following
R:(l I),e: (3 l),s: ([ [) ,c: (3 :)

Where = Z /22 . It Is easy to see that the R-modules A and B are quasi-
injective. And hence by Examples and remarks (2.2), they are Ker-quasi
-injective. However R:AOB is not Ker-quasi -injective, since
otherwise R satisfies (C2)-condition, by Proposition(2.3). But A is

isomorphic to C and C is not a direct summand in R, contradiction.
Since A and B are fwo divisible R-modules. And every direct sum of

divisible R-modules is divisible. That is; A@B is divisible. But it is not
Ker-quasi -injective.

In the following, we show that the distinction between Ker-quasi -
injectivity and divisibility vanishes over Dedekind domain. A domain
R is called Dedekind ring, if every divisible R-module is injective

{211, Theorem(4.24)). We now provide a characterization of domain R
is Dedekind rings in terms of Ker-quasi -injective R-modules.
Theorem(2.14): The following conditions are equivalent for a ring R.
(l) R is Dedekind domain,
(2)Every divisible R-module is Ker-quasi -injective.
Proof: (1)-+(2). By ([21], Theorem(a.2$).
(2)-+(1). Let M be a divisible R-module and E(M) an injective hull of
M. By ([5], proposition (2.6)), E(M) is divisible and by ([5],
Lemma(2.5)), then M@E(M) is divisible. By(2) M(EE is Ker-quasi -

‐
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itteCt市e.Then Examples and remarks(2.2),M is Ker― MoE‐ itteCtiVe
and Proposition(2.10).That is; M is ittect市 e,implies R is Dedekind

domain[21].

Recallthat a ring R is SI― ring,lf every singular R― module is inJective

([3],be10W COrollary(7.16)).Over nOn singular ring;we pro宙 de a

characterization of SI― ring in terms ofKer‐ quasi‐ ittect市 eR‐ modules.

Proposition(2.15):The following statements are equivalent for non

singular ring R:

(1)R is SI‐ ring。

(2)Every singular R― module is Ker― quasi―ittect市 e,

Proo■ (1)→ (2)is clear.(2)→ (1)。 Let M be a singular R―module and
E(M)the itteCt市 C hull of M。 ([2],PropOSition(1.23)and(1.22)),then
M①E(M)is Singular.By(2)M① E is Ker― quasi― ittectiVe.Then
ExampLs and remarks(2.2), M is Ker‐M① E―輌 ectiVe and
Proposition(2.10),hence M is ittect市 e.That is;R is SI― ring.

In the next part we characterize some rings by Ker― quasi― ittect市 ity.

In the fol10wing,Noetherian rings are characterize as in terms of Ker―

quasi…lnJeCtiVe.Recall that a R― module NIl is F-lnJeCtiVe, lf fOr any

flnitely generated ideal L of R,every R― homomorphisln of L into NII,

can be extended to an R―homomorphism R into M[22].
PrQpositiOn(2.16):The fbHowing conditions are equivalent:

(1)R is Noetherian ring;

(2)Every F― itteCt市 eR―modules are itteCt市 e;

(3)Every F― itteCt市 eR―module is Ker―quasi― ittect市 e。
Prool(1)implies(2)and(2)implies(3)are eVidently.

Assume(3).Let M bea F― itteCt市eR―module,E the ittect市 C hull of
M.Write Q=M① EisF‐輌 ectiVe R―module.By(3)M① E is Ker―quasi‐
itteCtiVe.Then Examples and remarks(2.2),M is Ker‐ M① E‐itteCtiVe
and Proposition(2.10),hence M is tteCtiVeo We have showll that every

F― itteCt市 eR―module is ittect市e.since any direct sum ofF― itteCt市 eR―

modules is F― itteCt市 e,then every direct sum of ittect市 e mOdules is
itteCtiVe which implies that R is Noetherian,by([21],P.82).ThuS(3)

implies(2)and(2)implies(1).
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ABSTRACT
In this paper, we introduce and study the concept of Fl-hollow-lifting modules
which is a proper generalization of hollow-lifting modules. We say M called a fully
invariant hollow-lifting module (or briefly Fl-hollow lifting) if every fully invariant
submodule N of M with M/N is hollow has coessential submodule that is a direct
summand of M Many characterizations and properties of Fl-hollow-lifting
modules are given. Unlike lifting modules and hollow -lifting modules, we prove a
finite direct sum of Fl-hollow lifting modules is Fl-hollow-lifting.

l.Introduction
N.Orhan, D.keskin and R.Tribak introduced the concept hollow-lifting
modules as a generalization of lifting modules. An R-module M is
called Hollow -lifting if every submodule N of M such that MA{ is
hollow has coessential submodule that is a direct summand of M [1].
On other direction, Y.T.alebi and T.Amoozegar are introduced FI-
lifting modules as a generalization of lifting module. An R-module M
is caned Fl-Lifting if every fully invariant submodule N of M
contains a direct summand such that K coessential submodule N in M
l2l.
In this paper, we introduce and study the concept of Fl-hollow-lifting
modules which is a generalization of both hollow-lifting modules and
Fl-lifting modules. We say that M called a fully invariant hollow-
lifting module (or briefly Fl-hollow lifting) if every fully invariant
submodule N of M with MAf is hollow has coessential submodule
that is a direct summand of M . Many characterizations and properties
of Fl-hollow-lifting modules are given. Also we call an R-module M is
FI- hollow module if every proper fully invariant submodule is small.
We assert that a Fl-hollow module is a proper generalization of hollow
modules. We give the relationship between FI- lifting modules and FI-
hollow modules.
Throughout this paper R will denote arbitrary associative ring with
identity and all R-modules are unitary left R-module, N c M will
mean N is a submodule of an R-module M. Let M be a module and N
be a submodule of M. N is called a small submodule of M (denoted by″
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N<< M ) if for any X g M, 1y1:]r[*X implies X:M. An R- module M is
called hollow if every proper submodule is small in M. The module M
is called local if has a unique maximal submodule N which contains all
proper submodules of M. Let K, N be submodules of M such that Kc
Nc M. Recall that K is called coessential submodule of N in M
(brieflyK c"" N in M ) if N/K << M/K. A submodule N of M is called

a coclosed submodule of M if N has no proper coessential submodule

in M. If N and L are submodules of M, then N is called a supplement of
L, if N* L:MandN n L<< N. A moduleM is called lifting if every

submodule N of M contains a direct summand K of M such that K
e.. N in M. Recall that a submodule K of M is fully invariant if g(K)
c K for all g € End (M ) . An R-module M is called duo if every

submodule of M is fully invariant [3]. Moreover, a submodule of an R-

module M is a called a stable if f(N) € N for each homomorphism

f:N--M. An R-module is called fully stable if every submodule of M
is stable[4].
2. Fl-Hollow Modules

Recall that a non-zero R-module is uniform if every non-zero

submodule of M is essential. Dully, a non-zero R-module M is called

hollow if every proper submodule of M is small. As a generalization

of hollow module, we introduce the following concept:

Definition (2.1): An non-zero R-module M is a called Fl-Hollow if
every proper fully invariant submodule of M is small.

Example and Remark(Z,Z)z
1-Every hotlow module is Fl-hollow, while the converse is not true in

general. For example Zz eZt as Z-module is Fl-hollow which is not

hollow.
2-Z as Z-module is not Fl-hollow. Since 2Z is fully invariant of 22

and Z2*Zt:Zbut Zt* Z.
3-We call an non-zero R- module M is called Fl-simple if (0) and M are

the only fully invariant of M. It is clear that every Fl-simple is FI-
hollow.
The next result gives the relationship between Fl-lifting module and FI-

hollow
Compare this result with [5, corollary (4.9)]

Proposition (2.3): An indecomposable module is Fl-hollow if and only

if FI-lifting.
Proof: Suppose that M is Fl-hollow and let A be fully invariant

submodule of M. thus A is small and hence A:(0)+A with (0) is a
direct summand of M and A<< M .So by (l2l,pro.(2.5)) then M is FI-
Lifting.
Conversely, suppose that M is Fl-lifting and let A be a fully invariant

proper submodule of M 12, pro.(2.5)l.A:N @ D where N is a direct

ハ
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summand of M and D<< M. Now, since M is indecomposable then

either N:(0) or N:M if N:M then M:NcA which implies that A:M
which is a contradiction .so N:(0) thus A:D << M is Fl-hollow.
In following Proposition, we give some of the basic properties of FI-
Hollow module.
Proposition (2.4): If an R-module M is a Fl-hollow module, then IWN
is a FI- hollow module for every proper fully invariant submodule N of
M.
Proof: Assume that M is Fl-hollow and let N be a proper fully
invariant submodule of a FI- hollow module M. Let K/N be a proper

fully invariant submmodule of MAtr then MAtr:K/N+HA{ :*!r' and so
M

it is implies that M:K*H. Since KA.l proper fully invariant of MA{
and N proper fully invariant submodule of M thus K is proper fully
invariant submodule of M [6, Lemma(z.z)]. Since M is Fl-hollow then
K is small submodule of M thus H:M, so FI/N:MA'{ hence

KAI<<MAI therefore, MAI is Fl-hollow.
We do not know whether a fully invariant submodule of Fl-hollow
module is Fl-hollow.
Proposition(2.5): Every non-zero coclosed fully invariant submodule

of a FI- hollow module is Fl-hollow.
Proof: Let M be a Fl-hollow module and let N be a non-zeto fully
invariant coclosed submodule of M. Suppose L is a proper fully
invariant submodule of N, then L is a Proper fully invariant submodule

of M. Therefore L << M and hence L << N by [7, pro.(l.2.I)].Thus N
is a FI- hollow module. tr

Recall that the Jacobson Radical of a module M (notation Rad M )
is the intersection of all maximal submodules of M and Rad(M):M,
in case M has not max. submodule [10].
It is well- Known that, if an R-module hollow which has maximal
submodule K, then RadM:K [8].
In the next result, we generalize this result to Fl-hollow module.
Lemma (2.6): If M is Fl-hollow module which has maximal submodule

K, then RadM:K.
Proof: Let K be a maximal submodule in M. Suppose that

RadM+K.Since K is maximal submodule of M, then Rad(M) +M (i.e)

Rad(M) is a proper submodule of M. hence Rad(M)+K:M. But Rad(M)
is fully invariant submodule of M, so by Fl-hollow property of M,
RadM<<M. So, we have K:M which is a contradiction. Hence RadM:
K.
tr

Corollary Q.l)z Let M be hollow which has a maximal submodule

K.Then RadM:K.フ
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Proposition(2.8): Let M be a Fl-hollow module and RadM I M if and

only if M is a Fl-hollow and cyclic module.
Proof: Let M be a FI- hollow module with RadM + M, since RadM is

fully invariant of M and M is Fl-hollow. Then RadM << M. Also by
lemma(2.6) RadM is the unique maximal submodule of M and thus

M / RadM is a simple module so RadM is cyclic. Let M / RadM : ( x
+RadM> forsome x € M. We claimthatM:Rx. Let m€ Mthen m
+ RadM € M / RadM, and therefore there is r E R such that m +
RadM : r (x + RadM): rx * RadM. Thus m - rx € RadM which
implies that m - rx : y for some y €RadM. Thus m: rx + y€ Rx +
RadM, hence M :Rx +RadM. But RadM << M implies M : Rx.
Conversely, since M is cyclic, then M is finitely generated and hence

RadM I M.
Recall that an R- module M is called SS-module if every direct
summand is stable [9].
Proposition (2.9 ):Let M is be a Fl-hollow module and SS-module
then every direct summand of M is Fl-hollow.
Proof: Let M:Mr @ Mz be a Fl-hollow module .Then MA42 = Mr and

hence, M/M2 is a Fl-hollow by proposition (2.4 ), thus M1 is Fl-hollow.
It is well-known that a direct sum of hollow module need not be true.
For example, Z-module Ze and Zp are both hollow ( where p is a
prime number). ButZo(f^ Zpt is not hollow Z-module [5].
Proposition(2.10) : If Mr and M2 are Fl-hollow modules, then
M:MrOMz is
FI-hollow.
Proof: Let N be proper fully invariant submodule of M. Then

N:NoMr@ No Mz and both NnMr and Nn M2 are both fully
invariant submodule of M1 and M2 respectively [3]. Now NOMi is

proper submodule of Mi Q:1,2) since otherwise NoMi: M1.So M1 c N
which implies that M: M1* M2 c N which is contradiction. Since M1

and M2 are Fl-hollow then we have NnMr is small submodule of M;
in M and Nn M2 is small submodule of M2 in M. Then N :
NnMr@Nn M2 (( M1O Mz:M [5] Therefore, M :Mr(E Mz is FI-
hollow. tr

Corollary (2.11): A finite direct sum of Fl-hollow module is FI-
hollow.
Corollary (2.12)z A finite direct sum of hollow module is Fl-hollow.

3. Fl-Hollow-lifting Modules
Hollow-lifting modules introduced by N. orhan, D. Keskin and R.
Tribak [1] as a generalization of lifting modules. An R-module M is

called Hollow -lifting if every submodule N of M such that MAI is
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hollow has coessential submodule which is a direct summand of M.
Recall that an R-module M is called Fl-Lifting if every fully invariant
submodule N of M contains a direct summand such that K
coessential submodule N in M . Here, we introduce and study the
concept Fl-hollow-lifting mosules which is a generalization of both
hollow-lifting modules and Fl-Lifting modules.
Definition (3.1): An R-module M is called Fl-hollow-lifting if for

every fully invariant submodule N of M with ff ir nottow, there exists

a direct summand K of M such that K 9r" N in M.
Examples and Remarks (3.2):
1- Every hollow -lifting module (resp. Lifting module) is Fl-Hollow-
lifting. But the converse is not true in general. For example , consider
M: Z, @ Zp 3 as Z-module is Fl-hollow-lifting but not hollow-lifting
where p is a prime number [1].
2- Z as Z-module is not Fl-Hollow-lifting .To see that , assume that Z
as Z-module is Fl-hollow-lifting. since 22 is fully invariant submodule
of Z, such that Zl2Z = 22 is hollow so by FI- hollow -lifting property
22, there is a direct summandk of Z, such that k G." 22 in Z .But Z is

contradiction. since 22+ 37:7 but 32* Z.
3-If M is Duo then M is hollow -lifting module if and only if M is FI-
hollow-lifting module in particular, a commutative ring R is hollow -
lifting if and only if R is Fl-hollow-lifting.
4-Every Fl-hollow module is Fl-hollow-lifting.
The following result gives a characterization of Fl-Hollow lifting
modules.

Theorem (3.3): An R-module M is FI- hollow-lifting if and only if for

every fully invariant submodule N of M with { hotto*, there exists a
N

submodule K of N such that NI : K(EK* and N n K* << K*.

Proof: Let N be a fully invariant submodule of M with $ hollow.Since
N

M is Fl-hollow-lifting then there is a submodule K of M such that
K cr" N in M and M - K(EK*, where K* c M. Let (NnK.) *X-
K*, where X submodule K*. So M:K * K*:K + (N n K.)+X. Now, f

K+(NnK*) X+K- "'\""" i +""'. But K E." Nin M andK+ (N n K-) c N. ThereforeKK
byproposition[8,p.20], K e." (K+(NnK.)) inM and soM -X*
K. Since M : K@K* and Xc K* thenX= K* Thus NnK- << K..

Conversely, let N be a fully invariant submodul e of M such that $ is
N

hollow, then by our assumption, there exists a submodule K of N such
that M - K(EK-and N n K- << K.* Now, we want to show that

‐
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K ⊆ceN in M. Let  帯 + 帯 = ¥  Vヽhere xis a submodulc of Mく

containing K,then M=N+X By modular law,N=N∩ M=N∩

(K① K*)=κ① (Ⅳ ∩κ
°
),  henCe  M=Ⅳ十χ=κ十(Ⅳ ∩κ

菫
)+χ   But

N∩ K*<<Kt therefOrc N∩ K*<<M So M=K+X=X and hcncc
K c." N in M. Thus M is FI- hollow-lifting.
By the same manner of the proof of Theorem (3.3), we can give

another characterization of FI-hollow -lifting module.
Proposition(3.4): An R-module M is Fl-hollow-lifting if and only if
for every fully invariant submodule N of M with f, hollow, there exists

a submodule K of N such that M = KOI('and N n K" << M.
Let U and V be two submodule of an R-module M.

Recall that V is a supplement of U in M. If V is a minimal element
in the set of submodule L c M with N+L:M. Unlike a complement
submodul, ther is a submodule which has no supplement [7]. For
example, consider Z as Z-module 2Z has no supplement in Z as Z-
module. An R -module M is called supplemented if every submodule
of M has a supplement in M. Recall that V of an R-module M is

strong supplement of U in M if V is a supplement of U and V O U is a
direct summand of U [5].
By using strong supplement property, we have another characterization
Of FI-hollow -lift ing modules.
Theorem (3.5): An R-module M is FI- hollow-lifting if and only if
for every fully invariant submodule N of M with f, hollow has a strong

supplement in M.
Proof : Suppose that M is a FI- hollow-lifting module and N is a fully
invariant submodule of M such that f, is hollow. Then there is a
submodule K of N such that y cr" N in M and M:K@K-, for
some K* c M. By modular law, N - N n (,(@K.) =
/( O(N n K-). One can easily show that M = N * Kt. We want to
show thatNnK'<<K..Let (NnK-)+X= K',where Xc K'
So M=K+K.:K + (NnK.)+X. This implies that M =N*X

.M N+X N X+R
and :: : 

=: 
: + T. Since K cr" N in M, then M:X * K. ButKKRK

M = R@K- and XcK', therefore X = K' and hence NnK- <<
K-. Thus N has a strong supplement K' in M.

Conversely, let N be a fully invariant submodule of M such that f is

hollow. Then by our assumption there is a strong supplement K of N in
M, then M - N *K,N nK<<K and N = (N nI()(E L, where I c
M. Now, M =N+K=(NnK)+I+K -- L+K.LnK=0,, so

M - L@K. We want to show that L cce N in M. Let I + I: f ,*nere

■
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X c M containing l,thenN+X - M. Hence M: (N nK) + L+X.
But NnK <<M, therefore M=L *X. Since LeX, then M:X.
Thus M is FI- hollow-lifting module.

By [ 2] an R-module M is lifting if and only if every submodule
N of M can written in the form N:A O S where A is a direct summand
of M and S << M .We have analogous result for Fl-hollow -lifting
modules.
Theorem (3.6)i The following statmenet are equivalent for an R-
module M:
1- M is FI- hollow-lifting .

2-Every fully invariant submodule N of M such that M/N is hollow, can
be written as N:K O L with K is a direct summand of M andL<< M .

3-Every fully invariant submodule N of M such that MAf hollow ,

there exists a direct summand K of M such that N:K *L and L <<
M.

Prooft (l+2) Let N be a fully invariant submodule of M such that $N
hollow. Since M is FI- hollow-lifting, there exists a submodule K of M
such that K e ." N in M and = KOK., where K* c M. By modular law,
N-NoM-Nn(KOK.)-KO(NnK.). We want to show that
NnK- << K.. Let Xc K* with (NnK.)*X: K,* then N*X:
M.Now,#:Y:I+T SinceK c."N inM,then M:X*K.
But M: K(EK.and Xe K*, thereforeX= K*. Let L- NnK.. Thus
N:KOL with K is a direct summand of M and L<<M.
(2+3)' It is obvious

(3=I);let N be a fully invariant submodul e of M with { hollow. Then
N

by ourassumption N = K + L, where K is adirect summand of M and

L << M such that M - KOK*, for some K* c M. Since K. is a

supplement of K in M, and since L << M, then by [1], p.348] K* is a
supplement of K*L=N in M.So NnK.<<K..Thusby
Theorem (3.3),M is FI- hollow-lifting. !
Proposition (3.7): Let M be an indecomposable module .If M is a FI-
hollow-lifting module, then either M is hollow or else M has no fully
invariant submodule N such that MA{ is hollow .

Prooft Suppose that M has fully invariant submodule N such that $ is
N

hollow. Since M is Fl-hollow-lifting, then there is a direct summand K
of M such that K e ," N in M. But M is indecomposable module,
therefore K = O,henceN << M. Thus by [7,p.5] M is hollow.
It is well known that if M is hollow module then MAf is hollow
for each submodule N of M. On other direction if M is hollow-

ヽ
け
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lifting  then  M/N  is honow_litting  for every  負1ly invariant

submodule N ofヽ 4.

Proposition(3。8)_Lct M be an R―module.If M is FI‐ hollow― lifting

modJ%ぬバ Πヽ■dbW・鉗ng moddeおrevew mけ hvtta威
submodule N of M.

Proof: Let N be a fully invariant submodule of M. Let f, be a fully
M

invariant submodule of ff sucn that + is hollow. Then by the (third
N

M

isomorphism theore.) { = } and hence f it nottow. Since ft and N
N

are fully invariant , then we get,4 is fully invariant by [6,Lemma(2.2)1.
But M is Fl-hollow-lifting module, so there exists a submodule K of M

such that K 9r" A in M and M = K(EK., for some K' c M. Now,

N+KcAhence ffe * *.candefineamapf.'f --# *follows
f(m+K)=m+(N+K), for all mEM.It is clear that f is an

epimorphism. Since K c* A in M, then by[S ],f (+) << $ and'K' N+K

hence (N+IQ 9r" A in M. By (third isomorphism theorem) we get,
N+K- A M

T s." N ,n * . Now, thus by fl,Lemma (5.4)]. #: S: $ e

T *o hence H ,t a direct summand of H .Thus $ ir rt-nollow-

lifting.
Corollary (3.9): Let be R-module .If M is Fl-hollow-lifting module,

then $ is Fl-hollow-lifting module for every stable submodule N of M.
N

Corollary (3.f0): If R is FI- hollow -lifting module then R/I is FI-
hollow-lifting for each two sided ideal I of R.

We do not know in general whether Fl-hollow-lifting property is
inherited by direct summand .The following results are partial
answering the question. When is the Fl-hollow-lifting property

inherited by direct summand s?

Proposition (3.11): Let M be a Fl-hollow-lifting SS-module, then every

direct summand of M is Fl-hollow-lifting.
Proof: Suppose that ll is a Fl-hollow-lifting module. Let N be a direct
summand of M,then M =N(EN., for some N* c M.since M is ss-

module then N and N* are fully invariant submodules of M. By the

(second isomorphism theore.), # = N. Thus by proposition (3.8), N is

ハ
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Remark: The concepts of Fl-hollow-lifting modules and ss-modules

are different. For example, Z as Z-module is ss-module which is not FI-
hollow-lifting. In other hand M: Zo* @ Zp* is FI- hollow-lifting
which is not ss-module [9, remark and example (2.2.9)].

Corollary (3.12): A direct summand of Fl-hollow-lifting fully stable

module is Fl-hollow-lifting.
Corollary(3.13) : A direct summand of Fl-hollow-lifting Duo
module is Fl-hollow-lifting.
Corollarv(3.14): An ideal which direct summand of a commutative
FI-hollow-lifting ring is Fl-hollow-lifting.
Proposition (3.15): Let M be Fl-hollow-lifting module. Then every

fully invariant coclosed submodule K of M with + hollow is a direct
K

summand of M.
Proof: Let K be a fully invariant coclosed submodule of M such that

Thus y is hollow. Since M is Fl-hollow-lifting, then there is a
K

directsummandNof M suchthatN c* K inM SinceK is acoclosed
submodule of M, then N:K , thus K is a direct summand of M

It is well known that a finite direct sum of (lifting ) Hollow -
lifting module need not be (lifting)Hollow lifting module. In fact, Zl3Z
and Zl27Z are hollow Z-modules and so there are lifting (resp. hollow-
lifting) but ZBZ@Z|27Z is not lifting (resp. hollow-lifting) [].In the

following result we assert that a finite direct sum of Fl-Hollow -
lifting module is Fl-hollow-lifting.
Theorem (3.16): If Ml and M2 are Fl-hollow-lifting modules . Then M
=Ml①M21S FI-hollow-lifting.

ProoI: Let N be fully invariant submodule of M such that $ notto*.
N

Then M: Mr@N or M: Mz@N. Suppose that M: MrON (the case

M: MzON being analogous). Where Nc Mr, M: Mr@N then #
- MloN = M1 is hollow .Then Nn Mr and NnMr are fullyN 

_ 
M1NN

invariant submodule of M. Since M1 is Fl-hollow-lifting we have

Nn Ml:LrOSr where L1 is a direct summand of M1 and 51 (( M1. In
similar method, we have Nfl Mz:Lz(ESz where L2 is a direct summand

of M2 and 52 (( M2. Then N:L(ES , where L:LrO L2 is a direct

summand of M and S:S1$ Sz (( M.Therefore, M: MrOMz is FI-
lifting module ( by Theorem (3.6)).

Corollary (3.17): A finite direct sum of Fl-hollow-lifting modules is

FI-hollow-lifting.
ヽ
”
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Corollary(3.18):A flnite direct sum of h。 110w‐lining(lining)modules
is FI‐ hol10w‐ lining

ln the fol10wing theorcnl we give anOther characterizatiOn Of hOHOw_

litting inOdules.

Theorem(3.19):Let M bean R― module Then M is FI‐ hollow_lining if
and onサ r for evev fulサ inVanant submoduに Ⅳ Ofν withtth010W,
therc exists an idempotent e∈ End(M)With e(M)⊆ N and(1‐ e)(N)くく
(I―e)(M)

Proo■  Let N be a fully invariant submodule Of M such thatキ
h0110ヽV

Sincc M is FI‐ hoHow‐lining, thcn by ThcOrcm (34), thcre cxists a

strong supplemcnt K of N in M.Hcnce M=N+K, N∩ K<<κ  and
N=(N∩ K)① X   fOr   sOme   x⊆ M   Then
M=N+K=(N∩  K)+X+K=X+K and X∩ K=O and hcncc M=
X①K.Let e:M→ X be the natural pr●ectiOn map one can easily
sho、v

that e is an idempotent and e(M)⊆ X.Since x⊆  N,then e(M)⊆ N
Now,(I‐e)(M)=((I― e)(m), m∈ M}={(1‐ e)(attb),WhCre a∈ x,b∈
K}=
{(I‐e)(a+b)=a+b‐ a=b}=K nre want show that(I‐ e)(N)=N∩ (I_e)(M)
Let x∈

(I― e)(N),thcn there is n c N such that x=(I_e)(n)=n‐ e(n)Thus
x∈ N and x∈(1_e)(M)So x∈ N∩ (1_e)(M).Hence,(I_e)(N)⊆ N∩ (I‐
e)(M).Lct d∈ N∩ (I_e)(M),then d∈ N and d∈ (I‐e)(M)There is
y∈ M such that d=(1‐ e)o)=y― eO)Thus  d+eし)7∈ N,thcn
d∈ (I‐e)(N) SO(1‐ e)(N)=N∩ (1‐e)(M)=N∩ Kく<κ  Hence,(I‐
e)(N)<く (7-e)(M)
Conversely,lct N be a fully invari:lt Subm° dulcofM suchthatttis
hol10w.By Our assumption there c対 sts an idcmpotent e∈ End(M)With
e(M)⊆ N and(1‐ e)(N)<く (I‐e)(M)We claim that M=e(M)①

(1‐e)(M)To show that, let mcM then m=m+e(m)‐ e(m)=e(m)+m‐
e(m)=e(m)+(I‐e)(m).Thus M=e(M)+(I‐ e)(M)Now, let w∈
e(M)∩

(I‐e)(M),  thcn w=e(ml) and w(1‐ e)(m2),  fOr
somc ml,m2∈ M SOe(w)=e(ml)=e((1‐ e)(m2))=e(m2)‐ e(m2)=0,
thcn e(e(ml))=e(ml)=0,hence w=o Thus M=e(M)①

(I‐e)(M).
Clearly, N∩

(I‐ e)(M)=(1‐ e)(N).Since(1_e)(N)<<(′ ―e)(M), then
N∩ (I‐e)(M)<<(1‐ e)(M),thus M is FI‐ hollow‐ lining.

郡 IW・ 催
:a鷺
紺 酬 」常 器

S常
謂 :謂
HttilT

unique

Proo■ Lct N bea ma対 mal力 1ly invariant submodulc of M.Assume
that M has anOther maximal fully invariantsubmodulc say K which is

“ヽ

‐
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different from N, then N+K:M . By [11, p.41], f a simple module and

hence hollow. Since M is Fl-hollow-lifting module, then there is a direct
summand A of M such that A e ," N in M. But M is indecomposable
module then ^A:0, hence N << M, this implies that M - K that is a
contradiction, thus M has a unique maximal fully invariant submodule.
!
Proposition (3.21): If M is Fl-hollow-lifting module a

then for each fully invariant submodule Ra (a e M) with

either Ra is a direct summand of M or Ra << M.

local ring R

# hollow,

Proof: Let a 6 M such that y* 
is hollow. Since M is Fl-hollow-lifting

Ra
module, then by Theorem (3.6), Ra:K@L, where K is a direct
summand of M and [ <<M. Since R is local ring, then by the [10,
corollary 7.1.3,p.1711, we have Ra is local. Thus we get either Ra:K
or Ra:L. This implies that either Ra is a direct summand of M or Ra
<< M.
It is well-known the Jacobson radical Rad(M) :The sum of all small
submodules of M [8].
Proposition (3.22): Every fully invariant N of Fl-hollow-lifting
module M with { nollo* and Rad(M):O is a direct summand of M.

N

Proof: Let N be a fully invariant submodul e of M such that { is
N

hollow. Since M is Fl-ho11ow-lifting, then by Theorem (3.6), N can be
written as N:K(E I , where K is a direct summand of M and L << M.
But Rad(M):O, so I = 0 and hence N:K. Thus N is a direct summand
ofM. tr
Proposition (3.23):Let M be Fl-hollow-lifting module having a fully
invariant maximal submodule N of M. Then M has a local submodule
which is a direct summand.
Proof: Suppose that M is Fl-hollow-lifting module and let N be a fully
invariant maximal submodule of M. So by [5, p.4l], ff is simple.

Hence { is hollow. By Theorem (3.4), M:N*K, N n K<<K and
N

N:(N n IO e L, where L c M.Then M: (N n I0 e I +K. But N o
K<<M (since N n K<<K), thus M:L @ K. Since K is a supplement of
a maximal submodule, then by ll2, p.3481, K is local. tr

Let M be an R-module. Recall that an R-module P is called
Projective if for any epimorphism (p 2 M-- N and for any
homomorphism f: P---N there is homomorphism h: P-rM such that
F qh. Also an R-module P is called projective cover of M ie P is
projective and there exists an epimorphism e z P---+M with ker<p 11
P.

L

フ
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Proposition(3.24):. Let M be a projective module. Then the following
statements are equivalent:
1-M is Fl-hollow-lifting module.

2-For every fully invariant submodule N of M such that $ is hollow, ff
has a projective cover.

Proof: l+2Let N be a fully invariant submodule N of M such that I
N

is hollow. Since M is Fl-hollow-lifting module, then by Theorem (3.3),
there exists a submodule K of N such that M:K@K-, for some K. c M
and N n K*<<Kt.
Now, consider the following two short exact sequences:

0 -lg3 N+K" rL N+K'_) _ +u

0 -+NnK.::. K'3 K' 
-roNNK'

where ir , tz are the inclusion maps and Tr ,Tz are the natural
epimorphisms. By the (second isomorphism theorem), +:*l.l' = ,,*=N N IVNK'. Since M is
aprojective and K. is a direct summand of M, then K. is a projective.
But ker Tz: N n K.<<K*, therefore K. is a projective cover of ,,r,=
Since 

__ NnK'.

# = #, thus ff rrur a projective cover.

(2+l). Let N be a fully invariant submodule of M such that f i, notto*
and let
e : M --- y-- 

0 be the natural epimorphism. By (2),
cover. Thus by Lemma UZ, l7.l7l, there exists
M:Mr@Mz such

glM2:M2 -- y 
--' 0 is a projective cover and M1c Kere. This implies

that Mrc N and ker(cpl MZ1 : N n M2<< M2. Thus M is Fl-hollow-
lifting module. By proposition (3.3)
corollary Q.2s ): A ring R is a Fl-hollow-lifting if and only if R/I
has a projective cover for every two sided ideal of R.
Proposition (3.26): Let R be an indecomposable ring and M be a
projective R-module. rf M is Fl--hollow-lifting module, then for each
cyclic fully invariant submodule Ra (a e M) with ff hollow, either Ra
is projective summand of M or Ra << M.

こ

M,
x nas a prolectrve

a decomposition

that
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Proof:Let N be a cyclic i11ly invariant submodule of M with M/N is

hollow.Let N=Ra Suppose that M is a praect市 e FI‐hollow‐ litting

module and α∈M.Then by Theorem(3.5),Ⅳ  can be written as
Ⅳ=κ①ι,where κ is a directsummand of M and L<<M.Now,let

ψ:R→ Ⅳ be a map deined by ψ(r)=rα,fOr all r∈ R.It is clear that ψ
is an epimorphism.Let ρ:Ⅳ → κ be a praection map.Clearly ρ o ψ
: R → κ is an epilnorphismo  Consider the following short exact
sequence:

0→ たθr(ρ oψ)ム R tt κ→0
where i is the inclusion map.Since M is praec● on κ is a praective
then by [11, p. 150], thiS Sequence is splits. Thus たθγ(ρ oψ)iS a
summand Of R.    Now, たθr(ρ oψ)=

{r∈ R,ρ 。9(γ)=0}={r∈ R,ρ 。(ψ (r))=0}={r∈ R,ψ (r)∈ L}=ψ
~1(ι

).ThuS 9~1(L)iS a direct sunlmand of R.But R is an indecomposable

ring, therefore
either q-1(L):0, then L:0 and hence N:K. Then N is a projective
direct summand of R or e-'(L ):R, then g A-I(L ): rp(R) and hence

L:N. This implies that N << M.
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ABSTRACT
The main purpose of this paper is divided into fwo main aspects:-
First, we study Hahn-Banach extension theorem for n-bounded n-linear functional
in n-normed spaces due to Srivastava and et. al. which is complex verision of the
malceski's extension theorem of n-bounded n-linear functionals in n-normed space
and give some results that are related with it.

Second, we introduce Hahn-Banach extension theorem for fuzzy n-bounded
n-linear functional in fuzzy n-normed space, fuzzy n-antibounded n-linear
functional in fuzzy n-antinormed space and intuitionistic fuzzy n-bounded n-linear
functional in intuitionistic fuzzy n-normed space then we give some applications
that are related with it.

INTRODUCTION
The theory of real n-normed linear space has been introduced by

Gahler in []. In l2l, Narayanan and Vijayabalaji introduced fizzy n-
normed space. Also the definitions of fuzry n-antinormed linear space
and intuitionistic fuzzy n-normed linear space was introduced in [3].
Malceski in 14) gave the required Hahn-Banach type extension
theorem for real n-normed linear spaces. The new Hahn-Banach
extension theorem for n-bounded n-linear functionals in complex n-
normed linear spaces which generalize all the known results has been
established in [5]. The Hahn-Banach theorem in fuzzy nofined space
and fuzry antinormed space were given in [6] and [7] respectively. In
this paper some results related to applications of the Hahn-Banach
theorem extension in n-normed space are established and then the
Hahn-Banach extension theorem due to Srivastava and et.al. in fuzzy
n-normed linear space, furry n-antinormed linear space and
intuitionistic fuzzy n-normed linear space are discussed then some
results related to applications of the Hahn-Banach theorem extension
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infuzry seffing are proved. Some facts that appeared in [6], [7] and [g]
are generalized in this work.

Hahn-Banach Extension Theorem in N-Normed spaces
In this section, some theorem of Hahn-Banach extension in n-

normed space due to Srivastava and et.al. are presented. Also, some
results related to it are discussed.
Definition 1, [5]:-

Let X be a linear space over F (where F is the field of real or
complex numbers) of dimension d ) n. A function

11.,...,11: X x X x...x X = Xn 
---+R 

satisfy the following axioms:
(N,)

ll*,,tr,...,Xnll= O if and onty if x1,X2,...,Xn are linearty dependent.
(Nr) ll*,,xr,...,xnll is an invariant under any permutation of

(N3)IXl'X2,… ,CXnl=IJ IXl,X2,… ,Xnl for any C∈ F。

IXl'X2,… メ n-1,X+yl≦ lxl,X2,・・Xn_1,xl+IXl,X2,… ,Xn_1,yll;
Xl,¨・,Xn,X,y∈ x.

is said tO be an n― norm on X and the pair(x,|・
,…。,|)iS Called an n―

noHned space.

Derlnition 2,151:¨

Let Wi,i=1,2,…
抑 be a n‐ linear subspaces of the linear space X.A

mapping T:Wl× w2×・・・×WL→ F is said tO be a n‐ linear functional
in case satisies the fol10wing cOnditions:fOr all xi,yic Wi,i=1,2,…

n.

(1)T(Xl+yl,x2+y2…,Xn+yn)= ΣT(■ ,z2"¨ Zn)
建「狂l:Ii}

(2)T(α lXl,α 2X2,・ ¨,α nXn)=α lα 2¨ anT(Xl,X2,・ …,Xn)lor au α i∈ F,

i=1,2,…丼.

DeflnitiOn 3,15卜 ‐

Let Wi,i=L2…
ハ.be a n■ hear subspaces of the n―norrned space X。

The n_linear hnctiOnal T On Wl× w2×・・・×鶴 is said to be n‐
bounded on wl× w2×。…X Wh in caSe there e対 sts K>O such that fOr
each

(Xl,X2,・ …,Xn)∈ Wl× W2X・ ―× W,

IT(Xl,X2,…メn】≦Klxl,x2,…メnl
PropositiOn 4,15]:‐

Let Wi,i=1,2,…
押.be a n―linear subspaces Of the n_normed space X

and T be n―bounded n4inear funcHOnd on Wl× w2× …・×Щn then

ヘ

(N,)
where

ヽ
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躙可  “瑚∈きヽ細匡斗1
Is a norm on linear space of all n-bounded n-linear functional.
Note 5 :-

Let \,;=1 ,2,...n. be a n-linear subspaces of the n-normed space X .

we denote by (v4 x w, x ... x wn, F)- the set of all n-bounded n-linear
functionals on W, xW, x...x\ and we call (W, 

"W, x...xWn,F)*
the conjugate space of W1 x W, x...x Wn.
Theorem 6, [5]:-

Let w be a linear subspace of an n-normed linear space X over
F and let x,,X2,...,Xn-r €X. If T is an n-bounded n-linear functional
on w x [x1] x ...x [xn-r ] then there exists an n-bounded n-linear
functional Ton X x [xr] x...x [xn_r] satisfying

卜国=国
2-T(x,λ lXl,… ,λn_lxn_1)=T(X,λ lxl,.…λn_lxn_1)
Theorem 7:―

Let(X,|っ っ̈|)be n_normed space and x,xl,x2"… ,Xn_1∈ X are
linearly independent elements of x.Then there exist a n‐ bounded n‐
lincar functiOnal〒 On X× [xl]× [x2]×・・・×[xn_1]Such that

同 =L歓 、為… x祠 )=卜,為 … X祠 |
Prooft-

We consider the subspace

Z={(t x ,trx,,...,tnXn_t):t; e F,i=1,2,...,n} of Xnand defined

Al- Mustansiriyah J. Sci.

linear functional T on

し

an―

by

■ lX工 2狗 "―■nXn■ )=卜 lX丼 2狛 "―inXHI=卜 1卜丼・卜n‖X 為,…メn瑚

6 implies that

lltll= 1r1= I and

Theorem 8:-
For every

we have

llr,*,,...,xn_rll=
・
〕

Then T is n-bounded n-linear and has norm llfll= t. Then by theorem
T has n-bounded n-linear functional of norm

T1*, x, ,. . .,X. ) : T(x, x1 ,...,Xn-l ) : ll*, *, ,.. .,xn_r 
ll

linearly independent elements X,X1,X2,...,Xn_r €X

Sup

T二F×
[Xl]×…メ[Xn■ lF)*
「
(X,L,…っxn4】

旧|
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Sup lT(x'x,'"''x,-,)l ,lT(*'*,'r"'*n-,)l
re(Xxrx1rx ..{xn-1r,F)' llrll llTllT*0

_ llx,x,,...,xn_,ll
I

= ll*,*,,...,xn-rll
And from lT1x,x,,...,Xn_r ll < llrllll*,X1,..,Xn_1ll we obtain

Sup lT(x'x""''xn-')l .ll*,*,,...,xn-rll
re(Xx[x1]x..x[xn-1],F)* llTll
T+0

Hence

Fuzzy n-Normed Linear space, Fuzzy n-Antinormed Linear Space
and Intuitionistic Fuzzy n-Normed Linear Space

In this section, we give some definitions and theorems which will be
needed in the work.
Definition 9, [6]:-

A fuzzy subset N of X x R is said to be a fuzzy norn on a linear
space X in case for each X,y€X and ceF, the following conditions
hold:-
(Nr) N(x,t):0 for each t < 0;
(FNz) N(x,t) = 1 for each t > 0 if and onlyif x = 0

(FN:)If0 + c e F then N(cx,t) = N(x,l)for each t > 0.
lcl

(FN+) N(x * y,s + t) > min{N(x,s),N(y,t)}for each s,r e R.
(FNs) N(x,.) is anon - decreasing function of R *d ,gN(x,t) = 1

The pair (X,N) will be refened to as a fuzzy normed space

Example 10, [6]:-
t et (X,ll.ll) be a normed linear space. Define

. [o ift<llxll,teR,xeXN*(x''l=tl iftrll*ll,teR,xeX """(1)

Then (X,N*) is afuzzy normed linear space.

On Fuzzy Setting of Complex Version of the Malceski's Extension Theorem of N-Bounded N-Linear
Functional in N-Normed Space

Faria A
Prooft-
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Theorem 11, [6]:-
Let (X,N) be a fuzzy normed space satisffing the following two

conditions:
(FNo) For each t > 0, N(x,t) > 0 implies x = 0

(Nz)Forx*0,N(x,.) is a continuous function of R and strictly
increasing on the subset {t : 0 < N(x,t) < 1} of R.

ret llxll, = Inf{t > 0: N(x,t) > ct},cr e(0,1) and N, :Xx R-----+[0,1] be

a function defined by

▼

中ぐ
頭に0雌→

Then,

fOr(X,t)≠ (0,0)

fOr(X,t)=(0,0)

(u){ll .ll,:oe(0,1)}is afamily of o-2-norms corresponding to the

fuzzy normed space (X,N).
(b) (X ,Nr) is afuzzy normedspace.
(c) N, = 1r1

Definition 12,l2lz-
A fuzzy subset N of X' x R into [0,1] is said to be a fuzzy n-norm

on the linear space X in case the following axioms hold:
(FN, ) N(x,,xr,...,Xn,t) : 0 for each t < 0.

(FN2)N(x1:X2:...,X1,t):1 for each t > 0 if and only if x1,X2,...,Xn
are linearly dependent.
(FNr)N(x 1,x2,,..,xn,t) is an in variant under any permutation of xr,X2,...,Xn.

(FNr) If 0 * c e R then N(x,,x2,...,cX,,t) = N(x,,x2,...,xn,f; for"uch t > 0.
lcl

(FNr) for each s,t e R
N(x,,xr,..Xn_r,x+y,s+t)>min{N(x,,X2,...,Xn_,,x,s),N(x,xr,...,Xn_r,y,t)}
(FNo) N(xr ,x2,...x,,,.) is a non-decreasing function of R and

B N(r, ,x2,...,x,,t) = 1

The pair (X,N) will be referred to afuzzy n-normed space.

Theorem 13, [9]:-
Let (X,N) be a fuzzy n-normed space satisffing the following
conditions:
(FNr) For each t > 0,N(x,,x2,...,xn,t) > 0 implies x,x2,...,xnare
linearly dependent.
(FNr) For x,,X2,...,Xn are linearly independent N(x1,x2,...,xn,t)is a

continuous of t e R and strictly increasing in the subset

{t :0 < N(x,,xr,...:Xn,t) < l} of R.
一）
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Let llx, ,X2,...,rnllo = Inf{t:N(x1 ,x2,...xn,t) ) a}, cr e (0,1) and

N, :Xn xR--+[0,1] is defined by

N1 (x1, x2,...,xn, t) = { 

t'ot" e (0'l) : llx" x2'"''x,' u" = 
t',- 

Y ffir;":;.,
L0 otherrvise

Then
(u) {ll.,...,llo : cr, € (0,1)}is an ascending fami}y of o - n - norms

coresponding to the fuzry n-normed space ( X,N).
(b) (X, Nt ) is a fiwy n - normed space.
(c) N, = 1r1

Definition 14, [l0l:-
A fuzry subset M of X x R is said to be a fuzry antinorm on a a

linear space X in case for each x,yeX and ceF, the following
conditions hold:-
(FMr) M(x,t) = 1 for each t < 0;
(FMz) M(x,t) = 0 for each t > 0 if and ontyif x = 0

(FMs)If0 + c e F then M(cx,t) = M(x,l)for each r > 0.
lcl

(FM4) M(x + y,S * t) < ma,x{M(x,s),M(y,t)}for each s,t e R.
(FMs) M(x,.) is anon - increasing function of R and rim M(x,t) = g

The pair (x,M) will be referred to as a fuzry antinormed linear space.
Example 15, [10]:-

I,et (X,ll.ll) be a normed linear space. Define

M*r*r.,=Jo irt>llxll,teR,xeX \
Ir ift<llxll,teR,xeX

il.; G,#; ," 
^;Xlntino.,nrd rinear space.

Theorem 16, [7]:-
Let (X,M) be a furry antinormed space satisffing the foilowing

two conditions:
(FMo) For each t > 0, M(x,t) < I implies x = 0
(FMz) For x * 0, M(x,.) is a continuous function of R and strictly
decreasing on the subset {t : 0 < M(x, t) < 1} of R.

Let ll"ll" =Inf{t:M(x,r)<l-o},'e(0,1) and M, :XxR_+[0,1]
be a function defined by  

312



し

Al- Mustansiriyah J. Sci. Vol.24,No5,2013

中 =[岬
¬ 川 札 朝

鮮 澄 :難 3
Then,
(a) {ll . ll, : cr e (0,1)}is a family of cr - noffns corresponding to the

furry antinormed space (X,M).
(b) (X ,Mr) s afiuzy antinormed linear space.

(c) M, :14
Definition 17, [3]:-

A fu2ry subset M of Xn x R into [0,1] is said to be a fuzry n-
antinorm on the linear space X in case the following axioms hold:
(FMr) M(xr ,X2,...,x11,1):1for each t < 0.

(FM2 )M(x1,x2,...rXn, t) = 0 for each t > 0 if and only if x1, x2,...,x11

are linearly dependent.
(FM3)M(x1;x2,:..:Xn,t) is an invariant under any pernutation of X1,X2,...,Xn.

(FM+) If 0 * c e R then M(x1,x2,...,cxn,t) = M(xr,X2,..Xn,|; for.u.h t > 0.

lcl

(FMs) for each s,t e R
M(x1, x2,...,Xn-1, X * y,s + t) < max{M(x1, x2,...,Xn-1, X,s),M(X1, X2,...,Xn-r,y,t)}

(FMo)M(xr,X2,...,Xr,,.) is a non-increasing function of R and

lim M(x1 1x2,...7x1,1) = 0
t-+o
The pair (X,M) will be referred to as a fuzzy n-antinormed space.
Theorem 18, [11]:-

Let (X,M) be a fuzzy n-antinormed space satisfying the following
conditions:
(FMz) For each t > 0,M(x 1,x2,...,x,r,t) < I implies X1,X2,...,X,, &r€

linearly dependent.
(FMs) For x, ,x2,...,xn are linearly independent M(x, ,x2,...,X11,t)is a

continuous of t e R and strictly decreasing in the subset

{t:0 < M(xr ,x2,...,xn,t) < U of R.

Let 11x,,x2,... xnll" : Irrf{t : M(x,,x2,... Xn, t) < 1 - cr}, cr e (0,1) and

M, : Xn x R---+[0,1] is defined by

I 
Inf{t - o e (0,1):11x1,x2,...,x,11. < t} whenx1,X2,...,xn rre

M1(x1,x2,...,*n,t)=1 finearly independent,t+O

U otherwise

Then
▼
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(a) {11.,...,11, : o € (0, l)}is a fa,rlly of cr - n - norrns
the fuzzy n-antinorned linear space ( X,M).
(b) (X ,M, ) is afivzy n - antinormed linear space.
(c) M, = 14

Faria

corresponding to

Definition 19, [8]:-
An intuitionistic fuzzl norrn on x is a set of the form

A={((x,t),N(x,t),M(x,t))l(",1) eX, R*}, where N, M are fuzzy

subsets of X, R*, where the functions N and M denote the degree of
membership and non-membership of the element (x,t)eXxR*,
satisfying the following conditions :

(IF Nl ) N is a fuzry norm on a linear space X.
(IFNz) M is a frrry antinorm on a linear space X.
(IF N3 ) N(x, t) + M(x, r) < l, V(x, t) e X x R*.
Remark 20:-

It is obvious that the fuzzy subset
A* ={((x,t),N.(x,t),M.(x,t))l(x,t)eX"R*} .........(3)

is an intuitionistic fuzzy norm where N*and M*are defined in eq.(l)
and eq. (2) respectively.
Theorem 21, [11]:-

Let A be an intuitionistic fuzry norrn on a linear space X satisfying
the following conditions :

(IFNa) For each t>0, N(x,t)>0 andM(x,t)< I implies x =0
(IF\) For x;t 0, N(x,.) is a continuous function of R+ and strictly
increasing on the subset{t:0 < N(x,r) < 1} of R* and M(x,.) is a
continuous function of R* and strictly decreasing on the subset
{t:0<M(x,r)<l} ofR*.
Let

ll*ll" = Inf{t : N(x,t) > a,M(x,t) < 1 - a},o e (0,1) and N, : Xx R* _+[0,1]
M1 :XxR+ -+[0,1]
be a functions defined by
N, (r, t) = Sup{ct e (0,1)lll"ll, < t} and

M,(x,t) - Inf{l - cr € (o,t)l llxll" < t}

Ar = {((x,t),N,(x,t),M,(x,t)) lt*,t) e X x R*}
Then

ヘ
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fu) {ll.ll, : o € (0,1)}is a family of cr - noffns coresponding to the

intuitionistic fuzry norm A.
(b) Ar intuitionistic fuzry norm.

(c) A, =4
Definition 22, $11:-

An intuitionistic furry n-norn on X is a set of the form
A = {((xr,...,Xn, t),N(x,,...,Xn, t),M(x,,...,Xn,t)) 

l(",:...rXn, t) e X x ...x R*}

, where N, M are fvzry subsets of X x X x R*, where the functions N
and M denotes the degree of membership and non-membership of the
element (X1,X2,..Xn,t)eXxXx...xR*, satisfuing the following
conditions:
(IFN, ) N is afuzzy n-norm on a linear space X.
(IFN 2 ) M is a fuzzy n-antinorm on a linear space X.
(IFN3 ) N(xr,xz,...,x,r,t) + M(x,,X2,...,Xn,t) < 1

Theorem 23,llllz-
Let A be an intuitionistic fuz4r n-norm satisfying the following

conditions:
(IFNa)For each t > 0, N(xr ,X2,...,x11,1) > 0 andM(x, ,x2,...,xn,t) < l
implies x1,x2,...,Xn are linearly dependent

(IFNs) For X1,X2,...,Xn arelinearty independent, N(x1, x2,...,xyr,.) is a
continuous function of R+ and strictly increasing on the subset

{t:0 < N(xr, x2,...,xy1,t) < U of R+also M(xr ,x2,...,x1t,.) and is a

continuous function of R+ and strictly decreasing on the subset

{t : 0 < M(xr,x2,...,xn, t) < 1} of R+.
Let

ll*,,rr,...,Xrll* = Inf{t :N(x, ,x2,...,xy1,t) > *,M(x1,x2,...,Xn,t) < 1- .,},
o e (0,1)

be a N1 :XxXx...xR*--->[0,1], Ml:XxXx...xR* +[0,1]
functions defined by
Nr (xr,X2,...,xy1,t) = Sup{o e (0,1)l 11",,*r,...,rrll., < t}
and

M1 (x1, x2,...,Xn, t) = Inf{l - cr € (0,1)l llx,, xz,...,xn llo < t}
Ar = {((xr,x 2,...,Xn, t),N1 (x1, X2,...,Xn, t),M1 (x1,x 2,...,xn, t))
t.

l(xr,xz,...,xn, t) e X x X x ...x R+)

Then▼
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(u) {11.,...,il, : o, e (0, 1 ) } is a frmi}y of o - n - norrns corresponding to the

intuitionistic fuzzy n-norm A.
(b) A, intuitionistic fuzzy n-norn.
(c) A, =4

Hahn-Banach Extension Theorem in Fuzzy n-Normed Linear
Space, Fuzzy n-Antinormed Linear Space and Intuitionistic Fuzzy

n-Normed Linear Space
In this section, we discuss and present complex versions of the

Makeski's Hahn-Banach theorem in fuzry n-bounded n-linear
functional in finry n-normed linear space, frrry n-antibounded n-
linear functional in fuzry n-antinormed linear space and intuitionistic
fuzzy n-bounded n-linear functional in inruitionistic fuz4 n-normed
linear space.

We start this section by giving the definition of fuzzy n-bounded
n-linear functional which based on the idea that appeared in [8].
Definition 24:-

Let T:(X,N)------+(F,N*)be a n-linear functional where (X,N) be

a fuzzy n-normed linear space and N * be a fuzry norm defined in
eq.(l). T is said to be fuz,zy n-bounded on X in case there exists a
positive numberK such that,for each (x,,x2,...,Xn) €X andS )0 ,

N * (T(x,, X2,...,xn, ),s) 2 N(xr, x2,...,xn,*).

Note 25:-
Let ( X ,N) be a fuzzy n-normed linear space. The set of all fuzzy

n-bounded n-linear functionals on Xn will be denote by B*(Xn,F)

and call B * the furry conjugate space of Xn. On the other hand the
proof that B * is linear space is easy to check.

Next, the definition of the uniformly fuzry bounded of linear
operator with respect to fuzzy normed space due to cheng and
Mordeson appeared in [6]. With the aid of this definition we give the
definition of uniformly fuzzy n-bounded of n-linear functional with
respect to fuz-ry n-normed space due to Narayauan and Vijayabal aji 121,.

Definition 26:-

Let T:(X,N)---+(F,N*)be a n-linear functional where (X,N)
be a fuzry n-normed linear space satisffing (FN,) and (F,N*) be a
fuzzy normed space where N*' defined in eq.(l). T is said to be

uniformly n-bounded in case there exists K>0 such that

lr(r,,X2,...,Xn)l< rllr, ,x2;;...,*nllo for each cr e (0,1).

ヘ
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The relation between fuzzy bounded linear functional and uniformly
frrry bounded linear functional appeared in [6], here we modif,i this
relation to be valid between frrry n-bounded n-linear functional and
uniformly n-bounded n-linear functional.
Theorem 27:-

Let ( X ,N) be a fizzy n-normed linear space satisfying ( FNz ) and

T: (X,N)-------+(F,N*) be a n-linear functional. If T is fuzzy n-bounded

n-linear functional then T is uniformly n-bounded.
Prooft

Suppose that T is fuzry n-bounded n-linear functional, thus there

exists K>0 such that N * (T(xr,X2,...,Xp),s) 2 N(xr ,x2,...,*n,*)t(
ThenN * (T(xr ,x2,...,x1.1),s) 2 N(x1,x2,...,Kxn,s)
Now llx,,xr,...gx,ll* . t then Inf{s:N(xr,X2,...9X,,s) > o} < t
Thus there exists so < t such that N(x1,x2,...J<xn,ss) ) crt,.

Then there exists so < t such that N*(T(x,,x2,...,Xn),So) > o.
Hence lf(*, ,x2,...,*" )l < so < t. Then

lT(", ,x2,...,x11)l< t<11", ,X2,...,*"llo. This implies that T is uniformly n-

bounded with respect to cr - n - norm, o e (0,1).

The norm and the furry norm of fuzry bounded linear functional
that appeared in [6], here we generalizedthat facts to fuzry n-bounded
n-linear functional.
Definition 28:-

Let (X,N) be a fuzzy n-normed linear space satis$ring (FNz)
and (FNr ) and T is a fuzzy n-bounded n-linear functional, we define

楊可 悔‥♂11-α

Vcr e (0,1)

we define

…十
仁∈m帆封 fOr(T,S)≠ (0,0)

fOr(T,S)=(0,0)

It is clear that N, is fuzzy norm on B *.

Definition 29:-
Let (X,N) be a fuzzy n-normed linear space satisfying (FNz),

(FNs)and(F,N*) be the furry normed linear space defined in Example

l0 and X1,X2,...,xn-l €X. We defined (Xx[x,]"...*[xr_r],F)lbe the
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set of all n-linear functionals defined from Xx[x,]"...r[xn-r] to

(F,N*) which are n-bounded with respect to 11.,...,11.. *d ll.ll" where

11.,...,11" *d llll" denote the c( - n - norm of N and cr - normof N*

respectively, for each cr e (0,1).

The theorem of fuzry Hahn-Banach appeared for ft ry bounded
linear functional for fuzry normed space in [6], here we modify
complex verision of the malceski's extension theorem to be valid for
furry n-bounded n-linear functional in fuzry n-normed space,

Theorem 30:-
Let (X,N) be a fuzry n-normed linear space satisffing (FNz),

(FNs) and x,,x2,...,Xn-l eX. Let W be a linear subspace of X and T

is a fuzry n-bounded n-linear functional on W x [x, ]*..." [xn-r].
Then for each cre(0,1), lT; e(Xx[xr]r...x[xn-r],F),-* which is an

extension of T and if T*0then N-- (T,llToll,-*))o where N** is the

fuzzy norm on B* (W 
" [xr ], ...x [xn-r ],F).
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N**(T,S)==|:up{β

∈ (0'1):ITI:≦ S)  fOr(T,S)馬澤(0,0)

fOr(T,S)=(0,0)

where

Ntt is the fuzzy nollll onB*(W× [Xl]×・・・×[Xn_1],F).Also,

T:(WX[Xl]X… ×[Xn■ ],|,… 瑚 1_α )→ (F,Ⅲ)ヽ u面お mけ n―bOunded

∀α∈(0,1).Then by the theorem 6 we have for each α c(0,1),∃ n_linear

inc■ond say L c(X× [Xl]×…×[Xn_1],F)i_α whたhお an extensbn

ofT such th江 ILI卜α=1111

Hance, N..(r,llroll,-,) = sup{9 e (0,1),llrll; 
= llr;ll,--}, T * 0

Therefore, N** (T,llT; ll,-" ) > o.
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The following theorems appeared in [6] for fuzzy bounded linear
functional, here we modi8r these theorems to fu2ry n-bounded n-linear
functional
Theorem 31:-

Let (X,N) be a fuzry n-normed linear space satisfying (FNz),
(FNa)and x ,X,,...,Xn_l e X are linearly independent elements in X.

Then for each oe(0,1), 3To e(Xx[x,]*...,[xn_r],F)i_., such that

llqll,_" = I and T.,(x,Xr,...,Xn_r ) : ll*,r,,...,r,,_,11,_o
Proof:-

Since ( X ,N) be a fuzzy n-normed linear space satis$zing (FNz )
then for each ue(0,1), (X,11.,...,il,_o) is a n-normed linear space.

Hence by theorem 7, lTL.(Xx[x,]*...*[x,,_r],F)i_* such that

llf;ll,_" = 1 and TL(x,xr,...,Xn_r) = ll*,*,,...,xn_rllr_o

Theorem 32:-
Let (X,N) be a fuzzy n-normed linear space satisf,,ing (FNz),

(FNs)and x,X1,...,Xn-1 €X are linearly independent elements in X.~面 ~通
森 11二

i二1ユIliα  
百覇
~~

∀α∈(0,1)。

Proo■ _

Let‖ .,…。,11_α be the cOrresponding(1-α )‐n_nOrm ofN.Thus
(X,|・ ,… ,11_α )iS a n_nOrmed linear space fOr each α∈(0,1).By

ち
Vo e (0,1), hence

N(x, x,,...,Xn_t,So ) = sup {B e (0,1) : llx, x,,...,Xn_l 
llB < r, 1

N(x,x,,...,Xn-l,so) > I - cr, Vcr e (0,1)

Next, complex version of the Makeski's Hahn-Banach theorem
of fuzzy n-antibounded n-linear functional in fuzzy n-antinormed
linear space is discussed and presented.

Based on the idea that appeared in [8], the definition of fuzzy n-
antibounded n-linear functional will given.
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Let T:(X,M)->(F,M*) be a n-linear functional where (X,M)
be a fuzzy n-antinormed linear space and M * be a furry antinorm
defined in eq.(2). T is said to be fuzzy n-antibounded on x in case

there exists K >0 such that, for each (X1,X2,...,xn) e Xnand S ) 0 ,

M * (T(x1,x2,...,xn ),s) < M(xr,*r,...,rn,i).

Note 34:-
Let (X,M) be a fuzry n-antinormed linear space. We denote by

B'(Xn,F)the set of all fuzry n-antibounded n-linear functionals on Xn

and we call B'the fuzry anticonjugate space of Xn. On the other hand
the proof that B' is linear space is easy to check.

Next, the definition of the uniformly fuzzy antibounded of linear
operator with respect to fuz4 antinormed linear space due to Jebril and
Samanta appeared in [7]. With the aid of this definition we give the
definition of uniformly fuzzy n-antibounded of n-linear functional with
respect to fuzzy n-antinormed space due to Vijayabalaji and
Thillaigovindan [3].
Definition 35:-

Let T: (X,M)-----+(F,M*)be a2-linear functional where (X,M)
be afuzry n-antinormed linear space satisffing (FMz) and (F,M*) be a

fuzzy antinormed space where M * defined in eq.(2). T is said to be
uniformly frory n-antibounded in case there exists K>0 such that

lT(*, ,X2,...,xn)l> rll*,,X2,...,Xn11o for each o e (0,1).

The relation between fuzzy antibounded linear functional and
uniformly furzy antibounded linear functional appeared in [7], here we
modify this relation to be valid between fuzzy n-antibounded n-linear
functional and uniformly fuzry n-antibounded n-linear functional.
Theorem 36:-

Let (X,M) be a fuzzy n-antinormed linear space satisffing ( FMz

) and T:(X,M)-)(F,M*) be a n-linear functional. If T is fuzzy n-
antibounded n-linear functional then T is uniformly fuzzy n-
antibounded.
Proof:

Suppose that T is fuzry n-antibounded n-linear functional. Thus

there exists K>0 such that M * (T(xr,X2,...In ),s) S M(xr,*r,...Xn,i)

Then M * (T(xr,x2,... Xn),s) < M(xr, xr,...$x n,s)
Now ll*,,rr,...J<x,llr, t then Inf{s: M(xr,xz,...J<xn,s) < I - cr} > t

こ
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Thus there exists so > t such that M(xr,X2,...$Xn,so) < 1 - cr.

Then there exists so > t such that M* (T(x,,X21...rXn),so) S 1 - cr.

Hence lf(*, ,x2,...,x1y)l> ro > t. Then

lf(*, ex2,...,x11)l>fll",1X2,...,Xnll*. fnis implies that T is uniformly
furry n-antibounded with respect to cr-n-norn, oe(0,1)

The norm and the fuzzy antinorm of fiizzy antibounded linear
functional that appeared in [7], here we generalize that facts to fuzzy n-
antibounded n-linear functional.
Definition 37:-

Let (X,M) be a fuzzy n-antinormed linear space satisfying
(FMz) and (FMs) and T is a fuzzy n-antibounded n-linear functional,

赫
ｒ瓢
ｔ
ω
赫

ｗｅ ｄ

′
肌

　

∀α∈

ｗｅｄ

悔 吼 〆1

ヽ
）

¨ =IⅢ刊硼晰封驚2=13
It is clear that M, is fuzzy antinorm on B'.
Definition 38:-

Let (X,M) be a fuzzy n-antinormed linear space satisfying
(FMz),(FMa)and(F,M*) be the fuzzy antinormed defined in Example

15 and x1,x2,...,X,,-1 €X. We defined (Xx[xr]x...x[xn-r],F).. be
the set of all n-linear functionals defined from Xx[x,]r...r[xn_1] to

(F,M-) which are n-bounded with respect to 11.,...,1]" *d ll.ll_ where

11.,...,11* *d ll.ll" denote the o - n - antinorm of M and

cr - antinormof M* respectively, for cr e (0,1).

The theorem of fuz4r Hahn-Banach appeared for fuzry
antibounded linear functional fuzzy antinormed space in [7], here we
modiff Hahn-Banach theorem due to Srivastava and et.al. to be valid
for fuzry n-antibounded n-linear functional in fuzry n-antinormed
space.

Theorem 39:-
Let (X,M) be a fuzzy n-antinormed linear space satisffing

(FMz), GMr) and x1,x2,...,Xn_l e X. Let W be a linear subspace of
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X and T is a furry n-antibounded n-linear functional on
Wx[x,]r...r[x,.,_r]. Then for   each   α∈(0,1),

thereexists T" e(Xx[xr]x...x[xn_r],F)r_o which is an extension of

T and if T*0then M.'(T,llToll,-" )<l-cr where M* is the fuzzy

antinorm on(W x [xr ] x ...x [xn_r ],F)'.
Proof:-

Since T: ( W" [xr] "...x [xn-r],M)-+ (F,M-) is a fuzzy n-
antibounded n-linear functional thus

旧lαLn{  ・稿…乱司祠
引
岬コ札¬Jbr(T,S)≠ (0,0)

fOr(T,S)=(0,0)

Also,

T:(W× [Xl]× … × [Xn_1],|っ …っ‖1_α )→ (F,|‖ )麓 uniformけ 負 zZy n_

antibounded ∀α∈(0,1).Then  by theorem 6 we have for each

α∈(0,1),∃ n‐ linear func● ond say L c(X× [Xl]×…×[Xn_1],F)1_α

which is an extension of T such that llqll,_" = llrll"

Hance, M.. (T,llT;ll,_.,) = rnf{l - B e (0,1) :llTllu =llr;ll,_"}, T ;r 0
a*

Therefore, M' (T,llQ ll,_" ) < I - cr .

The following theorems appeared in [7] for fuzry antibounded
linear functional, here we modiff these theorems to fuzzy n-
antibounded n-linear functional
Theorem 40:-

Let (X,M) be a fuzzy n-antinormed linear space satisfring
(FMz), (FMr) and X ,X1,...,Xn_1 € X are linearly independent

elements in X. Then for each cr e (0,1),

I T" . (X x [x, ], ..., [xn-r ],F),-o such that llT;ll,-., = 1 and

To (x, X1,...,xn-l ) = ll*, x,,...,xn-t llr_o

Proof:-
Since (X,M) be a fuzzy n-antinormed linear space satisfring

(FMz) then (X,11.,...,il,_o) is a n-normed linear space for each cr e (0,1)

ヘ
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. Hence for each ct€(0,1), f T; e(Xx[xr]r...x[xn-r],F)r-o such

that llLl[_o =1 and T*(x ,Xr)=ll" ,",,...,*n-,11,_o

Theorem 41:-
Let (X,M) be a furry n-antinormed linear space satisffing

(FMz), (FMr) and X ,XI,...,Xn_1 €X are linearly independent

elements in X. Then sow also

M(x, X1,.. Xn_1, Inf
Te(Xx[x 

1 ]x.. x[x n_1 ], F)r_..
T*0

Prooft-
Let 11.,...,il,_., be the corresponding

(x,ll ,...,il,_o) is a n-normed linear space

ll*,*,,...,Xn-rll,_* = Inf
Te(Xx[x 

1 ]x..x[x n_1 ], F)'
T*0

Vcr e (0,1), hence

M(x,X1,...;Xp-1,So) = Inf{l - B e (0,1) :ll*,*,,...,Xn_lllB 
= 

r*1

Then
M(x,xr,...,Xrr_1, to ) S cr

We start by giving the definition of intuitionistic fuzry n-
bounded n-linear functional in intuitionistic furzy n.normed tinear
space which based on the idea that appeared in [8].
Definition 42:-

Let T: A---->A*be a n-linear functional where A be a
intuitionistic fuzry n-normed linear space and A * be a intuitionistic
fuzzy norm defined in remark 20. T is said to be intuitionistic fuz4r n-
bounded on X in case there exists a positive number K such that, for
each (xr,x2,...,x11) e Xnand s ) 0,

N * (T(x1 ,x2,...Xn,),s) 2 N(xr ,x2,...,*n,*)
l(

and

M * (T(x, ,x2,...$n),s) s M(xr,x2,...,xn,])
l(

Note 43:-
Let A be a intuitionistic furry n-normed linear space. We denote

by IB(xn,F) the set of all intuitionistic fuzzy n-bounded n-linear

functionals on xn and we call IB(xn,F) the intuitionistic fiizzy

「
は,Xレ…っXn4】

同1_α
) < cr Vo e (0,1).

(1- cr)-n-norm of M. Thus

for each cr e (0,1), therefore

lTKX,有 ,…っXn■】
同11_α

= to,

v
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conjugate space of Xn. On the other hand the proof that IB(Xn,F) is

linear space is easy to check.
Next, we give the definition of intuitionistic uniformly fuzzy n-

bounded of n-linear functional with respect to intuitionistic fuzzy n-

normed space.

Definition 44:-
Let T: A -+ A* be a n-linear functional where A be a

intuitionistic fuzzy n-norrn satisfying (INa) and A*be a intuitionistic

fuzry normed space where A* defined in remark 20. T is said to be

intuitionistic uniformly fuzzy n-bounded in case there exists K > 0 such

that lT(x,,X2,...,xn)l : r11x,,x2,...,*nllo for each o e (0,1)

Theorem 45:- -
Let A be a intuitionistic fuzzy n-norm satisffing (IFN4) and

T:A-+A*be a n-linear functional. If T is intuitionistic fuzry n-
bounded n-linear functional then T is intuitionistic uniformly fuzry n-
bounded.
Proof:-

Suppose that T is intuitionistic fuzry n-bounded n-linear
functional thus there exists K>0 such that
Now ll*,,*r,...J<x,ll" . t then

Inf{s:N(xr,X2,...$X,r,s) > cr, and M(xr,X2,...JCK n,s) < I - ct} < t
Thus there exists So <t such that N(x1,x2,...J<xn,so)>ctand

M(xr,xz,...JGn,so) s I - cr.

Then there exists so ( t such that N * (T(x, ,x2,...Xn),so) 2 cr

M.(T(x, ,x2,...,xn),so) s 1- cr .

Hence, lf(*r , X2 ,...,xn )l < ro < t . Then

lr(*, ,x2,...,*n)l< Kll*,,X2,...,Xn11". on the other hand

Now ll*,,"r,...J<x,ll" rt then

Inf{s: N(xr,x2;;..I(x,r,s) > c[ and M(x,,X2,...$Xn,s) < I - ct] > t
Thus there exists so>t such that N(x,,xr,...Xxn,So)>crand
M(xr ,xz,...J<x,r,so) S 1- cr.

Then there exists so > t such that N * (T(x,,X2,...'xn ),so) > cr

M.(T(x1,X2,...,Xn),so) ( 1- cr .

Hence, lf(*, ,x2,...,x11)l > se > t.
Then lT1x,,xr,...,xn)l > Kll*,,x2,...,xn11., .

ThenTisintuitionisticuniformlyfuz-zyn.boundedn-linearfunctional.<
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Definition 46:-
Let A be a intuitionistic fuzzy n-noffn satisfying (IFN4) and

(IF\) and T is a intuitionistic frrry n-bounded n-linear functional, we
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Vcr e (0,1)

we define

"

N2 (T, t) = Sup{cr e (0,1)l llrll* = 
,t

Mz (r, t) = Inf{l - cr, € 1o,r;l llrllr < t1

Az ={((T, t), N2 (T, t), M2 (T, t)) ltf,,) e IB(X, , F) x R+ }

It is clear that A, is intuitionistic fuzry norm on IB(X.,F) .

Definition 47:-
Let A be a intuitionistic fiizzy n-norm satis$ring (IFN4),(IFN5)

and A* be the intuitionistic fuzry norm defined in remark 20 and

X,X1,...,x,-, €X. We defined IB(Xx[xr]x...x[xn_r],F)ibe the set of
all n-linear functionals defined from Xx[x,]r...r[xn_r] to (F,M-)

are n-bounded with respect to 11.,...,[|* *d ll.ll" where

*dll.ll" denote the cr-n-noffn of A and o-normof A*
respectively, for o e (0,1).

Next, here we modify Hahn-Banach theorem due to Srivastava
and et.al. to be valid for intuitionistic frnzy n-bounded n-linear! functional in intuitionistic finry n-normed space.
Theorem 48:-

Let A be a intuitionistic fuzzy n-norm on X satisfying (IFN4),
(IF\) and X,X11...1Xn_r €X. Let W be a linear subspace of X and T
is a intuitionistic fuzzy n-bounded n-linear functional on
W x [x,] r..., [xr,_r]. Then for each cr e (0,1),

ITL .IB(Xx[xr]x...x[*,_,],F)l_o which is an extension of T and if
T + 0 then N-. (T,llqll,_.,) ) cr and M-. (T,llT;ll,_") < 1- o where

which

l・
,・・・,lcx

N** and M*ホ   is  the  fuzzy  nollll

IB(W× [Xl]× ...× [Xn_1],F)*.
Proo■―

マ
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Since T: A-+A* is a intuitionistic fuzzy n-bounded n-linear
functional thus

llTll, =suo{-lT(-*'r'*""'}"-'*"-')l :llx,}''x1,...,trn-rXn-rllr-., *o} unarr rro( ^ 
[ll*,Ir*1,...,trn-lXn-,11,-" 

" 'rrr-(r 
)

we define
*t ..*t

N' (T,t) = Sup{cr e (0,1)lllrll. 
= 

r}

and

M*. 1T, t; = Inf{l - ct € 1o,r;l llrllt' < t1 where N* and IMI' are fuzzy

norm, fuzry antinorm on IB(Wr[xr]r...x[xn-,],F)- respectively .

Also
T: (Wx[xr]x...xlxn-r1,11.,...,J1,_,;-+1f,ll.l) is intuitionistic uniformly

n-bounded Vcr, e (0,1). Then by the Hahn -Banach extension theorem in

n-normed linear space we have for each cr e (0,1),3 n-linear functional

say To e IB(Xx[xr]x...x[xn-r],F)l-" which is an extension of T such

than llr"ll,_" =llrll"

Hence, N-' (r,llr;ll,-.,) = sup{g e (0,1)'llrll;' =llr;ll,-"},r * 0

Therefore, N** (T,llT; ll,-" ) = 
o.

and

Hence, M. (r,llr,ll,_,) = rnf{l-Be (0,1) :llrll; 
=lF;ll,_-}, r* 0

Therefore, M** (T,llLll,-" ) < 1 - cr

Theorem 49:-
Let A be a intuitionistic fuzzy n-norrn satisffing (IFN.),(IFN5)

and x 2X11...,Xn-r € X are linearly independent elements in X. Then for

each o e (0,1), f To e IB(X x[xr] x....x [*n-r],F)i-o such that

llr;ll,-" =1 and Tr(r,X1,...,Xp-,)=ll*,xr,...,xn-rll,_.,

Proof:-
Since A be a intuitionistic fuzzy n-norn satisffing(IFN+)then

(X,11.,...,11,_..) is a n-norrned linear space for each cre(0,1). Hence, by

theorem (7), for each cre(0,1), 3T; eIB(Xx[xr]x...x[xn-,],F);-"
such that llqll,_" = 1 and To(x,x,,...,Xn-l):llr,xr,...,xn-rllr_o

Theorem 50:-

・一
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Let A be a intuitionistic fiizry n-norn satisffing (IFN4), (IFN')
and x ,XI,...,Xn_l €X are linearly independent elements in X. Then

lT(x,x,,...,xn-, )l
)≦ α

旧11_α

M(x,x,,...,Xn-I, Sup lT(x'x""''xn-')l) > 1- *
rerB(Xx[x1]x..x[xn-'],F)i-" llfll,-"
T+0

Proof:-
Let 11.,...,1[_o be the corresponding (1- cr)-n-norm of A. Thus

(X,11.,...,il,_o ) is a n-normed linear space for each o e (0,1) , therefore

ll*,*,,...rn-rll,-" = Sup lT(x'xt'"''xn-';l

T:[*,t-,]x..x[xn-1,,0,- llrll.-" 
= Lc,

Vo e (0,1), hence

N(x,x,,...,Xn-l,to) = Sup{l - B e (0,1) : ll*,*,,...,xn_rllp S t.,}

M(x,X1,...,Xn-1,to) = Inf{1 - B e (0,1) : ll*,",,...,xn-rllp ( to}
and

N(x ,xr,...,Xn-l,to) ) 1- o
M(x ,xrr...rXn_l,to) ( G
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ABSTRACT

This paper has focused on studying the effccts of changing camera aperture

diamcter On image quality through capturing images ofthree baHoons、 vith different

colors.Then these captured images have been enhanced using Multi― Scale Retinex

algorithm.Besides,the originalimages were enhanced using AINDANE method.

The main scopes arc to compare and evaluate cach enhancement method through

exanlining and analyzing the results ofimage's statistic properties and computing its

contrast.

We conclude follll the results of the statistical prOpcrties of thc enhanced ilnages

using AΠNI)ANEl■ethod that therc、 vas gradual increment in the lightness of each
color and it's casy to distinguish bet■vecn thc color bands on contrary 、vith the

enhanced images using Retinex mcthod。

1. INTRODUCTION
Image Enhancement is one ofthe important aspects ofimage processing

to improve the interpretability of the infollllation present in images for

human viewers[1].The main purpose Ofimage enhancementis to bring

out detail that is hidden in an image or to increase contrast in a low

contrast image.Image enhancement algorithms provide a multitude of

choices for improving the visual quality of images 12].The ChOiCe of

such techniques is a function of the speciflc task, iinage content,

observer characteristics,and viewing conditions[3].

The performance of image enhancement is generally judged
SutteCt市ely,and there are currently no automated methods to veritt the

optimal parameters lor these algorithms.If an algorithnl was introduced

that could be used to automaticany select parameters for an
enhancement algorithnl, then more complex enhancement algorithms

could become more practic」 [4].Most Of image enhancement
7
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techniques require interactive procedures to obtain satisfactory results,
and therefore are not suitable for routine applications [5]. Observer-
specific factors, such as the human visual system and the obseryer's
experience, will introduce a great deal of subjectivity into the choice of
image enhancement methods [3].
A great deal of study on Image Contrast Enhancement had been done,
which would be useful to analyze the existing method for both the
grayscale and color images; here will be discussed briefly as the
following.
In [6] Rahman, Jobson and woodell focused on multi-scale retinex
based approach for color image enhancement. Main goals were to
achieve an image rendering close to the original scene, and to increase
the local contrast in dark regions of high dynamic range scenes. A color
restoration method was proposed to compensate for the de-saturation
effect inherent in retinex-based methods due to non-conformify to gray
world assumption both globally and locally. However, color restoration
was found to be inadequate for preserving the saturation of the lighter
colors, and thus a white balance process was introduced to address this
issue.

In [7] unaldia, Asari and Rahman, proposed a wavelet-based dynamic
range compression algorithm to improve the visual quality of digital
images captured from high dynamic range scenes with non-uniform
lighting conditions. Although the colors of the enhanced images
produced by the proposed algorithm are consistent with the colors of the
original image, the proposed algorithm fails to produce color constant
results for some 'pathological" scenes that have very strong spectral
characteristics in a single band. The linear color restoration process is
the main reason for this drawback.
In [8] Tao and Asari proposed INDANE which is an algorithm to
improve the visual quality of digital images captured under extremely
low or uniform lightening conditions. It consists of two main parti:
Luminance enhancement and contrast enhancement.
In [9] also Tao and Asari proposed AINDANE algorithm which is an
adaptive version of INDANE algorithm. As INDANE, AINDANE
algorithm consists of two main parts: Adaptive luminance enhancement
and adaptive contrast enhancement. During intensity transformation, the
luminance of the dark pixels is increased and the image is compressed
dynamic range at the same time.
In this paper the main ideas we focused on are: first the effects of
changing camera aperture diameter on image quality. Second enhance
the original images using modified retinex algorithm, and then enhance
the original images using AINDANE. Finally compare the resulted
images of both algorithms through computing the contrast of each

330
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image and evaluating its statistical properties to analyze the power of
enhancement process of each algorithm.
2. Retinex Enhancement Method
Retinex theory aims to explain how the visual system extracts consistent
information from the world despite changes of illumination. Retinex
determines the perceived color by spatial comparisons of color surfaces
across the whole image. This processing takes place independently in
each waveband [10].
For any color enhancement method based on retinex theory, the main
weakness lies in the fact that no direct interdependence is assumed
between the luminance and chrominance data. Algorithms based on
retinex theory are in many ways simply lightness adjustment and/or
local contrast enhancement algorithms. Further, retinex based methods
are computationally expensive, making them difficult to implement in
commercial imaging devices [11].
3. AdaptiveandlntegratedNeighborhood-DependentApproach
for Nonlinear Enhancement Method
AINDANE (adaptive and integrated neighborhood dependent approach
for nonlinear enhancement) is a quite original image enhancement
algorithm for improving the visual quality of digital images captured
under extremely low or nonuniform lighting conditions [12].
The main idea of this method for color images in RGB color space are
converted to intensity (grayscale) images I(x, y) and normalized.
AINDANE method suffers from a major technical flaw in the final
stage. The assumption that the relationship between the RGB channel
values will be maintained even after several nonlinear processing is

fundamentally wrong. This also requires a manual adjustment of the
color correction results compared to other published methods [11].
4. Image Contrast
Contrast can be defined as the fractional difference in some measurable
quantity in two regions of an image. Contrast measures the relative
decrease in the luminance in an image. It is highly correlated to the
intensity gradient. Contrast can be defined locally or globally. The local
contrast can be estimated depending on the local differences in gray
levels of picture elements. Here one can directly define a contrast as a
function of image edges. The contrast globally or locally can be given

"

い

by lt2]
Cont-lMox-luh

I yay* I yi1
5. Sobel Edge Detection Operator
Edge detection is one of the fundamental operations in image
processing. The edges of items in an image hold much of the

‐
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information in the image. The edges tell us where items are, their size,
shape, and something about their texture [13].
An edge is where the gray level of the image moves from an area of low
values to high values or vice versa. The edge itself is at the center of
this transition. The detected edge gives a bright spot at the edge and
dark areas everywhere else. Convolution of the image with masks is the
most often used technique of doing this. The idea is to take a3 x 3 array
of numbers and multiply it point by point with a 3 x 3 section of the
image, then sum the products and place the result in the center point of
the image [14].
There are many edge detection techniques; in this work Sobel Operator
will be used with different thresholds, where Sobel edge detection
operator consists of two masks to determine the edge in vector form.
The Sobel operator was the most popular edge detection operator. It
proved popular because it gave a better performance than other edge
detection operators. The coefficients of smoothing within the Sobel
operator, Figure l, are those for a window size of 3x3 [13].

Figure-l: Templates for Sobel operator

Edge values above a threshold value were set to 255 and all others were
set to zero. This gives a clear picture of edges and no edges [15].
6. Statistical Digital Image Properties
The analysis of statistical properties of images is dictated by the concern
of adapting secondary treatments such as filtering, restoring, coding,
and shape recognition to the image signal . There are several image
properties can be calculated from image data, the most imported
properties (mean p, standard deviation o, and single to noise ratio SNR)
of the image or image regions. The basic techniques implemented to
suppress a noise or increase a weak signal all rely on hypotheses
regarding what is the signal and what is noise, i.e. on signal and noise
models [6].
6.1 The Mean (p)
Image mean brightness is known as the mean brightness for the image
elements (or sub image) and it determined from the following
relationship [17]:

,=#XZ,r*,n . (2)

くヽ

1

1

1 2 1

1 1
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Where M and N denotes the high and the width of the image (or sub
image), the multiplication of them equals the number of image
elements.
6.2 Standard Deviation (STD)
The standard deviation represents the mean of variations of the element
values with respect to its mean and it determined from the following
relationship [8]:

ΣΣ(/(χ ,ッ)一μ)2………(3)
χ=lγ =1

6.3 ignal - to- Noise Ratio (SNR)
Signal-to-Noise Ratio is a measure used in science and engineering that
compares the level of a desired signal to the level of
background noise. The definition of SNR is as the reciprocal of
the coefficient of variation, i.e., the ratio of mean to standard
deviation of a signal or measurement [19]:
SVR=∠

σ

7. Experimental Design
Figure 2 represent the System block diagram. It is shown that system
architecture which consists of two steps: first is to enhance the input
image using Retinex method and AINDANE methods, second is to
compete the following: statistical properties, contrastl and contrast2 for
the enhanced images in each method, and comparing the results to
evaluate each method.

Figure-2: Block diagram of basic steps which been done in this research

1

σ =一
協 ″

ヤ

い
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Figure (3) shows lighting system, which consists of two light
sources (one from the right and another from the left). All images in this
study are captured by (Canon 8 Mp Camera), the lens's diameter equals
to (D:23.3 mm), these captured images are of the (JPEG) format. On
the other side the object is placed to be captured. The object is three
balloons with different colors (red, green and blue) and white
background, the distance between the camera and the object equals to (l
meter). In this paper it have been studied the effect of changing the
diameter of the camera's lens on the image contrast and lightness,
through studying the statistic properties of the image (the mean, the
standard deviation, and SNR). The changes of the lens diameter were
vary from LD: -2 mm to AD :*2 mm.

Figure-3: The Lighting System

After capturing the images of the three balloons with different lens
diameter, its statistic properties (/ and SNR) have been computed in
order to veriff and analyze the effects of changing aperture diameter on
the images. After that the original images have been enhanced by Multi
Scale Retinex method, through applying Algorithm (1) on it. Then using
AINDANE method, the original images have been enhanced through
applying Algorithm (2).
The main scopes which been taken in account is to compare and
evaluate each enhancement method through examining and analyzing
the results of image's statistic properties and computing its contrast
through applying Algorithm (3), (4) and (5) on the enhanced images in
each method.
Algorithm (1): Multi Scale Retinex Algorithm
Input: The input of the algorithm is the color image li(x,y), i: r,g,b.
Output: The output is enhanced image lpi(x,y).

334



"

Al- Mustansiriyah J. Sci. Vol.24,No5,2013

Step 1: Calculate Gaussian suffounds function Fe,y,c,)=1r;e*1-(r' :v'),
cn

where fr is normalization constant, the constant values are offset values
intrinsically depend upon the implementation of the algorithm in
software. c/, represent a list of the constants used to produce all the
outputs in this paper which been selected from a standardized offset
table, cn,n:3, {cl:250, c2:120, c3:80}.
Step 2: Compute SSR from R,(x,y,c) =tos{r,(x,y)l-lod F(x,y,c,)@ r,(x,y)l

Step 3: Compute MSR fro- 
"_,, 

(x,y,w,c): Lr,o,O,y,c,,), where N:3

3t3,'';:':[:;(:^]; MSR with coror restoration by:

I,'(x,y,a,b):blogl1 +o !'@'v) 1 , where b:l00, a:125'

2,,,*,,,
Step 5: Output image obtaine from gain offset by lpi(x,y):0.35(
I,'(x,y,o.q+0.56).
Step 6: end.

Algorithm (2): AINDANE Method Algorithm
Input: The input of the algorithm is the color image Ci(n,m), i:r,g,b.
Output: The output of the algorithm is enhanced image

' R ' R' .u':Ln,=7, , g: I g I
Step l: Transform color image C(n,m) from RGB space to YIQ space
and estimated lightness component Y(n,m).
Step 2: Normalize lightness componentl (m,n): Y(n,m)/255 .

Step 3: Calculate Gaussian surrounds function

F(x,y,c,) = (&)exp ,-(x' -ry'); where fr is normalization constant, as
ch

mentioned in Algorithm (1) the values of c represent selected offset
values , cn,,fi:32 {c1:5, c2:20, c3:240}.
Step 4: Compute convolution image to normalize the illumination from

, 
" 
O, r, :2ZI (m, n) F (m + x, n + y, c n)

Step 5: The intensity images are treated by a nonlinear transfer function
that enhances the dark region of the image and compresses the dynamic
range. This transfer function is calculated through:

1,,@'75'*o2s) + 0.4(1 - 1,, )(l - z) + I nQ-')

一
』

・
，

f″ =
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( 0, I<50
I L - 50,-1,*,50<[<150
t L, [>50

Step 6: Compute reflectance image from R(x,y)=2551,'(x,y)"''t' ,

E(x,y)=f':lt1)l o ,P:1, P is calculated from this relation , P :'I(x,)')'
( 3, oS3
)zz-2", 3<o<1o
l7\ L, o)10
, where { is the convolution image which had been calculated in step4. i
Step 7: Output image result from components

R *'u -b':Lbr': Ir 'g':jL I
Step: END.
Algorithm (3): Sobel Edge Detection Algorithm

Input: the input of the algorithm is a color image Img(i,j) RGB of sized
(rxc) with color pixel values between 0 and 255.
Output: the output of the algorithm is an edge image elmg (ij) of sized
(rxc) with pixel values either 0 or 255.
Step 1:Two square windows each of size (3x3) as in figure I are used
to scan across the entire image, the first from left to right and the second
from top to bottom. In each scan the filter output associated with center
of the window is denoted as y (which is representing the output of the
algorithm).
Step 2: Calculates the weighted inputs SUrnl, SUrnz as follow:-

srmt :ii WrG,,r) * Im g(t, j)
i=t j=t

s,tm2 : *; W,G,,r) * rrn s(i, i)

where Img(ij) denote the input image, and Wr(i, j), W2Q, j) as

shown in figure l.

Step 3: suln1 :dbs (sum) /4
surltz:abs (sum) /4

Step 4: Evaluate the value of y:
y:max (sum1, sum2)

Step 5: The output y (which represents edge point in the output edge
image elmg (ij)), can be determined using the following
condition:-

If y> th then y : 255

336



Al- Mustansiriyah J. Sci. Vol.24,No5,2013

Else y:0
where (th) is represent the threshold value, and different values of
threshold were used.(th: 30 ,70, 130 ,170 ,210).
Step 6: End.
Algorithm (4): Evaluating p, o, SNR, Contl, Cont2 Algorithm
The Inputs: The input of the algorithm are the color image Img( ij ),
enhanced image using Retinex method lpi(x,y), and enhanced image

using AINDANE method ,,-R , , s,:L * . b,:Lb , where the' I ' '6 Io I" ' -'"-'

values of Img are between 0 and 255.
The outputs: are the mean p, o, SNR the standard deviation, for each of
the input images.
Step l: Extract 4 blocks from the input image; the size of each block is

' 
'?#T:#;,'#::,unaSNRasrorow: 

-
count : )Qx)Q:400 (compute number of count

in each extracted block)
sum: sum+Img (ij)
p=sum/ count
cr: Jltrng(xJ)- p)e / count

sun:L
Step3: End.
Algorithm (5): Evaluating Contl, Cont2 Algorithm
The Inputs: The input of the algorithm are the color image Img(ij),
enhanced image using Retinex method lpi(x,y), and enhanced image
using AINDANE method , where the values of Img are between 0 and
255, and the values of edge image elmg are either 0 or 255.
Ihe outputs: are Contl and Cont2 for each of the input images.

> 
Stepl: Calculate the p",o" forthe input images after performing
Algorithm (3) to detect the edges of the input images as follow:-

If elmg (ij) :255 then
ne: nell

se : se+Img (ij)
sse : sse+Img(ij)^2

end if
l-te = s"fne
Fse = ss"f ne

o"-Jffi
ContL : o"/ F"

Where ne = number of edge points.
, se : summation for edge image values (Img(ij)).
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sse : summation for square edge image values (Img(ii)^2).

[te : mean of edge image values.

Fse : mean of square edge image values.

std" : standard deviation of values.

Step 2: To compute Cont2 for the original image and the enhanced

images but we still need the edge image elmg (ii) to compute the Cont2
for the rest images.

(a) Start a loop:
Loop x+-2 to x<- r-1

y<-2 to x+-c-l
(b) Determine the maximum (max) image pixel value and

minimum (min) pixel value in each edges in the input images
(c) Compute Cont2

Cont2-tMax-tMh
I ysx* I yin

(d) End loop
Step 3: End.

8. RESULTS AND DISCUSSION

In this research three colored balloons red, green, and blue, placed on a
white background, under two fluorescent lighting and the distance
between the camera and the object to be photographed is lm, we have
been capture 5 images, using different aperture diameter (AD : -2 mm)
to (AD : 2mm), by increment lmm each time. Figure 4 shows the
results of original captured images.

△D=-2
△D=2

△D=-1 △D=0 △D=l

Figure- 4: The Original Images

Then we calculate the statistical properties of images the mean (p) and
the Single-to-Noise Ratio (SI.IR) for each image, where the statistical
properties were drawn as a function of camera aperture diameter and the
results were shown in figurer (5).
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Figure-5: The (p) and the (sNR) of the color compound (RGB) for the images as a
function of different camera diameter.

Then we calculate the contrast (Contl) and (Cont2) (as been explain in
Algorithm5) for each image, where the contl and cont2 are drawn as a
function of camera aperture diameter, and the results were shown in
figurer (6)

Figure-6: The (contl) and the (cont2) of the color compound (RGB) for the
images as a function of different camera diameter
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Figures 7 show the resulted images after applying Multi-Scale Retinex
enhancement method on the original images.

△D=-2 △D=-1 AD:2AD= I

Figure-7: Enhanced Images Using Multi-Scale Retinex Method

The statistical properties of enhanced images using Multi-Scale Retinex
method, the mean (p) and Single-to-Noise Ratio (SI.IR) were calculated,
and drawn as a function of different czunera aperture diameter. The
results were shown in figurer (8).

Figure-8: The (p) and (SNR) of the color compound (RGB) for the enhanced
images using Multi-Scale Retinex method as a function of diflerent camera aperture

diameter.

Then we calculate the contrast (Contl) and (Cont2) (as been explain in
Algorithm5) for each enhanced image, where the Contl and Cont2 were
drawn as a function of camera apeffure diameter, and the results were
shown in figurer (9).
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Figure-9: The (Contl) and the (Cont2) of the color compound (RGB) for the
enhanced images using Multi-Scale Retinex method as a function of different
camera aperture diameter.

・
む

Figures 10 show the
enhancement method on

resulted images
the original i

after applying AINDANE
S.

"

Figure-I0: Enhanced Images Using AINDANE Method

The statistical properties of enhanced images using AINDANE method,
the mean (p) and the standard deviation (SNR) were calculated, and
drawn as a function of different camera aperture diameter. The results
were shown in figurer (11).
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Mean (RGB) SNR (RGB)

0

AD mm

Figure-l l: The (p) and (SNR) of the color compound (RGB) for the enhanced
images using AINDANE methorrffi.l1,ion of different camera aperture

Then we calculate the contrast (Contl) and (Cont2) (as been explain in
Algorithm5) for each enhanced image, where the Contl and Cont2 are
drawn as a function of camera aperture diameter, and the results were
shown in figurer (12).

Figure-I2: The (Contl) and the (Cont2) of the color compound (RGB) for the
enhanced images using AINDANE method as a function of different camera
aperture diameter.

9. CONCLUSIONS
1. It's obvious to notice the effects of AD (the variations in camera
aperture diameter) on the original images, the image lightening increase
by expanding the aperture diameter, but this does not represent
indication for good quality images production, as the effects caused by
the raise in the entered light.
2. Enhancing the images help us to improve the resulted images, we
noticed from the figure of p and SNR of the enhanced images using
Retinex method that there was consistency in the lightness of each
color, and it was difficult to distinguish between each color band, on the
other hand there w:N gradual increment in the lightness of each color
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and the color bands was distinguishable in the enhanced images using
AINDANE method.
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ABSTRACT
ⅣIathematical Ⅳlorphology is a theory which prOvides a number of useful

tools for iFnage analysis. cOrrection of nOn― unif011ll illunlination in iinages is
nceded as a preprocessing step in variOus applications.In our proposed apprOach the

Top¨Hat transf0111l is used.Top― Hat transf0111lation operated in morphology which
is used in irnage contrast enhancement, for extracting sma11 0r narrow, bright Or

dark features in an ilnage. In this paper 、ve proposed an approach to cOntrast
enhancement by using Top_I‐ Iat flltering with different structuring elcment lengths
and orientatiOns(0,45, and 90)Of gray‐ scale of size(512x512)repreSented by 8
b責/p破d and x‐ ray color ofsセ c(370x370)imageso we used different orientatiOn to
reach all the entire pixels in neighbOr. The experilnental rcsults shOw hOw the

different lengths and orientatiOns are affected On the iHurninate of images.Therefore

we applicd sOme post― processing atter top― hat flltcring by using an adaptive inask tO

enhance the resultant i

INTRODUCTION
Morphology is a broad set of image processing operations that can
process images based on the shape. Morphological operations applied a
structuring element to an input image then creating an output image of
the same size. The mechanism of morphological operation is the value
of each pixel in the output image based on a comparison of the
corresponding pixel in the input image (original) image with its
neighbors. By choosing the size and shape of the neighborhood, a
morphological operation can be constructed to specific shapes in the
input image [1].
The principle two morphological operations are dilation and erosion.
Dilation allows objects to expands, thus potentially filling in small holes
and connecting disjoint objects. Erosion shrinks objects by etching
away (eroding) their boundaries. These operations can be customized
for an application by the proper selection of the structuring element,
which determines exactly how the objects will be dilated or eroded [2].
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Mathematical morphology (NIIr4) is a theory devised for the shape

analysis of objects and functions. MM operators treat the processed

image as the set and are made of two parts: a reference shape called the

structuring element (SE) or function that is translated and compared to
the original function all over the plane and a mechanism that details

how to carry out the comparison [3]. In this paper we can use top-hat

transformation to correct uneven illumination of image when the

background is dark. Susanta and Bhabatosh[4] extracted the intensity

values of the scale-specific features of the image using multi-scale top-

hat transformation are modified for achieving local contrast

enhancement. In [5] theyusemulti-scale image decomposition, obtained

witha series of morphological top-hat transformations wherethe scale of
enhancement corresponds to expected objectsize. In t6] they

implemented six efficient digitalmammogram enhancement algorithms

based on wavelet transformand top-hat filtering. Ritikaand Sandeep [7]
performed morphological contrast enhancement by using the white and

black top-hat transformation and they used structuring element of
various shapes and sizes.

Erosion and Dilation
In image processing, usually used mathematical morphologyas a

tool for extracting image components thatare useful in the

representation and description of regionshape[8]. Erosion and dilation
are fundamental operationsof morphological processing. Before we

discuss the erosionand dilation processing, we briefly introduce the

definitionsof them.
L. Erosion
To perform erosion of a binary image, the center pixel of

thestructuring element successively placed on each foreground pixel
(value 1). If any of the neighborhood pixels arebackground pixels (value

0), then the foreground pixel is switched to background. Formally, the

erosion of image A by structuring element B is denoted [8]:
Erosion-AeB...(1)

One of the simplest uses of erosion is to eliminateirrelevant detail (in

terms of size) from a binary image[9].
In order to eliminate the white areas as many aspossible except

the large one, the object, eroded the imagewith a structuring element of
asize somewhat smallerthan the objects wished to keep.

2. Dilation
To perform dilation of a binary image,successively placed the center

pixel of the structuring element on each background pixel. If any of the

neighborhood pixels areforeground pixels (value l), then the

background pixel is switched to foreground. Formally,the dilation of
image A by structuring element B is denoted [1]:

^

A
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v

Dilation - A@B ...(2)
one of the simplest applications of dilation is for bridginggaps.

Clearly that the erosion operationcan eliminate the irrelevant detail from
the binary image, and the dilation operation is good to retrieve the
original image [1].
Morphological Operations

on initial consideration of the molphological operations, it is not
easy to see how the opening and closing can be useful orindeed why
they differ from one another in their effect on an image. After ali,
erosion anddilation are logical opposites and superficial consideration
would tempt to conclude thatit will make little practical difference
which one is used first? However, their different effectsstems from two
simple facts.Grey-scale opening and closing are defined in exactly the
same way as for binary images andtheir effect on images is also
compleme ntary. Grey-scale opening (erosion followed bydilation) tends
to suppress small bright regions in the image whilst leaving the rest of
theimage relatively unchanged, whereas closing (dilation iollowed by
erosion) tends to suppresssmall dark regions [10].

1. Opening Morphology
opening is the name given to the morphological operation of erosion

followed by dilationwith the same structuring element. The opening
operation of A by structuring element B can be written as [2]:

A"B - (AOr)es...(3)
The general effect of opening is to remove smali, isolated objects from
the foreground ofan image, placing them in the background. It tends to
smooth the contour of a binary objectand breaks nu.ro* joining regions
in an object.

2. Closing Morphology
Closing is the name given to the morphological operation of dilation

followed by erosionwith the same structuring element. The closing
operation of A by structuring element B as [2]:

A.B=(,4O8)e8...(4)
Closing tends to remove small holes in

changing small regions ofbackground into foreground.
narrow isthmuses between objects.
The Top-Hat Transformation

the foreground,
It tends to join

The Top-Hat transform is a very useful tool for extracting features less
the structuringelement chosen from the processed imagi.rhe top-hat
transformation is defined as the difference between the image uri th.
imageafter opening with structuring element B, namely [11]:

Top - HatTrans. = / - / e B ... (5)
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Opening has the general effect ofremoving small light details in
the image whilst leaving darker regions undisturbed. Thedifference of
the original and the opened image thus tends to lift out the local details
ofthe image independently of the intensity variation of the image as a
whole. For this reason, thetop-hat transformation is useful for
uncovering detail which is rendered invisible by illumination or shading
variation over the image as a whole [2].
Error Metrics
Two of the error metrics used to compare the various image

compression techniques are the Mean Square Error (MSE) and the Peak

Signal to Noise Ratio (PSNR). The MSE is the cumulative squared error
between the compressed and the original image, whereas PSNR is a

measure of the peak error. The mathematical formulas for the two are

[13]: M-l N-1

MSE : hI I u@,y) - r-(x,y)12 ...(6)

!=o x=o

P.SNR - l0logrc
(t - L)'

...(7)

一た

,lT$
Where: I(x, y) is the original image, I'(x, y) is the approximatedversion
(which is actually the decompressed image) and MN are the dimensions

of the images.

Our Suggested Approach
In this paper we proposed an approach based on Top- Hat

transformation applied on gray scale and color images.One principal
apptication of these transforms is in removingobjects from an image by
using a structuring element in the opening andclosing that does not fit
the objects to be removed. Thedifference then yields an image with only
the removedobjects. The Top-Hatis used for light objects on a

darkbackground and the bottom-hat for dark objects on alight
background.The white top-hat transform of input image "I" is given by:

Tt=l-(/"8)...(6)
The boffom-hat transform of input image "I" is given by:

T, - (t.B) - r ...(7)
Where "I" means the input image and "B" is the structure element. "Tr"
Shows the top-hattransform output and uTz" shows boffom-hat
transform output. Also, rrorr denotes theopening operation and ,' rr

denotes closing operation.
An important use of top-hat transformation is in correctingthe effects of
non-uniform illumination.In our suggested approach we use top hat

▲
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transformation using line-shaped structuring element to remove the non-
uniform background illumination from an image.
The suggested approach algorithm steps are:
1- First step is to take the gray-scale or color image.
2- Then apply the line structuring element with different lengths and

orientations.
3- Perform the top hat transforming and display the image.
4- Use image adjust to improve the visibility of the result.

RESULTS AND DISCUSSIONS
The performance of the proposed method was evaluated use of

the MATLABsoftware. In this work the line SE with different lengths
was calculated, and the illumination non-uniform corrected by means of
an open top-hat gray scale morphological operation. At the end there
were available the original image, the image with resulted illumination
unbalance and the result of the correction process.The effectiveness of
the proposed algorithm was evaluated by comparing the original image
with the recovered image after correcting the illumination unbalance.
These evaluations depend on PSNR and MSE criteria between these
two images, for each connected component in the segmentation mask,
and with a pixel-wise comparison of intensities. other important
parameters that were considered are the SE length obtained, the number
of objects and the number of pixels that entered in the
calculations.Other variables shown in the Tablel are the length and the
orientation of the SE. Figurel illustrated the Top-Hat filtering to
increase the local image detail with increase the length of SE. Also we
can see from Figurel a, and c the output of Top-Hat filtering need to
make some post-processing to increase and enhance the brightness,
therefore we used the adaptive mask called contrast mask (see Figurelb

and d). The coeffrcient of this mask ,r[3:1 
3.3] 

,t we increase the

length of SE with keep the orientation constant (i.e., in 0 angle), we
obtained the high details resolution. Figure2 and table I are shown these
effects.

Now we examined the effect of the sE orientation with the same
values of length which are shown in Tablel. we can see from Figure3
and Figure4removing all features smaller than the structuring element
length (i.e., 50 and 60) and rotating SE by 45"and 90'it means the
entire pixels neighborhood can be reached. More fine detail in x-ray
image can't affected with small length of SE therefore, we examined all
length ranging (3-60) the obvious affected can be seen when we applied
SE of length ranging (30-60) with different orientations.

ワ
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Also we applied Top-Hat transform to another image, Table? showing
the results of Lena imageof size (512x 512) with different SE lengths
and orientations. From Table2 slightly affected of details with SE length
ranging (3-60). Also, we conclude LENA image has more fine detail
therefore when we applied top-hat transformation with small length (see

Figure5) only the edge affected, but when used length of SE 50 and 60
the fine detail affected (see Figure6). If we want to reach all entire
pixels in the neighborhood with different orientation of SE such

as45" and 90"(see Figs.7 and 8).

CONCLUSIONS
In our suggested approach we calculated the size of the

structuring element used to correct the non-uniform illumination in a

class of images. Calculating the SE size automatically applied with
different kind of images to be processed. Further development of the

method will demand obtaining more exact criteria PSNR and RMEas
well as a thorough evaluation of the possible effects of noise. PSNR

values proportional with SE length when the SE length increase PSNR

values are increased too.Also, the effects of parameters like lengths of
SE and orientations different from image to another. Our suggested

method need to post processing therefore we suggest an adaptive mask

to enhance the results after applied top-hat transformation.Experimental
results show thaffhe suggested method is simple and effective,
whichmakes the non-uniform illumination image correctionreached a

satisfactory result.

Table-l: Structuring element line shape with different orientations for x-ray
lFnage.
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E+03

0.0083 9.6448 0.0082 9.7798 0.0083 9.5930

9 0.0089 84153 0.0085 9.1581 0.0089 8.3500

12 0.0092 7.7376 0.0098 6.8511 0.0092 7.7938

0.0094 7.4736 0.0101 6.3714 ＾
ン
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Ａ
Ｖ
０ 7.5974

0.0097 6.9996 0.0103 6.0830 0.0096 7.2099

21 0.0098 6.7869 0.0105 5.7962 0.0097 7.0167

30 0.0104 5.93748 0.0111 5.0476 0.0103 6.0261

40 0.0108 5.3748 0.0119 4.2459 0.0108 5.3483

50 0.0113 4.8602 0.0124 3.7092 0.0112 4.9113

60 0.0117 4.4342 0.0130 3.2858 0.0114 4.6661
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(C)                                             (d)

Figurc‐2:Top― Hat flltering with incrcases thc length and kccping the oricntation

unchangcd ;(o And(c):TOp― Hat rlitcr Of SE lcngth are 50 and 60;(b)and(d):TOp―

Hat transfonnation ancr enhancement

Figure‐ 3:Top‐Hat flltcring whcn the SE rotated by45° ;(a)and(c)TOp― Hat Of SE

lcngth(50 and 60ゝ (b)and(d)ancr cOntrast enhanccment applicd
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Figure-4: Top-Hat filtering when the SE rotated by90" ; (a) and (c) Top-Hat of SE
length (50 and 60); (b) and (d) after contrast enhancement applied.

Table-2: Structuring element line shape with different orientations for LENA
lrnage.

Ｅ

鬱

Ｓ

　
ｎ

Identical 45° 90'

PSNR
rdB〕E+04 ＭＳＥ
則

PSNR
(dB)E+04 ＭＳＥ則

PSNR
(dB〕E+04

PISE
E+04

0.0006 1.6563 0.0006 1.6828 0.0006 .6745

0.0006 1.6308 0.0006 1.6560 0.0006 .6565

12 0.0006 1.5860 0.0006 1.6310 0.0006 .6245

0.0006 1.5648 00006 1.6064 0.0006 .6114

0.0006 1.5194 00006 1.5813 0.0006 .5833

0.006 1.4973 0.0006 1.5588 0.0006 .5699

30 0.0007 1.3826 0.0006 1.4987 0.0006 .5139

40 0.0007 1.2604 0.0007 1.4071 0.0006 4589
50 0.0007 1.1899 0.0007 1.3286 0.0007 4030
60 0.0008 1.1368 0.0007 1.2378 0.0007 3521
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Figure-5: Top-Hat filtering; (a) and (c): Top-Hat filter of SE length are 6 and 9 (b)
and (d): Top-Hat transformation after enhancement:

Figure-6: Top-Hat filtering with increases the length and keeping the orientation
unchanged. ; (a) And (c): Top-Hat filter of SE length are 50 and 60; (b) and (d):

Top-Hat transformation after enhancement
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Figure-7:Top―Hat flltering when the SE rotated by45° ;(a)and(c)TOp― Hat Of SE
length(50 and 60);(b)and(d)a■ er COntrast enhancement applied.

Figure¨ 8:Top―Hat flltering when the SE rotated by90° ;(a)and(C)TOp― Hat Of SE
length(50 and 60);(b)and(d)after cOntrast enhancement applied。
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ABSTRACT

This paper presents a secure scramble speech signal algorithm. The algorithm
; composed of two types of permutations. The first permutation key is generated from

two logistic maps to permute the coefficients resulting from Discrete Wavelet
Transform (DwT). The second permutation is generated from performing two

ilu,ry;t::l%:TJti#,fi il"ll#l,TJ';.*il;ff ":,:'#'#?"#*;il:1;
intelligibility and quality recovered

1. INTRODUCTION
Speech encryption techniques are used to encrypt clear speech into an

unintelligible signal in order to avoid eavesdropping. Speech has more
redundancy as compared with written text or digital data and contains
two types of information, the content of the speech and the personality
of the speaker. This makes encryption of speech signal with low
residual intelligibility and high cryptanalytic strength is very difficult
task [1,2].
In general there are two basic speech encryption modes: digital and
analog [1]. Digital encryption is cryptanalytic strength and ietains a
lower residual intelligibility, but it needs complex implementation and
produce low quality recovered speech. on other hand, analog speech
encryption, also called speech scrambling, acts on the speech-samples
themselves. Analog encryption schemes are relative$ less ,".r..
compared to digital encryption schemes, but have an advantage of less
complexity and provide good quality of recovered speech tl].In general, there are five main categories domains in analog speech
encryption: frequency-domain, time-domain, amplitude, two-
dimensional scrambling that combines the frequency-domain
scrambling with the time-domain scrambling and transform domain
[1]. Regarding other types of scramblers which can attain a high degree
of security, the transform domain scrambler has advantage in thaithe
number of effective permutations is much larger than the number of
permutations available in other domain scrambling algorithms.
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Many analog speech encryption methods in the transform domain are

proposed, e.g., Fast Fourier Transform, a Prolate Spheroidal Transform
(PST), Hadamard Transform domain, circulant transform domains,
discrete wavelet transform domain (DWT) and discrete cosine
transform (DCT). Among the transform-domain techniques, DCT and

DWT have proved to be the best for speech encryption[2].
One interesting new speech encryption methods is connected to chaos
theory. That theory focuses primarily on the description of these

systems that are often very simple to define, but whose dynamics
appears to be very confused. Indeed, chaotic systems are characterized
by their high sensitivity to initial conditions and pseudo-random
behavior. The extreme sensitivity to the initial conditions (i.e. a small
deviation in the input can cause a large variation in the output) makes

chaotic system very attractive for pseudo-random number generators

[3]. It is impossible to predict the behavior of the chaotic system even if
we have partial knowledge of its organization that made chaotic system

t4l.
In this paper chaotic map is used to produce the chaotic sequence
by logistic map and samples are permutated using Arnold cat map.

2. Wavelet Transform Scrambling Process
Transform of a signal is just another form of representation to the
signal. It does not change the information content present in a signal.
The Wavelet Transform provides a time - frequency representation of
the signal. It was developed to overcome the short coming of the Short
Time Fourier Transform (STFT), which can also be used to analyze
non-stationary signals. STFT gives a constant resolution at all
frequencies while the Wavelet Transform uses multi-resolution
technique by which different frequency is analyzed with different
resolutions [5].
The analog scrambling process which employs a transformation of the
input speech to facilitate encryption can best be described using matrix
algebra. Let us consider the vector x which contains N speech time
samples obtained from analog to digital conversion process,

representing a frame of the original speech signal. Let this speech

sample vector x be subject to an orthogonal transformation matrix F
such that 15,6,7f:

u=Fx (t)
This transformation results in a new vector u made up of N transform
coefficients (N is the number of coefficient produce from the transform
in frequency domain). A permutation matrix P is applied to u, such that
each transform coefficient is moved to a new position within the vector
given by [5, 6,7):
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A scrambled speech vector y is obtained by returning vector v to the
time domain using the inverse transformation F/ where 15,6,7):

!:F-lv

(2)

(3)
Descrambling, or recovery of the original speech vector x' is achieved
by first transforming y back to the transform domain .The inverse
permutation matrix yr is then used to return the transform
coefficients to their original position. Finally, the resulting transform
vector is returned to the time domain by multiplying by Ft 15,6,7f:

i - F-7 P-'F y (4)

7

The transform domain scrambling process outlined above requires the
transform matrix F to have an inverse. One attempts to insure that the
scrambling transformation T:FtPF is orthogonal since orthogonal
transformations are norm preserving. The inverse transformation Il
rvill also be orthogonal .This property is useful since any noise added to
the scrambling signal during transmission will not be enhanced by the
descrambling process [5, 6, 7].

3. Generation of Permutation Key Scheme
The prime requirement of any permutation key is that the Residual
Intelligibility should be minimized after permutation. So the problem of
key generation is therefore an important issue in the design of a
scrambling system. High key sensitivity is required by secure
cryptosystems, which means that the cipher cannot be decrypted
correctly although there is only a slight difference between encryption
or decryption keys.
Logistic map is one-dimensional linear chaotic map has the advantages
of high-level efficiency and simplicity is defined as:

xn+t : T,xn. (1 - x)
Where x, is an initial condition variable which lies in the interval (0, 1)
and r is called control parameter which lies in the interval (1, 4) [8]. The
parameter r aan be divided into three segments, when r (0, 3) the
calculation results come to the same value after several iterations
without any chaotic behavior. When r in the interval 13,3.6), the phase
space concludes several points only, while r 13.6, 4), it becomes a
chaotic system [8].
The resulting plot that depicts the possible output values for
different parameter conditions is called the Bifurcation Diagram, as

shown in Figure (l)

(s)
や
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Figure-1:羽he Bifurcation Diagram[9].

4.Arnold(Cat Map Scrambling
Arnold Cat NIlap is used to reduce the autocorrelation samples ofspeech

signalo Amold cat rnap is given by:

[多11:]==[:  αbl卜 11・ [:み:I moα (Ⅳ)           (6)

Where χ″,ノ″ are the position ofsamples in the鮨Ⅳ matrix,and χ″,ノ″∈
{0,1,2,… 。,N-1}and χ″+ノ,ル +′ are the transformed positiOn aner cat map,
taking mod in order to bring x,y in unit rnatrix,α  and b are two cOntrol
parameters and are positive lntegers[10].

For applying Amold catrnap,the signal rnust cOnvert fronl l― E)vector
to 2-Do Matrix resizing operations fOr both l_D vectorto 2‐D matrix and
2‐D matrix to l―D vector is showll in Figure(2).
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5. Measurements Criteria
Generally speech quality assessment falls in two categories: subjective
and objective quality measures. Subjective quality measures are based
on comparison of original and processed speech data by a listener or a
panel of listeners. objective speech quality measures are based on some
physical measurement.
Objective speech quality measures can be classified to time domain
measures and spectral domain measures. Time domain measures take up
speech waveforms directly in time domain(Signal-to-Noise Ratio (SNR),
Segmental Signal-to-Noise Ratio (SEGSI{R)) while spectral domain
measures are computed using speech segment, they are more reliable
than the time-domain measures(Log-Likelihood Ratio (LLR) , Cepstrum
Distance (CD))
S i g n o l-to - N o is e R ot i o (SN,l?,)

This common measure is given as

SNR = l0logro Σ露=∞ x2(n)
(dB) (7)

Σ署=∞ [X(n)一 y(n)]2

where n is the number of samples, x(n) is the input speech signal and
y(n) is the reconstructed speech signal.
A high sNR (sNR >> 1) indicates high precision data, while a low SNR
indicates noise contaminated data Ul,l2l.
Segmental Signal-to-Noise Rutio (SEGSNR)
It is an improved version measure that can be obtained if SNR is
measured over short frames. It is given as:

SEGSNR=キ
:ΣM=: 10g10 ΣW当蹴ぶ

…1  
王:]}蓑ギ千」:与戸(dB)(8)

where M is the number of segments in the output signal, and K is the
length of each segment. It is a good estimator for speech signal quality
[12]. As depicted in Figure (3), high intelligibility and low intelligibility
correspond to high and low number respectively.

High intelligibility (closest to the original speech)

‐20      -10       o       ■o       20

Law inteHigibility(farthest tO the original speecり

Figure-3 :Segmental signalto-noise ratio measure.
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Log-Likelihood Ratio (LLR)
The Log-Likelihood Ratio (LLR) measure is a distance measure that
can be directly calculated from the LPC vector of the clean and
distorted speech. LLR measure can be calculated as follows:

du*(aa,ar)=bgN (9)v arRra',

Where a" is the LPC vector for the clean speech, zu is the LPC vector for
the distorted speech, ar is the transpose of a, and R. is the auto-
correlation matrix for the clean speech [3].
Cepstrum Distonce (CD)
The Cepstrum Distance (CD) is an estimate of the log-spectrum
distance between clean and distorted speech. Cepstrum can also be
calculated from LPC parameters with a recursion formula.CD can be
calculated as follows:

A-10ucEp - rogro{ lZ'u=r{r.(k) - ca(k)}z (10)

Where c. and ca &r€ Cepstrum vectors for clean and distorted speech,
and P is the order (number of LPC coefficient). Cepstrum distance is
also a very efficient computation method of log-spectrum distance [ 3].
As the value of LLR and CD are increasing the low residual
intelligibility for scrambled signal (the scrambled signal is farthest to
the original speech signal).

6. A Proposed Speech Scrambling algorithm
The proposed algorithm can be treated as two major parts: speech
scrambling and speech descrambling. Figure (4) shows the steps for
each part.
The proposed scrambling algorithm steps can be summarized as {
follows:

l. Segmentation (frames of length N:256 samples per frame)
2. First part

. Generation of key permutation (two logistic maps used)

. Application of the DWT (Haar DWT).

. Permutation the coefficient of DWT with the key permutation.

. Application of the Inverse DWT.
3. Second part

. convert into 2-D format.

. Application Arnold cat map on the samples in time domain.

. convert into l-D format.
4. Synthesis segments and saves to the wave file.
The descrambling steps of the proposed algorithm can be summarized {
as follows:
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1. Segmentation (frames of length N:256 samples per frame)
2. First part

. convert into 2-D format.

. Application inverse Arnold cat map on the samples in time
domain
. convert into 1-D format.

3. Second part
. Generation of key permutation (using same initial condition and
control parameters value that used in sender).

. Application of the DWT (Haar DWT).

. Inverse permutation of the coefficient of DWT with the key
permutation.

. Application of the Inverse DWT
4. Synthesis segments and saves to the wave file.

These steps are taken to be illustrated separately in more details
6.1 Speech Scrombling
It is composed of main steps: segmentation, transformation and two
types of permutation applied in transform domain and in time domain.
Segment and Framing
The sampled speech is segmented into frames of length N:256 samples

per frame that means a time frame of (32 msec), with sampling
frequency of 8 KHz, Mono, 16 bit resolution. The speech files used for
scrambling pu{poses are taken from the web page
http:/&vww.lspeechsoft.cod as wave files [14].

Figure-4:A Proposed Speech Scrambling algorithm.
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A wavelet transform of type (Haar) is chosen and performed on each

frame with specified level (two levels of decomposition). The result is
transforming coeffrc ients.

The Permutotion Key
The wavelet coefficients are permuted using the following procedure:
Choosing two logistic maps and cross-coupled as shown in the Figure
(5). The output generated by the first logistic map is fed to the second
logistic map as the input (initial condition) and vice versa. The output is

two rows of sequence. The first one contains real value representing the
chaos sequence. The second row represents the positions of chaos
sequence. Finally the chaos sequence is sorted in ascending order. The
resultant position row is used as permutation key.
Generating permutation key sequence can be summarized as follows:
Stepl. Generate the chaotic sequence of length n by using two logistic

maps and store it in a one dimensional matrix {al, a2, a3, a4, . . .

..., an|.
Step2. Find the index of the smallest number from the sequence of r

number and then store it in b (1). Next find the index of the 2nd

smallest number and store it in b (2). Repeat this process until nth
smallest number is stored in b (n).

Step3. The array D contains sequence of n random number generated
from the chaos sequence.

lnitial cotdinan

ホ
“
燿々 g οttr

r2ノ lノ2 Xl・… ‐

I滋

3231.......…

Figure-S: Generation of permutation key
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Permutotion using Arnold Cat Map
The sample in time domain are converted in to 2-D matrix of samples,
and then permuted by multiplying by Arnold cat map matrix, the output
is resized to 1-D vector again. Synthesize the scrambling frames
produced from Arnold cat map permutation part and the resulting
scrambled speech signal was saved as a wave file.
6-2 Speech Descrombling
After transmission through the channel, the receiver receives the
scrambled speech. The receiver segment the received signal to be ready
to descramble it.
Inverse Permutution using Arnold Cat Map
First the matrix of sample is resized to 2-D and multiplied by the
inverse Arnold cat map matrix, the output is then resized to 1-D vector
to be the input to the DWT step.

Descrambling using DIYT
Applying the DWT used to generate wavelet coefficients. These
coefficients are rearranged using inverse permutations (that means
recovering of the original order of every frame), then the inverse
wavelet transform is applied to transform the signal in to time domain.
Synthesize the frames to present the recovered speech (descrambled
speech signal) and save in wave file.
7. Simulation Results
Subjective Test is considered by playing the scrambled speech files
back to a number of listeners to measure the residual intelligibility. The
judge is that; the listened files contain noise only, which means that the
residual intelligibility is low. The analog recovered speech files have
been tested in a similar way to measure the quality of the recovered
speech files; the judge is that the files are the same as the original
copies.
The key permutation is computed using pair of logistic maps with initial
conditions (xl:0.41) and control parameters (r1:3 .94 and r2:3.98).
That key is used to permute the DWT coefficient.
As the chaotic system are dynamic systems, which are very much
sensitive to the initial condition and control parameter, thus, a small
variation to the control parameters( seed ) creates a major impact on
the scrambled signal. This effect can be viewed in the simulation
example (key length:25) by changing the r1 and 12 value from
3.992 and 3.882 to 3.991 and 3.881 respectively. Table (l) and (2)
show the result.
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e utation xl=0.65,rl=3.992,r2=3.882
Chaotic sequence control parameter

rl=3.992 12:3.882 Index
Ascending order of chaotic sequence Key

permutation
0.406189350901439 l 0.0100887719665914 6
0.962868651965901 0.0124404457790751

0.142724423220861 0.0398680586780157 7

0.488437815650636 4 0.0490444389028686 12

0.997466333045141 0.097210470535722 19

0.0100887719665914 6 0. 42724423220861 J
0.0398680586780157 0 52808157528446
0.152808157528446 0 74814511298517 16

0.51679563548866 9 0 86183215006961
0.9968738832611 0 0.331561955484688
00124404457790751 1 0.350340295056151 20
0.0490444389028686 2 0.40618935090143 1

0.186183215006961 3 0.407080208006824 24
0.604863949622878 4 0.488437815650636 4
0.954102179861406 5 0.51679563548866 9
0.174814511298517 0.575863556568406
0575863556568406 7 0.604863949622878 14

0.975024925372891 8 0.884741471638152 23
0.097210470535722 9 0,908587075082751 う

‘

0.350340295056151 20 0.954102179861406
0908587075082751 0.962868651965901 2
0.331561955484688 0.963532721725732 25
0.884741471638152 0.975024925372891
0407080208006824 24 0.9968738832611 10
0.963532721725732 う

ι 0.997466333045141
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Table-l: Generation key permutation with

｀
ablc

Saad and Eman

-2: Generation key perrnu tation witl Ixl=0.65,rl=3.991,r2=3.881
Chaotic sequence control parameter

rl=3.991 r2=3.881 Index
Ascending order of chaotic sequence Key

pemutation
0.892720158268834 1 0.0188734642187522
0.382221571261605 2 0.0563252995375079 9
0.942387812720144 J 0.0739023709594386 19
0.216683455418336 4 0.155841640655474
0.677399356645127 5 0.212132665836546 10
0.872151107833224 6 0.216683455418336 4
0.44501067977757 7 0.273147274809314 20
0.98568191307394 8 0.359629161171157 24
0.0563252995375079 9 0.382221571261605 2
0.212132665836546 0 0.401839544925735
0.667025400105211 1 0.44501067977757
0.8864111402373 つ

‘ 0.525036099559897 16
0.401839544925735 J 0.656611234201804 22
0.959294819512916 4 0.667025400105211
0.155841640655474 0.677399356645127
0.525036099559897 6 0.792364523724575
0.995248416131838 7 0.872151107833224 6
0.0188734642187522 0.8864111402373
0.0739023709594386 9 0.8927201582688 1

0.27314727480931 20 0.899862428995255 23
0.792364523724575 21 0.91911144617749 25
0.656611234201804 0.942387812720144
0.899862428995255 23 0959294819512916 14
0.359629161171157 24 0.985681913073947
0.91911144617749 0.995248416131838 17
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From above example, we can conclude that the permutation key that
used in proposed algorithm is very sensitive to the initial seed that
means the scrambled signal cannot be descrambled correctly, if there is
tiny change in initial seed. key sensitivity indicate high security and
suitability of the proposed algorithm.
Objective Test is another valuable measure to the residual intelligibility
of the scrambled speech and the quality of the recovered speech. In this
paper (SNR), (SEGSNR), (LLR), (CD) measures are calculated for
speech signal for two male and two female persons on sentences in
English language. The sentence is "This is an example of the AT and T
natural voice speech engine, it is the most human sounding text to
speech engine in the world'. Table (3) and (4) explains the result.

Table-4:Result for

From table (3) the LLR (also called LPC distance) and CD measures
for all the scrambled speech files are high while SNR and SEGSNR
measures are low (negative value) which means that the residual
intelligibility is very low, when compared with [6] that used LLR,CD,
and SEGSNR measures for scrambling algorithm using different
transform.
From table (4) the LLR and CD measures for all the descrambled
speech files are low while SNR and SEGSNR measures are high. As the
values of the LLR and CD are decreased, and the value of SND and
SEGSR are increased that indicates high precision data and good quality
of the descrambled speech signals.
The Figure (6) shows the waveform for original speech signal,
scrambling signal and descrambling signal.

‐

ヤヽ

able-3:Result for comparison of original and scrambled speech signal
File name SNR ,SEGSNR LLR CD
Mike8(male) -2.62555 ‐2.56744 4.18696 7.7533

Claire8(female) -2.58369 ‐2.52513 1.148503 4.63589

charles8 (male) -2.61635 -2.45871 3.78171 8.21462

lauren8(female) -2.58401 -2.54969 2.13405 5。74775

-4:Result for con oforiginal and descram led

File name ,sNn ,SEG,SNR 二二R CD
Mike8(male) 13.67320 62.84561 0.002382 0.30001
Claire8(female) 14.79295 61.20851 0.010630 0.61856

charles8 (male) 16.52925 62.022102 0.00393 0.34891

lauren8(female) 13.88546 62.34254 0.00100 0.17526

,
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The spectrum and spectrogram plotting is used because it is a powerful
tool that allowed to see the different in the frequency and time domains.
Note that on the scrambled plot it is observed that the order of the
frequencies has changed. And, as expected the descrambled version has
been decoded to its original form.
The Figures (7) and (8) show spectrum and spectrogram for original
speech signal, scrambling signal and descrambling signal.
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8. CONCLUSIONS
This paper presents new idea for speech scrambling algorithm based on
wavelet transforms domain and chaotic system. The performance of
proposed algorithm is examined on actual English Speech Signals, and
the results showed that there is low residual intelligibility in the
scrambled speech signal while preserving the quality of the
reconstructed speech signal.
Using two parts to scramble the speech signal; the first part works with
time-frequency features and the second part works on time features
with advantage of chaotic system (Sensitivity to initial conditions,
Topological transitivity with iterative process) make the system difficult
to decrypt that means it is crypt analytically strong and secure.
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ABSTRACT
No-reference measurement of blurring artifacts in images is a difficult problem

in image quality assessment field. In this paper, we present a no-reference blur
metric to measure the quality of the images. These images are degraded using
Gaussian blurring. Suggestion method depends on developing the Mean of Locally
Standard deviation and Mean of the image (MLSD) model, this method is called
Blur Quality Metric (BQM) and it calculates from numerical integral of the function
in this model. And the BQM is compared with the No-reference Perceptual Blur
Metric (PBM), the BQM is a simple metric and gives good accuracy in metrics the
quality for the Gaussian blurred image if it compared with the PBM.

1. INTRODUCTION
Measurement of image quality is very important for many image

processing algorithms, such as acquisition, compression, restoration,
enhancement and other applications. Image quality assessment is a very
important activity for many image applications. The image quality
metrics can be broadly classified into two categories, subjective and
objective. A large numbers of objective image quality metrics have been
developed during the last decade. Objective metrics can be divided [1],
121, l3l in three categories: Full Reference, Reduced Reference and No
Reference. For the existing no-reference image quality metrics that
existed in the literature, most of these are developed for measuring
image blockiness [a]. In [5],[6] A blur metric relies on measuring the
spread of edges in an image. And [7] suggested the no reference
perceptual blur metric using the image gradients along local image
structures. In this paper, we are focusing on the no reference image
quality assessment for measuring the Gaussian blurring. The Blur
Quality Metric (BQM) was inspired from the Mean of Locally Standard
deviation and Mean of the image (MLSD) model by calculated the area
under the curve form this relation. This paper is organized as follows.
Gaussian Blurring is presented in section 2.Section 3 introduces No
reference Quality of blurring image, in this section includes the adaptive
BQM. Section 4 presents the experimental results acquired with of
quality assessment using many blurred image. Finally the paper
concludes in Section 5.

2. Gaussian Blurring
Blurring is unsharp image was generated from a variety of sources,

like atmospheric scatter, lens defocus, optical aberration, and spatial and
temporal sensor integration [1]. In digital image there are three common″
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Upes of Blur effects: average blurs, Gaussian blur and motion blur [2].
The Gaussian blur is a type of image-blurring filter that uses a
Gaussian function (which also expresses the normal distribution in
statistics) for calculating the transformation to apply to each pixel
in the image. The equation of a Gaussian function in one dimension
is:

l      χ2

=V2π
s2 
θ~五

=

へ

・

ε(χ) (1)

(3)

ヽ

In two dimension

ε(χ,y)=v2π
s2 
θ~響 (2)

Where x is the distance from the origin in the horizontal axis, y is
the distance from the origin in the vertical axis, and S is the standard
deviation of the Gaussian distribution. When applied in two
dimensions, this formula produces a surface whose contours are
concentric circles with a Gaussian distribution from the center
point. Values from this distribution are used to build a convolution
matrix which is applied to the original image. Each pixel is
approximately equal the new value is set to a weighted average of
that pixel's neighborhood. The original value of the pixel receives
the heaviest weight (having the highest Gaussian value) and
neighboring pixels receive smaller weights as their distance to the
original pixel increases. This results in a blur that preserves
boundaries and edges better than other, more uniform bluning
filters. The blurring image is given by:

fb=f*σ
Where Ibbeing the bluning image and G is the Gaussian function

Figure(l) shows the different burring image with deferent values of S.
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S=15 S=10

Figure-l: Original image is degraded with Gaussian blurring at different value of
sigma (S).

2.No-Reference Perceptual Blur metric
In this method the original image blurred with a low-pass filter and

the blurred image re-blurred with the same low-pass filter. There is a
high difference in term of loss of details between the first and the
second image and a slight difference between the second and the third
image. And consider only the neighboring pixels variations which have
decreased after the bluning step. This method takes advantage of the
possibility to access to specific local variations representatives of the
blur effect. The flow chart in Figure 2 describes the steps of the
algorithm description and refers to the following equations of No-
reference perceptual blur metric [ 8],To estimate the blur annoyance of
gray image the first step consists in blurred it in order to obtain
a blurred image B. We choose an horizontal and a vertical strong low-
pass filter to model the blur effect and to create Bu", and Buo, ,where
the average low bass kemel in the vertical direction is :

71υ =:× [111111111]
And in the horizontal direction :

(4)

lln=transpose(hr)-hL

Figure-l : Original image

And image filters are :
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Bu"r:hu*F , BHor=hn*F (6)
Then, in order to study the variations of the neighboring pixels,
we compute the absolute difference images D-Fy"y, D-Fse1, D-Br",
and D_Bso;

D-Fve,(i, j) - Abs(F(i, j) - r(i - 1,i))
fori-Lto m-l,j =0ton-L (7)

D-Fro,(i,i) = aOs(f (t,i) - F(i,i- 1))

forj-Lto n-1,[=0 tom-1 (B)

D-Bu"rG,D = Abs(Burr(i, j) - Bu"r(i - 1,i))
fori-lto m-l,j =0ton-1, (9)

D-Bno,(i, j) = Abs(Bror(i, j) - Buor(i, j- 1))

forj-Lto rL-L,i=0 tom- 1 (10)

if we need to analyze the variation of the neighboring pixels after the
blurring step. If this variation is high, the initial image or frame was
sharp whereas if the variation is slight, the initial image or frame was
already blur. This variation is evaluated only on the absolute dif;lerences
which have decreased where

vv"r: Max(o,D-Fver(i, j) - D-Bu"rG,D)

fori:lto m-7,j =0ton-\ (11)
VHo, : M ax(O, D -FHor(i, j) - O-g uor(i, j)

fori-lto m-t,j=0ton-L (12)
Then, in order to compare the variations from the initial image,
we compute the sum of the coefficients are:

s -Fv r, - Zf;'i"-' D -Fu"r 1i, i1
s-Fruo, - Lf;';"-' D-Fro,1i,i1

S-vu", - Df;'i"-' D-vu",1i,i1

s-vuo, - Zf;'i"-' D-vro,1i,i1

(13)

(14)

(15)

(16)

And the Normalize Perceptual Blur Metric (PBM) in a defined range
from 0 to I is given by:

pBM - Moxl(bru,,,brr)l

へ

・

一ヽ

ヘ

where
(17)

S_F7θr S-77θγヽ
ｌ

ｔ

ｒ

・
ｌ

ノ

b_Fygr =

b_FHor =

S_F7θ r

S_FHor S_7Hor
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PT

Figure-2: Flow chart of the PBM algorithm [8].

3. No reference Quality of Blurring Image
The Mean of locally (standard deviation, mean) or MLSD model ,

proposed the idea that good visual representations seem to be based
upon some combinations of high regional visual lightness and
contrastf9]. To compute the regional parameters, we divided the image
into non overlapping blocks that are 50x50 pixels or less. For each
block, the mean (m) and a standard deviation (g) are computed, and
then taking the mean of them (m) and (g) as shown in figure (3). If the
points tend to visual optimal region the image has higher quality of
lightness and contrast, whereas if g (without m) is increased, it makes
image having insufficient lightness, but if m (without g) is increased it
makes insufficient contrast in the image.

Mean of Local Standard Deviation

Figure -3:Image quality description according to MLSD model [9].
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if Gaussian blurring has been applied on the original image with
different value of S (from 1 to 15) and then applied this model as
demonstrated in the figure (4,a) we can see the quality of these image
are increased if S have a maximum value and it near with the optimal
region( due to increasing contrast ), whereas decreasing value in S

makes images in the visual optimal. From this relation we can see:

」=ノ(m)

亀

(19)
figure (4,b ) shows the MLSD model for (7 database images) after it

degraded by the Gaussian from this figure we can defined the general
faction is :

θ =ce(α
十
鳥)

10     15     20     25     30

ally Optimal(20) ネ

120

。 115

E
ち 110

= 105
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Mean of Local Standard Deviation

(b)

Figure-4: The MLSD model in (a) the original (Lena) image and Gaussian blurring
of this image with different value of s ( from I to l5) and (b)same model for data

lmages.
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where a,b and c are general constants ,depending on the contrast and
mean in the images. And this function is the best fit of these curves.

From the curves in the figure (4-b), the area under the curve represent
the Blur Quality Metric (BeM), and this value has been simply
numerically circulated without find a ,b and c constant by uring
trapezoidal method where :

BOν =J∬

=rf(m)dm
(21)

\i

i

mland m2 are the minimum and maximum mean value. In this metric
the area under the curve preoperational directed with the BeM, figure
(5) is show increasing the quality of the image according to incisinitne
S value and this value is depending on the area under the curve oi the
shadow region. In figure(5-b) the blurring image is represented the pointin the curye is staring of the shadow reg-ion thln the images is
increasing in blu'ing at five varue of (S:5,{3 ,2,r) ,this mean that the
shadow region limited between mI at 

's:i 
(";i tlurring image) andm2 is the mean of the blurring image (imagl need to knoiv your

quality). And the total curves have the same t.nu-uio. in the figure (i) .
BQM has been circulated from the following steps:
1 Input degradation blurring image lo(x,y)
2. Increasing blurring in image lo(x,x) in five varue of sigma by using
Gaussian blurring (S_5,4,3,2,1) gettingfive image(Is,It, t j, tr,t;. c

3. Calculate Mean of rocailv (* ,s ) foiLil i*ogi i in, stup r,2
4. Find BQM using numerical integration.

ン
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Figure-5: The BQM for blurring lena images at different values of sigma, these

va-lue direct prop;rtional with the area under the curve in the (m,9) mode after they

reblurring at (S=3,7,1 l,l3).
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4.RESULTS DISCUSS10NS
In our approach, several images were used as a data to test our

metrics(an gray images with size 512× 512),see ngure 6,the Gaussian
blurring are added for each image form(S=15)of the 10W blurring to

(S=1)the highest blurring.Figure 7 illustrated the(NMSE‐ 1,

BQM,PBM)in nOrmalization(0‐ 1)State as hnction of blurring factor

(Sigma).the nOrmalization had been dOne by 97t==            ,

Where Q is the matching(NMSE‐ 1,BQM,PBM).from thiS igure we

can see the BQM curVe(nO reference quality)nearest from NMSE‐ 1

(reference quality)curVe if it is∞ mpared with PBM method.There is
direct proportion bettveen the blurring factor S and the metrics and this

behavior can  be  generalized  for an  distorted  images,  this  is

demonstrated in the flgure 8.If we compare this flgure with the flgure

(4-b)can See the in the moderate and low blurring image the points in
the curves(fOr each image)in thiS igure are more distinct form the

point in the curves in the flgure(4-b).

へ
”

Image no. (l)

（
ン

Figure… 6:Thc testimages are blurred from S=15 to S=1.
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Figure (7) : Continued.

2000

1800

1600

1400

1200

3 1ooo
rrl

800

600

400

2001

lnatJ8 7

1離::'

1田 3o3,

18:88'

00-

Figure-8: The BQM as a function of blurring factor S for the data images test.

5. CONCLUSION
In This paper we suggested a no reference quality assessment for

measuring Gaussian blurring in the various gray-scale images. This
method is developed form MLSD model. From the result we can say the
BQM method is simple method, gives numerical value and more
accurate from MLSD model. And the suggestion method is belter then
PBM.
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ABSTRACT
Wetlands are one of the most important natural resources on Earth. They provide
livelihoods for millions of people. Restoring wetlands is urgent, because wildlife
will need more high-quality habitat if it is to adapt to climate change. Environment
management is a significant challenge in developing Countries. The general
objective of this study is to reveal water body's changes using multi resolution data.
The aim of this research is to calculate the area of water bodies( Marshes, lakes,
reservoir) using ERDAS program Yer. 9.2 applied on ETM+ images at different
dates for some selected regions in Iraq. Classification of satellite images was
applied to extract water bodies' layers.
Key Words: Remote Sensing, Supervised Classification, Marshes, Wetlands.

INTRODUCTION
Wetlands are one of the most important natural resources on

Earth. They provide livelihoods for millions of people, support a
stunning variety of wildlife, and form part of a healthy and functional
landscape. sadly, this natural wealth is being eroded. wetlands have
been drained, rivers straightened and the quality and quantity of water
in the environment compromised by pollution and abstraction. The term
wetland covers a wide variety of wildlife habitats including those
dominated by standing open water such as lakes, ponds and seasonally
flooded areas, as well as those where ground is waterlogged to varying
degrees such as reed beds, marshes, and wet headland. The uniffing
feature of wetlands is the dominant role of water which profoundly
influences the ecological functioning of these habitats[1],[2]. wetlands
are vital to life - they provide water for our basic needs and our
economic prosperity. In the developing world millions of people rely
entirely on wetlands for their livelihoods and food security. Wetlands
are also important for biodiversity and play a key role by affording
habitat to many rare and endangered species. wetlands are the most
threatened of all the earth's ecosystems. Yet despite their importance the
world's wetlands are frequently mismanaged, and many are now so
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degraded that the people who rely directly on them for their livelihoods
have become more vulnerable to or have fallen deeper into
poverty[1],[2].

MATERIALS AND METHODS
The general objective of this study is to reveal water bodies

changes using multi resolution data. Satellite image classification
involves designing and developing efficient image classifiers. A
particularly important application of remote sensing is the generation of
land-use/ land-cover maps from satellite imagery[3]. Compared to more
traditional mapping approaches such as terrestrial survey and basic
aerial photo interpretation, land-cover mapping using satellite imagery
has the advantages of low cost, large area coverage, repetitively, and
competitively[4]. In this study, we presented an approach for the
extraction and representation of land-cover information based on high-
resolution Landsat imagery data. Figure(1) present the flowchart of
data processing of Landsat image. Several regions around the word are
cunently undergoing rapid, wide-ranging changes in land cover. These
changes in land cover, have attracted aftention.
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Figure-l : Flowchart of data processing.

Remote sensing provides a viable source of data from which
updated land-cover information can be extracted efficiently and cheaply
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in order to inventory and monitor these changes effectively. Digital
image processing is the technique of manipulating and interpreting
digital images with the aid of a computer [5],[6]. It starts with one
image and produces such information products as segmented images,
data, and maps. Digital image processing permits rapid and repeatable
analysis, allows for statistical treatment of multivariate data and
produces quantitative results. The ultimate goal of digital image
processing is to identify and interpret patterns in an image, i.e. pattern
recognition[7]. Pattern recognition is the science and art of finding
meaningful patterns in data [8].A pattern is simply any well-defined set
of measurements. The pattern recognition process consists of three
phases, i.e., 1) image segmentation, 2) feature extraction, and 3)
classification. Multi spectral satellite image classification is an
application of pattern recognition in the geo science. In a satellite image
the natural pattern is one ground resolution element or pixel. The
receptor may be an airborne or space borne multi spectral scanner. The
feature of a natural pattern is a set of n radiance measurements obtained
in the various wavelength bands for each pixel. This set of
measurements is referred to as a measurement vector in the
measurement space. Classifier or the decision maker assigns the
measurement vector to one of a set of classes according to an
appropriate decision rule Ul,l4). The fundamental basis for multi
spectral satellite image classification is the electromagnetic reflectance
properties of earth surface features. Because ground objects have their
own characteristic spectral response in different spectral bands of the
electromagnetic spectrum, they can be identified and delineated in a
multi spectral image[9]. The often-used decision rules in supervised
classification are Parallelepiped, Minimum Distance, Mahalanobis
Distance, and Maximum Likelihood/ Bayesian[1 0].

RESULTS AND DISCUSSION
Two regions are considered in this paper; Al Dalmaj marsh located
south-east of capital Baghdad with Wasit Governorate, and Al Razzaza
lake located in Karbala Governorate. Land cover within these areas is
divided principally among water body, sand dunes and agriculture. The
water layer represent our concern in this paper. A key issue relating to
wetlands and watercourses is that they are extremely sensitive and man
easily affects their wildlife interest. This includes modifications such as
deliberate drainage of wetlands and changes in water levels. They are
particularly prone to pollution, including nutrient enrichment, and the
effects can be very wide ranging. wetlands are places where land and
water meets. classiffing wetlands is difficult . Such places are highly
dynamic, changing with the seasons and over time. Their precise
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boundaries are hard to define. Image classification is a process of
assigning pixels in an image to one of a number of classes or labels.
Classification is based solely on the feature vector. The spectral
reflectance characteristics of ground objects are described by spectral
reflectance curves. A spectral reflectance curve is a graph of the spectral
reflectance of an object as a function of wavelength as shown in
figure(2). Because spectral responses measured by remote sensors over
various features often permit an assessment of the type and/or condition
of the features, these responses are also referred to as spectral
signatures. The configuration of these spectral reflectance curves gives
us insight into the spectral characteristics ofthe objects.

High
./".%%,,

Vegetation

Sci!
Spectral
Reflectance

Water
Low

Blue Grcen Red Ncar lR

Spectral Region

Figure-2: Spectral reflectance curve.
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The multi spectral approach forms the heart of the application of
remote sensing in discrimination of land-cover types and conditions. By
analyzing a scene in several spectral bands, we can improve our abitity
to distinguish the identity and condition of terrain features. For
example, water and vegetation might reflect nearly equally in visible
wavelengths, yet these features are almost always separable in near-
infrared wavelengths. Satellite images comprise of several bands linked
together to give an output that is most suitable for the requirement ofthe
user. Each of these bands consists of separate pixels recording the
reflectance value from an object. The reflectance varies from object to
object as well as from band to band. Satellite land cover map is made
usually by supervised or unsupervised classification method. The first
approach requires interactive training area selection and knowledge on
the study area. This method cannot be automated by any way. The
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second approach is carried out mainly by clustering technique. This is
done automatically based on a number of chosen classes and
seperability measure among them. The monitoring task can be
accomplished by supervised classification techniques. The aim of this
study is to generate a thematic map of Al Dalmaj marsh; Al Razzaza
lake and its surrounding area using supervised classification method
based on calculating the classes profiles shown above for the purposes
of land cover mapping. A primary goal of using multi spectral remote
sensing image data is to discriminate, classify, identift as well as
quantify materials present in the image. A thorough knowledge and
understanding of spectral characteristics of various earth surface objects
is required for identifring the classes and collecting region of interest.
The results of classification of Landsat images acquired at 1972, 1990
and 2002 of Al Dalmaj Marsh are shown in figures (l), (2) and (3).

Figure-4: Classified image (1990).
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Figure‐5:Ciassined image(2002)。

Shown in table(1)the changes ofthe areas of AI Dalma Marsh during

1972 to 2002.

The results of classification of Landsat images acquired at 1990 ,2002
and 2005 of Al Razzaza Lake are shown in figures (4), (5) and (6).
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Table-l: Areas of the

Year 1972 1990 2002

Area(Hectares) 6566 18080 10872

Figure-6:Classified Image I 990
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Figure‐ 8:Classined lmage(2005).

Shown in table(2)the changes Ofthe areas of Al Razzaza Lake during

1990 to 2005。

T able-2 : Areas of the Al Razzaza Lake.

CONCLUSION
compared to more traditional mapping approaches such as basic

aerial photo interpretation, land-use mapping using satellite imagery has
four advantages. First, land-use types can be mapped from digital
satellite imagery faster and often with lower costs. Second, fast and
inexpensive updating of land-use map products is possible. This is
because satellite images are capfured for the same geographi c area at a
high revisit rate. Third, satellite imagery data are captured in digital
forms. They can therefore easily be integrated with other types of
ground object information through such techniques as GIS. Fourth,
satellite images cover large geographic areas. The great economies of
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Fi gure-7 :C lassifi ed lmage(2002)

Year 1990 2002 2005
Area (Hectare) 154,000 95,50 87,50
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scale provided by digital image processing make it relatively
inexpensive to map large expanses of land, making it easier and more
cost effective to generate large amounts of map products. The
multispectral approach forms the heart of the application of remote
sensing in discrimination of land-cover types and conditions. By
analyzing a scene in several spectral bands, we can improve our abitity
to distinguish the identity and condition of terrain features. For
example, water and vegetation might reflect nearly equally in visible
wavelengths, yet these features are almost always separable in near-
infrared wavelengths.
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ABSTRACT
currently, multimedia technology is widely used. Using the video encoding
compression technology can save storage space, and also can improve the
transmission efficiency of network communications. In video compression systems,
the first frame of video is independently compressed as a still image, this is called
intro coded frame. The remaining successive frames are compressed by estimating
the disparity between two adjacent frames, which is called inter coded fromes.ln
this paper, intra frame was transformed using Discrete Wavelet Transform (DWT).

The disparity between each two frames was estimated by Adaptive Rood Pattern
Search (ARPS) algorithm. The result of the Motion Vector (MV) was encoded into
a bit stream by Huffman encoding while the remaining part is compressed like the
compression was used in intra frame. Experimental results showed good results in
terms of Peak Signal-to-Noise Ratio (PSNR), Compression Ratio (CR), and

An images sequence (or video) can be acquired by video or motion
picture cameras, or generated by sequentially ordering two-dimension
(2D) still images as in computer graphics and animation. As shown in
Fig.1.

Fig.- I : Images sequence (video).
Video processing is special cases of digital processing in which

signals are processed are video files or video streams. It is extensively
used in television sets, Digital Versatile Disks (DVD), video players,
..., etc. Although digital video signals can be transferred over the long
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distances with a low probability of bit enor rate, the raw material of
digital video requires high bandwidth for transmission and high storage

capacities when compared to its analog equivalent. Therefore,

compression basically is necessary to reduce data, a digitized analog

video sequence can comprise ofup to 165 Mbps of data. To reduce the

media overheads for distributing these sequences, the following
techniques are commonly employed to achieve desirable reductions in

image data []:
i . Reduce color nuances within the image.

ii . Reduce the resolution with respect to
intensity.

iii. Remove spatial redundancy or correlation
pixels values.
iv.Compare adjacent images and removes details that are unchanged

between adjacent frames in sequence of images.

The first three of above points are image based compression

techniques that is called intra frame, where only one frame is evaluated

and compressed at a time. The last one is called inter frome, where
different adjacent frames are compared as a way to further reduced

image data. All of these techniques are based on the term of motion.
Motion is an essential aspect of video sequences. The ability to
estimate, analyzes, and compensate for relative motion is a comnon
requirement of many video processing, analysis and compression

algorithms and techniques. Fig.2 shows flowchart of video compression.

Fig.-2: Flowchart of video compression.

Hassan B. and Matik K. in 2006 [2] have proposed a method for
video compression based on skipping some frames which have little
information from the fames sequence. They have designed an algorithm
to compare two frames on sub frame level and decides which one is

the prevailing light

between neighboring

/a
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more important for the overall video quality as perceived by eye of the
user and skipping the frame which have little information.

Bjorn B. in 2005 [3] Developed a video codec. This codec consist of
three parts, transformation, quantization and encoding. These three
fundamental parts are used for the purpose of compressing the data.
Through the transform, the energy in a picture is concentrated to a small
region. These regions are then rounded off through quantization to
compress the data. Author has also proposed a method to cope the
problem of error that can be introduced through transmitted it over
channels by sent side information over another channel to describes the
information in yet another way. Consequently, a coding scheme called
Multiple has been presented.

The work aims to propose an efficient technique for video
compression by wavelet transform by using two systems, intra and inter
coded frames. In this present work, video compression system is
developed using wavelet transform, and ARPS. The rest of this paper is
organized as follows. Some of basic principles has been explained in
Section 2. we show our proposed video compression system in Section
3. Section 4 give the experimental results. Finally, the paper has been
concluded in Section 5.

2. Basic Principles

2.llntra and Inter Coded Frames

The motion estimation and the motion compensation blocks work
only if there is a past frame that is stored. So, question is how do we
encode the first frame in a video sequence, for which there is no past
frame reference? The answer to this question is fairly straight forward.
we treat the first frame of a video sequence like a still image, where
only the spatial, i.e., the intra frame redundancy can be exploited [a].

The frames that use only intra frame redundancy for coding are
referred to as the intrs coded frame. The first frame of every video
sequence is always an intra-coded frame. From the second frame
onwards, both temporal as well as spatial redundancy can be exploited.
Since these frames use inter frame redundancy for data compression,
these are referred to as inter coded frame. However, it is wring to think
that only the first frame of a video sequence would be intra-coded and
the rest inter-coded. In some of the multimedia standards, intra-coded
frames are periodically introduced at regular intervals to prevent
accumulation of prediction elror over frames. It is obvious that intra-
coded frames would require more bits to encode as compared to inter-
coded frames since the temporal redundancy is not exploited in the
form. As shown in Fig.3 and Fig.4.
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Fig.-4: Inter frames.

2.2 Discrete Wavelet Transform (DWT)

The basic operation in wavelet transform is to filter an image with a
low pass filter (L) and a high pass filter (H) and down-sample the output
by a factor of 2. Both operations on the x direction, two new images are

obtained L and H. They are filtered and down sampled again but this
time in the y direction. Four sub bands images are obtained which can
be combined to recover the original one. The same amount of
information is present, but this new configuration is more suitable for
efficient coding [5].
The inverse wavelet transform is performed by enlarging the wavelet
transform data to it is original size. Insert zeros between each of four
sub images, and sum the results to obtain the original image [6]. The
Haar wavelet is one of the most common used wavelets. It resembles a

stepfunction and is defined by:

2.3 The Embedded,Zero Tree Wavelet (EZW) Quantization

An EZW encoder was especially designed by Shapiro to be used
with wavelet transform. In fact, EZW coding is a quantization method.
The EZW encoder is based on progressive encoding to compress an

image into a bit stream with increasing accuracy. This means that when
more bits are added to the stream, the decoded image will contain more
detail. A zero tree is a tree of which all nodes are equal to or smaller
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Fig.-3: Intra frame.
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than the root. The tree is coded with a single symbol and reconstructed
by the decoder as a tree filled with zeroes [6].

2.4 Arithmetic Encoding

Arithmetic encoding, and its derivative technique, Q-coding, is used
to overcome some of the limitations of Huffman codes. It is a non-block
code, in that a single codeword is used to represent an entire sequence
of input symbols, in contrast to Huffman coding where a source symbol
block corresponds to a codeword block. Instead, it uses the real numbers
to represent a sequence of symbols by recursively subdividing the
interval between 0 and 1 to specify each successive symbol. The
limitation of this technique is the precision required in performing the
calculations and arriving at the code word which will represent the
entire sequence correctly [7].

2.5 Huffman Encoding

A Huffman encoding developed by D.A. Huffman, a Huffman
encoder takes a block of input characters with fixed length and produces
a block of output bits of variable length. It is a fixed-to-variable length
code. Huffman encoding uses a variable length code for each of the
elements within the information. This normally involves analyzing the
information to determine the probability of elements within the
information. The most probable elements are coded with a few bits and
the least probable coded with a greater number of bits [8].

2.6 PSNR and CR

Evaluation criteria that usually used in digital image and video
compression are in two directions. First direction is to evaluate quality
of the reconstructed image. Second direction is Compression Ratio
(CR). In terms of quality evaluation, two mathematical metrics are used.
First one is Mean Square Error (MSE), which measures the cumulative
square error between the original and the reconstructed image. Second
meter is Peak signal-to-Noise Ratio (PSNR). The formula for MSE is
giving as [9]:

PSNR is the standard method for quantitatively comparing a
compressed image with the original. For an 8-bit grayscale image, the
peak signal value is 255. Hence, the PSNR of an MxN 8-bit grayscale
image C and its reconstruction R is calculated as [9]:
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where the MSE is deflned as:
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MSE= +if lc,1*,n)- R,(*,n)l . . . (2)N, fr7*'
PSNR is measured in decibels (dB), M: height of the image, N: width of
the image.

The second direction of comparing the compressed and the
original images is the compression ratio. It is defined as [10]:

Compression Ratio: Compressed File Size Size.

Uncompressed File Size Size,,

In addition to measuring the quality of image, we also measure the
compression ratio. Compression ratio is the ratio of the compressed file
size to the original file size. In general, the higher the compression ratio,
the smaller is the size of the compressed file. Compression speed, on the
other hand, is the amount of time required to compress and decompress
the image. This value depends on a number of factors, such as the
complexity of the algorithm, the efficient of the implementation, and the
speed ofthe processor [10].

2.7 Motion Estimation

Motion Estimation (Iv{E,) is the process of analyzing successive
frames in a video sequence to identify objects motion. The motion of an
object is usually described by a two-dimensional motion vector, which
is the placement of the co-ordinate of the best similar block in previous
frame for the block in current frame. This placement is represented by
the length and direction of motion I l].
2.8 Motion Compensation

Motion Compensation (lr4C) predication has been used as a main
tool to remove temporal redundancy that comes from liule change in the
content of the image from one video sequence to another. It provides
coding system with a high compression ratio. This technique is adopted
by all of the existing international video coding standards, such as

Picture Expert Group (MPEG) series and H.26x series.
Motion compensation prediction assumes that the current frame can

be locally modeled as a translation of the frames in the previous (or
reference and next) time. Fig.5 shows motion compensation between
two frames [2].
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Fig.-5: Motion compensation between two frames.

2.9 Motion Estimation Algorithms

These algorithms assume that a frame has been divided into M non-
overlapping blocks that together cover the entire frame. Moreover, the
motion in each block is assumed to be constant, that is, it is assumed
that entire block undergoes a translation that can be encoded in the
associated motion vector. The problem of block-based ME algorithms
is to find the best MV for each block, as shown in Fig.6 these
algorithms are also called Block Matching Algorithms (BMA) ll3l

Fig.-6: Block Matching Algorithms.

2.9.1 Block Matching Algorithms

Block Matching Algorithm (BMA) is the most popular technique
used for motion estimation in which the current luminance frame is
divided into non-overlapped macro blocks (MBs) of size NxN that are
then compared with corresponding macro block (I\B) and its adjacent
neighbors in the reference frame to create a vector that stipulates the
movement of a macro block from one location to another in the
reference frame [4], i.e., finding matching macro block of the same
size NxN in the search area in the reference frame.

The position of motion vector has two parts, horizontal and a
vertical. These parts can be positive or negative. A positive value means
motion was to the right or motion downward while a negative value
means motion was to the left or motion upward. This Motion Vector
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(MV) will be used to predict new frame from the reference which is
called motion compensation. The matching measurement is usually
determined using one of Block Distortion Measure (BDM) like Mean
Absolute Difference (MAD) given by Equationl or MSE given by
Equation2. The macro block with the least cost is considered the
matching to the current frame macro block [5].

‐
一ｒ
〓υ協

...(4)

r r\ -l rV-l 2

tursE=,f tI(cr-nr)
N- ?of=o

Where:

N2: Block size N x N.
Ci.;: Pixel in position (i, j) in current block.
Ri;: Pixel in position (i, j) in reference block.

...(s),

2.9.2 Adaptive Rood Pattern Search (ARPS)
algorithm makes use of the fact that the general motion in a frame is
usually coherent, i.e., if the macro blocks around the current macro
block moved in a particular direction, then there is a high probability
that the current macro block will also have a similar motion vector. This
algorithm uses the motion vector of the macro block to its immediate
left to predict its own motion vector. An example is shown in Fig.4. In
addition to checking the location pointed by the predicted motion
vector, it also checks at a rood paffern distributed points, where they are
at a step size of S : Max (lxl, lYl). The X and Y are the x-coordinate
and y-coordinate of the predicted motion vector.

This rood pattern search is always the first step. It directly puts the
search in an area where there is a high probability of finding a good
matching block. The point that has the least weight becomes the origin
for subsequent search steps, and the search pattern is changed to SDSp.
The procedure keeps on doing Small Diamond Search Paffern (SDSP)
until least weighted point is found to be at the center of the sDSp. A
further small improvement in the algorithm can be to check for Zero
Motion Prejudgment, using which the search is stopped half way if the
least weighted point is already at the center of the rood pattern.

The main advantage of this algorithm over DS is if the predicted
motion vector is (0, 0), it does not waste computational time in doing
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Large Diamond Search Pattern (LDSP), it rather directly starts using
SDSP. Furthermore, if the predicted motion vector is far away from the
center, then again ARPS save on computations by directly jumping to
that vicinity and using SDSP, whereas DS takes its time doing LDSP.
Care has to be taken to not repeat the computations at points that were
checked earlier.

Care also needs to be taken when the predicted motion vector turns
out to match one of the rood pattem location. We have to avoid double
computation at that point. For macro blocks in the first column of the
frame, rood pattern step size is fixed at 2 pixels [16], as shown in Fig.
(7).

へ
υ

,

Fig.-7: Adaptive Root Pattern.

3. Proposed Compression Video System

3.1 Intra Coded Frame

The proposed compression system in this system includes three
stages, the first stage is the wavelet transform, here we use Haar filter
with l-level. The output from the transform will be different sub bands
with different important information. After that, EZW will quantize
these sub bands in efficient manner then the output will be stream of
zeros and ones, this stream will be compressed by arithmetic encoding.

Algorithm of Intra Coded Frame.

Input: Digital video clip.
Output: Compressed frame.

Step 1: Partition video into frames.
Step 2: Read first frame in video.
Step 3: Transform first frame using DWT.
Step 4: Quantization of first frame using EZW.
Step 5: Encoding of first frame using arithmetic method.
Step 6: Save the compressed frame.

"
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3.2 Inter Coded Frame

The proposed compression system applies DWT on video frames,

then Adaptive Rood Pattern Search algorithm is used in order to find
MV using forward motion estimation. Motion vector was coded by

Huffman encoding. On the other hand, the remaining part (the similar
blocks of frames) will be compressed as the compression system that

was used in intra frame coded.

Algorithm of Inter Coded Frames.

Input: Digital video clip.
Output: Compressed video.

Step 1: Partition video into frames.

Step 2: Transform these frames by DWT.
Step 3: Divide these frames into 16x16 macro block.
Step 4: Estimate the motion befween each two frames using ARPS
algorithm.
Step 5: Encoding the result from Step 4 (MV) by Huffman encoding.
Step 6: Compress the remaining part of frames after find the motion as

intra coded frame.
Step 7: Save the compressed video.

4. RESULTS AND DISCUSSIONS

This section explains the experiments which have been

implemented on two video clips. Clipl and clip2 as test clips, each

one of them is in size of 256*256 and of JPG format. MATLAB
version 7.4.0.287 (R2007a) was used as a work environment to cary
out these experiments. The first frame in these clips is compressed as

intra and the remaining frames as inter through wavelet Haar filter (1

level). This approach was tested by using AVI files format with 5

frames for each clip.

4.1 Results of Intra Coded Frame

In this experiment, the first frame of video has been compressed
using the first system, namely; intra coded frame. In this system, this
frame is compressed as a still image. Two gray scale clips were used in
this experiment. Fig.S and Fig.9 show the result of applying this system
on these clips. Tablel and Table 2 illustrate the PSNR and CR which

402



Al- Mustansiriyah J. Sci.

are resulted from
respectively.

Yol.24, No 5,2013

this system on clipl and clip2,
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(a) (b)

Fig.-8: Reconstructed frame resulted from applying of the first system on clipl.
(a) Original frame. (b) Reconstructed frame.

Table- I : PSNR and CR of intra coded system on clip I .

Frittti
IPSNRI(di3) 一Ｒ一Ｃ

61.697 0.1447

Fig.-9: Reconstructed frame resulted from applying of the first system on clip2.
(a) Original frame. (b) Reconstructed frame.

Table-2: PSNR and CR of intra coded system on clip2.

IPSNRrdB■ | ■CRI
59.389 0.1493

4.2 Results of Inter Coded Frame

In this experiment, frames starting from the second frame have been

compressed using inter coded frame system. In this system, these

frames are compressed using DWT followed by motion estimation
using ARPS algorithm. Two gray scale clips were used in this
experiment. Fig.10 and Fig.ll show the result of applying this system
on these clips. Table3 and Table4 illustrate the PSNR, CR, and

processing time which are resulted from applying of this system on
clipl and clip2, respectively.
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(a) (b)
Fig.-10: Reconstructed frame resulted from applying of the second system on clipl.

(a) Original frame. (b) Reconstructed frame.

Table-3: PSNR, CR, and time of inter coded system on clipl.

PSNR (dB) CR Time (Sec.)

Without DWT 55。 214 0.125
4.544

With DWT 58.122 0.135 2.508

(a) O)
Fig.-l l: Reconstructed frame resulted from applying of the second system on clip2.

(a) Original frame. (b) Reconstructed frame.

Table-4: psNR, cR, and time of Inter coded system on crip2.

PSNR (dB) CR Time (Sec.)

WithOut DWT 55.484 0.135 1.813

With DWT 60.344 0.145 0.213

5. Discussion and Conclusions

In this paper, a system for video compression has been proposed.
This system based on discrete wavelet transform and Adapiive'Rood
Paffern Search algorithm as a block matching algorithm to find the
motion vector which will be used at the stage or --otion compensation
to finally estimate the current frame depending on reference frame. use
of this system on two clips (one is consideredL a standard clip and the
another is non standard) has shown good results in terms of ps'NR, cR,
and processing time. p^sNn value in ARps algorithm is better with
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DWT proposed approach than this algorithm without P^SNR, as shown
in Tables 3, and 4 in clipl, and clip2, respectively. But in CR, the first
proposed approach (without DWT) is better than the second proposed
approach (with DWT). It is clearly noticed that the use of DWT
minimize the processing time, almost, up to 40% - 50%.
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ABSTRACT
This paper focuses on the strength of combining cryptography and steganography
methods and using an image compression (JPEG) to transfer the text being one of
the most kinds that used through intemet. This work begins by encrypting the text
using one of the classical cryptography methods (Affine method), then converting
the result of the encryption text to sequence of binary numbers (0,1). The operation
of text hiding happens during steps of convefting the entered image BMP to
compression image JPEG holding the encryption text through making a change in
the original data for some pixels when needed by adding or subtracting to/from the

Cryptography and Steganography are well known and widely used
techniques that manipulate information in order to cipher or hide their
existence respectively [ ].
Steganography is the art and science of communicating in a way which
hides the existence of the communication. A steganographic system
thus embeds hidden content in unremarkable cover media so as not to
arouse an eavesdropper's suspicion. As an example, it is possible to
embed a text inside an image or an audio file. On the other hand,
cryptography is the study of mathematical techniques related to aspects
of information security such as confidentiality, data integrity, entity
authentication, and data origin authentication [2].
To make a steganographic communication even more secure the
message can be compressed and encrypted before being hidden in the
carrier. Cryptography and steganography can be used together. If
compressed the message will take up far less space in the carrier and
will minimize the information to be sent. The random looking message
which would result from encryption and compression would also be
easier to hide than a message with a high degree of regularity. Therefore
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encryption and compression are recornmended in conjunction with
steganography [3].

2. Affine Cipher
The affine cipher is a type of monoalphabetic substitution cipher,
wherein each letter in an alphabet is mapped to its numeric equivalent,
encrypted using a simple mathematical function, and converted back to
a letter. The formula used means that each letter encrypts to one other
leffer, and back again, meaning the cipher is essentially a standard
substitution cipher with a rule governing which letter goes to which. As
such, it has the weaknesses of all substitution cipher [4].
In the affine cipher the letters of an alphabet of size m are first mapped
to the integers in range 0,..,.m-1. It then uses modular arithmetic to
transform the integer that each plaintext letter corresponds to into
another integer that corresponds to a ciphertext letter. The encryption
function a single letter is [a][5].

E(x) : (ax + b) mod m ... ... .... I
where modulus (z) is the size of the alphabet and (a and b) are the key
of the cipher. The value (a) must be chosen such that (a and m) are
coprime. The decryption function is.

D(x) : a't ft - b) mod m ... ... .. ... 2
where a-r is the modular multiplicative inverse of a modulo m. i.e., it
satisfies the equation.

| : aa-t mod m .. ... 3

The multiplication inverse of ( a ) only exists if (a and m ) are coprime.
Hence without the restriction on ( a ) decryption might not be possible
t4ltsl.

3. JPEG Algorithm
The general progression of the JPEG technique can be seen in fig.(l).
The steps must be performed in a sequential manner because the
operations in each block depend on the output from the previous block.
where the parallelism can be extracted is limited to the operations
within each block [6].

Blocks (8x8)

I F2C卜 Qum・ Zer
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Fig.-l: DCT-based encoder simplified diagram

The image is loaded into the main memory and the image is
segmented into block of size (8x8) pixels called macro blocks. A 2D
discrete cosine transform (DCT) is performed on each (8x8) macro
block to separate it into its frequency components [6]. The forward
2D_DCT transformation is given by equation a pl.

c (u, v) = D (u) C (v)';t 
^" 

;' ̂
f 

r *, rr ro r( @) .", [ 
(" *1)' 

" 
)'--oY---i"' \ 2n / ( 2t

Where u,v:0, I ,2,3,...,n-l

‐

The result at the top left corner (u:0, v:0) is the DC coefficient
and the other 63 results of the macro blocks are the AC coefficients.
The purpose of the DCT is to remove the higher frequency information
since the eye is less sensitive to it [6].

Quantization is achieved by dividing each element in the
transformed image block by corresponding element in the quantization
table, and then rounding to the nearest integer value. The scaled
quantization table is then rounded and clipped to have positive integer
values ranging from 1 to 255. For rounded off use equation 5.

r (u,v) = ,ouna(c-^?''!l ........ ,
\Q@,r) )

After that a new block produce where the coefficients situated
near the upper-left corner correspond to the lower frequencies to which
the human eye is most sensitive of the image block. Whereas, zeros
represent less important, higher frequencies that have been discarded,
giving rise to the lossy part of compression. Thus, only nonzero
coefficients will be used to reconstruct the image [8].

At this point, all the lossy compression has occurred, meaning
that high frequency components have been removed. The final step is to
encode the data in a lossless fashion to conserve the most space. This
involves two steps. First, zig-zag reordering reorders each macro blocks
from the top left to the bottom right in a zig-zag fashion so that the 0's
end up at the end of the stream. This way, all the repeated zeros can be
cut. The final step is to use Huffinan encoding to encode the whole
picture by replacing the statistically higher occurring bits with the
smallest symbols. This can be done with a standard Huffman table or
can be generated based on the image statistics [6].

"
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4. Proposed System
This paper focuses on using cryptography, steganography and

image compression as a base in work. The input color image (BMP) and
a text will be encrypted. The output is a compression image (JPEG)
holding the encryption text and the key of decryption text. Figure (2)
shows the steps of hiding the text and then extracting it.

a- Hidden Text b- Extract Text

Fig.-2: a) Hidden text steps b) Extract text steps

4.1 Hiding Stage
In this stage a color image (BIUP) and a text are entered. The

entered text is encrypted by using affine method. The number of the
symbols that used in this work is (28) symbols, which are divided into
two groups; the first of them is (26) characters the English alphabet
(A..2).Secondly (2) symbols (' ', '.') which represent the space between
the words and the dot that shows the end of text. After the encryption
text, the keys of decryption and the encryption text are converted to a
sequence of numbers of binary system (0, I ).

This work uses the DC coefficient in every block to hide one bit
from the encryption text in the quantization stage. To hide a bit (l) the
value of DC coefficient should be even, but to hide a bit (0) the value of
DC coefficient should be odd.

The mechanism of our proposed technique; to hide one bit (l) the
value of the DC coefficient should be even. If the value of DC
coefficient is even there will be no change on the data of the pixels, but
if it is odd, the original data of some pixels should be changed before
DCT stage performed to make the needed changed in order to convert
the value of DC coefficient from odd to even in the quanti zation stage.
To count the number of pixels that will be changed we shall do the
following:
l. Counting the value of DC coefficient in the quantization stage with

or without rounding.

Cover image BMP

Encryption text Convert image to BMP

Extract encryption text

Extract plain text
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DCl :11.3
DC2: round (l1.3) : 11

2. Counting the additional value that should be added to the DC
coefficient to convert it from odd to even after rounding. The
additional value (0.5) is at maximum.

D3:11.3-11:0.3
D4:0.5-0.3:0.2

3. Adding the additional value to the DC coefficient without
rounding.

,a 
- 

1,1.3 + 0.2

- rl.5
4. Counting the DC coefficient after rounding.

DC: round (11.5)
:12

5. Counting the effect value that happened by adding (1) to the
original data for one pixel in the block (8x8), through dividing the
maximum of the additional value to the number of the block pixels
(64).

efct: 0.5 I 64:0.0078
6. Counting the number of pixels that will be changed in its value by

add (1) to its original data, through dividing the additional value to
the effect value.

No.p : int (0.2 / 0.0078) +1

int (25.64) +1:26
7. After changing the original data of these pixels, the DCT and

quantization stage will be performed and then the DC coefficient
will be an even number.

This operation is repeated until finishing the hiding text completely.

4.2 Extracting Stage
The operation of extracting text will be done through making

some operations on the stego image which is JPEG. The input image
will be converting into BMP image, then image compression stages
done on it. Getting the value of DC coefficient from every block in
order to know the value of the hidden bit. If the DC value is an even
value this represents hidden bit with value (l), and if it represents an
odd number this represents hidden bit with value (0). After getting a
group consisted of 6 bits this group will be converted to decimal
number. The first two groups represent the decryption key. Work is
stopped when getting a group represents the dot which stands for the
end of hidden text.

"
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5. RESULTS AND DISCUSSIONS
The JPEG compression image is considered one of the most kinds

that used in the internet because of the small size compared with BMP

image. The output of this work is JPEG image containing the encryption

text and the key of the text decryption, therefore the receiver will not

find any difficulty to extract the plain text. Sending the key in side the

stego image will decrease the number of connecting between the

receiver and the sender so it lessens the doubt about this image. The

stego image keeps the text and the key inside it even though

decompression and compression repeation happens to it.
In this method, the cover image is BMP type with size 352*288.

Figure (3) shows the steps of entering cover image and the text in
additional to selecting the encryption key. The length of text depends on

the size of image.

Encrypting a Text by Using Affine Cipher
and Hiding it in the Colored lmage
by Using the Quantization stage.
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Fig.-3: shows the steps of hiding text

how to recall the stego image and extract the plainFigure (4) shows
text.
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The quality evaluation results of proposed method by using PSNR and
MSE measures are shown in table 1.

e-l: evaluation the pro method
Tcst Red color Green color Blue color
PSNR 35.08 36。 14 35.35

ⅣISE 4.49 3.97 4.35
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Fig.-4: shows the steps of extracting text
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ABSTRACT

The development of internet and multimedia technologies that grow rapidly,
resulting in amount of information managed by computer is necessary. Audio is the
most important medium be transmitted and for successfully transmission, there is a
need for compression.
A proposed Audio compression method based on Slantlet transform is a lossy audio
compression. It exploits the high similarity between the channels of stereo audio
Wave file, using Slantlet transform for transformation and Arithmetic coding in
coding step. The experimental results show that compression ratio ranges (12-24)
and PSNR results ranges (51 - 58 dB), encoding and decoding time improved (12 -
l4) times by using programmed Adaptive Arithmetic coding.

1. INTRODUCTION
Data compression is one of the most important fields and tools in

modern computing; it provides a comprehensive reference for the many
different types and methods of compression [1]. Compression is the
process of re-encoding digital data to reduce file size; a specialized
program called a codec, for COmpressor/DECompressor, changes the
original file to the smaller version and then decompresses it to again
present the data in a usable form [2].

Audio is used in multimedia, and especially when it is delivered
over the internet, there is a need for compression t3]. Audio
compression is the technology of converting human speech into an
efficiently encode representation that can later be decoded to produce a
close approximation of the original signal 141. To manipulate with
audio, first it must be convert to a digital format, the samples can be
processed, transmitted, and converted back to analog format. Any
compression technique belongs to either lossy compression or lossless
compression; the goal of lossless compression is to encode the data in a
way such that the matching decoder is able to reconstruct an exact copy
of the original signals that are input to the encoder [5].Lossless
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compression is used when it is important that the original and the
decompressed data be identical, for example, it is used in popular ZIp
file format, other examples are executable programs and iou... code.
Lossy compression technique involve some loss of information, and
data that have been compressed using lossy techniques generally cannot
be reconstructed exactly [6]. In digital audio coding, u lorry todec is
also called a perceptual codec because the design piinciple of a lossy
audio codec is to remove the perceptuaily irrelevant oi unimportant
information as much as possible [5].

Coding was done by using arithmetic coding. [n static arithmetic
coding, the model may assign a predetermined probability to each
symbol in the alphabet. Alternatively, in adiptive ,td.l, the
probabilities are updated whenever a symbol is encoded.

2. Slantlet Transform
The discrete wavelet transform (Dwr) is usually carried out by

filter bank iteration, for a fixed number of zero moments; this does not
yield a discrete time basis that is optimal with respect to time
localization [7].Slantlet transform (SLT) is an orthogonal DWT, with
two zero moments and with improved time localization. The basis is not
based on filter bank iteration; instead, different filters are used for each
scale [7].
In general the algorithm to obtain / -scales Slantlet filter banks is as
follows:
o The L scale filter bank has 2t channels. The low pass filter is to be

called hr(n). The adjacent to the low pass filter isio be calledl (n).
Both hr (n) and fl(n) are to be folowed by down sampling 2r.o The remaining 2l -2 channels are filtered by g(n) and its shifted
time-reverse gi((2i+l-l)-n) for i:l ,... l -t, each is to be followed
by down sampling zi+l l7).
In the Slantlet filter bank, each filter g;(n) appears together with

its time reverse. while hi (n) does not appear wiiti its timJreverse, it
always appears paired with the filter f;(n). Fig (l) illustrates a three_
scale Slantlet filter bank.

く
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Figure -1: Three-scale Slantlet filter bank [7]

The transfer functions gi (n), hi(n) and fi(n) for /-scale Slantlet are
calculated using the following expressions and the parameters [7][8]:
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m:2i

tr=6
\ - 2tl3 /(m.(m, - 1))
αO,0=(SO+t。 )/2
αl,0=(SO一 ιO)/2

SO=一 S■.(m-1)/2

30=(Oη +1)・ S1/3-7誌1)(m_1)/(2m)
αO,1=(Sl+ι.)/2
α■,1=(Sl― tl)/2

Note that the parameters as,6 ,?o,t ,&t,o and a1,1 depend on i ,The same
approach works for fi(n) and hi(n) . Using, again, a piecewise linear form
fi(n) and hi(n) can be written in terms of eight unknown parameters bo,o

,bo,t ,bt,o bt,r, co,o ,co,r ,c1,g &fld c1,1

… (2)
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3. Proposed System
A demonstration for suggest system "audio compression using

Slantlet transform" used for compression stereo audio file will b;
presented using the following steps:

1. Loading audio file in buffer.
2. Split left from right channel.
3. (Blocking)

Each channel is divided into small blocks and padding with zero
if required.

4. (Transformation)
Each block is transformed separately using Slantlet transform to
transform it from time domain into frequenly domain.

5. (Filtering)
Find adaptive threshold for filtering coefficients and to isolate

the important from less important coefficients, and save only the
important coefficients with their locations. In this step foriach
channel we have two arrays, one for coefficients and thl other for
location.

6. (Choose only one channel)
Graphical representation of audio raw data, left channel and right

channel are shown in figures (2), (3.a) and (3.b) respectively.
Due to the high similarity of the two channels, which is the
propeffy of all stereo audio wave file, can be exploited by
choosing only one channel for processing and duplicated this
channel in decoding unit. The choosing process is done by
finding the channel with higher energy, the compression ratio wiil
be increased by this step as well as the encoding and decoding
times will be decreased. This step does not affect the qualiry oT
reconstructed file.

7. (Quantization and Differencing)
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Slantlet transform coefficients Quantized to appropriate step, this
process sharply increases the compression ratio.
Differencing process will be performed to location array; this step
will decrease the number of symbols before the coding step and
thus increase the compression ratio.

8. (Coding)
coding was done using arithmetic coding; two arrays will be
input into arithmetic coding and storing the output in the
compression file.

The steps for implementation encoding algorithm are shown in
figure (4).
Decoding unit is an inverse steps of encoding unit.
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Figure-2:Graphical Representation of Stereo Audio Wave File
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Figure-4: Block Diagram of Encoding Unit
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4. RESULTS AND DISCUSSIONS
To test the performance of our proposed coder, a test set including five
files with different size (stereo and 16 bit per sample) with different
sampling rate. For evaluation the objective quality measures (such as

the Mean Square Error (MSE) and the Peak Signal to Noise Ratio
(PSNR) were utilized. Several parameters were taken to study the
performance of the suggested audio compression system, these
parameters are: Block size and quantization step. The adopted
parameters are the compression ratio (CR), encoding time (ET),
decoding time (DT) and fidelity criteria (MSE and PSNR).Table (1)
describes the data files used.

Table-l: Data File Description

File name Duration (Sec) Sampling rate(Fs) Thr(L) Thr(R)
File(l) 40 48000 26s 265
File(2) t4 44100 70s 686
File(3) 24 44100 1314 1318
File(4) 14 48000 733 77r
File(5) 60 48000 501 600

Where (FS) denoting the number of samples per second and Thr(L),
Thr(R) are the adaptive thresholds for left and right channel
respectively.

Each channel in audio file is further divided into a number of
blocks with appropriate size (2); the length of channel is made to
accommodate a number of blocks, by padding it with zero if required.
Table (2) presents the effect of different block size.

Two types of quantization: uniform quantization and non-uniform
quantization, in a proposed system uniform qtantization will be used.
The coefficients are uniformly quantizes using the general equation:

Slantlet

Table-2:Use ofDifferent Block Size

Block Sizc=512

File name CR MSE PSNR dB ET(Sec) DT(Sec)
F 24.0269 8812.37 56.8773 16.0057 7.3632

F le(2) 6.8756 18646.83 53.8976 5.8321 2.3554

F 3.2079 28294.84 51.8123 13.3225 6.0060

F le(4) 6.6368 25470.84 52.2689 6.8952 2.9796

F に(5) 7.3578 23088.53 52.6952 27.8930 12.7921

Block Size=1024

F 24.1571 8815.43 56.8770 14.7421 7.4412

F le(2) 6.9748 18647.47 53.6233 5.1012 2.3760

F 3.2298 28293.92 51.8125 13.0729 6.1464

F le(4) 6.6878 25472.45 52.2688 6.0060 26520
F 7.4233 23089.5 52.6953 27.0458 14.6485

‐ Quantized output :Round (
QS
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Where QS is step size parameter and can be adjusted to give the
required results.

able-3: Use of Different Ouantization S

Quantization Step=300
File name CR MSE PSNR dB ET(Sec) DT(Sec)

File( I 20.8758 6619.53 58.1212 16.4269 8.0029

File(2) 5.3266 18262.15 537131 6.1308 26052
File(3) 1.9936 28159.62 51.8332 160837 7.1292

F‖ e(4) 5.0292 2525028 52.3068 7.0980 3.1044

File(5) 5.9390 22564.21 52.7950 33.8366 16.6297

Quantization Step=4gO

File( I 22.6132 7450.13 57.6078 14.7421 7.4256

File(2) 62819 18375.01 53.6863 5.2728 23244
File(3) 2.3899 28230.37 51.8223 13.9465 6.3336

File(4) 5.7205 25344.59 52.2906 6.0372 2.7924
Flle(5) 6.6178 22895.67 52.7317 31.9334 15.7093

Quantization Step=500
Filc(1 24.1571 8815.43 56.8770 14.7421 7.4412

FHc(2) 16.9748 18647.47 53.6233 5 1012 2.3760

File(3) 13.2298 28293.92 51.8125 130729 6.1464

File(a) 16.6878 2547245 522688 6.0060 2.6520

File(s ) 17.4233 23089.5 52.6953 300458 14.6485

Tables (4), (5) and (6) present the effects of different types of Arithmetic coding on
encoding and decoding time.

ablc 4:Programmed Adaptive Arithmetic cod
File Name CR MSE PSNR dB ET (Sec) DT(sec)

F Ie(l) 24.1571 8815.43 56.8770 14.7421 7.4412

F te(z) 6.9748 18647.47 53.6233 5.1012 2.1684

F le(3) 32298 28293.92 51.8125 13.0729 6.1464
F le(4) 6.6878 25472.45 52.2688 6.0060 2.6520
F le(5) 7.4233 23089.5 52.6953 300458 14.6485

Table-6:MATLAB Arithmctic codi

｀
able-5: Static Arithmetic codin

File Name CR MSE PSNR dB ET(Sec) DT(Sec)
F に(1) 24.1571 8815.43 56.8770 30.9194 12.0901
F le(2) 6.9748 18647.47 53.6233 12.2617 4.1964
F le(3) 3.2298 28293.92 51.8125 28.9382 10.8889
F c(4) 6.6878 25472.45 52.2688 14.4925 4.8516
F ef5) 7.4233 23089.5 52.6953 60.7936 23.9930

File Name CR MSE PSNR dB ET(Sec) DT (Sec)
File(1 24.0854 8815.43 56.8770 54.2727 75.5513
Filc(2) 16.8965 18647.47 53.6233 253658 34.6010
File(3) 13.1822 28293.92 51.8125 53.1651 74.2721
File(a) 16.6122 2547245 52.2688 28.4234 38.9066
F‖ e(5) 17.3935 23089.5 52.6953 111.7747 156.2662
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5. CONCLUSIONS
From the above results which were done on some selected samples, a

number of conclusion remarks were drawn:
l. Compression ratio is proportional with Block Size and Quantization Step

as shown in figures (5) and (6) respectively.

Figure-5:The Effect of Block Size on CR

The Effect ofQS on CR

Figure-6:The Effect of QS on CR

PSNR is inversely proportional with Block Size and Quantization Step as shown in
figures (7) and (8) respectively.

The Effect ofQS oa PS\A

Figure-7:The Effect of Block Size on PSNR Figure-8:The Effect of QS on PSNR

2. MSE is proportional with Block size and Quantization Step as shown in
figures (9) and (10) respectively.

>

ne Eftect ofBIock Si2ゃ on CR

Block size=512  BIock Size-lo24

The EffectOfBlock Size on PSゝa■

Block Size=512  B10Ct Size=1024

,
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The Effect ofBl∝ k Size onヽ lSE

Block Si2●=1024
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Figure‐ 9:The Effect of Block Size on MSE

3. Encoding and decoding time affected by the Upe of
Arithmetic coding, best results in encoding and decoding time
when using a programmed Adaptive arithmetic coding, where
in adaptive models the probabilities are updated whenever a
symbol is encoded. Programmed Static Arithmetic coding, the
model may assign a predetermined probability to each symbol
in the alphabet, present result better than MATLAB
Arithmetic coding.
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ABSTRACT
This work simulate an artificial human arm. It aims to allow this arm to implement
the actual movement of the human arm in virtual reality by solving the inverse
kinematic of human arm using a hybrid algorithm. Inverse kinematics problem is
not linear; this means that the analytical solutions are available only in limited
cases. This paper presents a strategy based on analytical solutions along with non-
linear optimization algorithm solutions to solve the Inverse Kinematic Problem
(IKP).The analytical solution is used to reduce the size of the problem of variables
from 7 angles to one variable. Nonlinear optimization is used to find the
approximate solution that makes computation time is very small. Virtual reality in
the MATLAB environment provides communication+ and eentrels that have been
developed on the basis of Virtual Reality Modeling Language (VRML).

=

1. INTRODUCTION
Robotics is one of the most important disciplines in the industry

which can be used in the development of new technologies. Synergies
of robots with different applications, such as submarine mission, vehicle
assembly process, vision systems and artificial intelligence allows
innovation and reduces manufacturing costs. For this purpose, it is
important that programmers robot able to visualize and test the behavior
of robots in different circumstances and different parameters [].
Kinematics is the study of motion without regard to the forces that
create it. the representation of the position of the robot end effecter
through the Robotics Engineering (common parameters and link)
forward kinematics [2]. Forward kinematics is a set of equations that
calculate the position and orientation of the end effectors in terms of
certain common angles. This group is created from the equations using
the (Denavit Hartenberg) DH parameters obtained from the bottom
frame. Inverse kinematics problem (IKP) robotic manipulator involves
obtaining the required values manipulator joint position given the
desired end point and direction. What is usually complicated because

ヽ
”
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there is no unique solution and close the form of direct expression of
inverse kinematics mapping [3]. Optimal solution for IKP is linear, and

there is another approach to deal with inverse kinematics using Tomo

by tal is to use the Levenberg-Marquardt method with strong damping

with n variable depends on the problem, which can take a long time.

Some other works only make a 3D virtual that deal with the use of
Matlab for systems simulations , M.Z. Al-Faiz [5] presents architecture

for posture learning of an anthropomorphic robotic arrn using

matlab/simulink with virtual reality. The approach was aimed to allow
the robotic system to perform complex movement operations of human

arm; in this paper only forward kinematic is used in the simulation.
B.Lee et al [6] presents the simulation of humanoid walking pattern

using 3D simulator with Virtual Reality Toolbox. By using the Virtual
Reality Toolbox
incorporated with MATLAB, The simulator was composed of three

modules, namely, waking pattern code, kinematics code and display
code. V.Sanchez et al [1] simulated methodology of the 5-DOF includes

mathematical modeling of the direct, inverse and differential kinematics
as well as the dynamics of the manipulator. This method was applied to
test the robot CATALYST 5 by using a project in Simulink and Matlab
.The method implements the path following in the 3D space and uses

the Matlab- Simulink approach.

The main objective of this work is to show a complete simulation of a
hrrman arm, where it is frroposed anal)rfical soltrtions with non-linear

optimization algorithm to solve the truth and the virtual IKP. Method
allows manipulating the human arm system and visualizing the behavior
of the robot from different points of view.
2. Structure and Kinematics of Human Arm [71

Kinetic mode, high Degrees Of Freedom (DOF) and discusses sr

human model that can be used to predict realistic human arm Positions.

One can deal with by anthropomorphic arm the 7-DOF and carry origin
in the shoulder joint. The first joint is the shoulder joint with 3 DOF.
This means the kinetic chain 3 spherical joints with the shoulder joint,
wrist and single joint of the elbow joint.

‐
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Figure l. Kinematic chain of human arm [5]

The spherical joints have 3 DOFS while the hinge joint has only one
DOF. giving a total of 7 DOFs for this kinematic chain, see Fig l
The homogeneous transformation matrices for the frame transitions are
set up with D-H parameters.

i

It has following transformation matrices where 'c' is cosine of theta and
's' is sin of theta, The forward kinematic represents by T
T=Ar * Az* As* A+ * As* Ao* Az
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Table -l:Numeric Value for D-H Parameters
Frame (ioint) qifrad) di(cm) ai(cm) oi(rad)

1 ql 0 0 π/2
つ
４ q2 0 0 π/2

3 q3 0 0 -xl2
4 q4 0 ι π/2

5 q5 0

6 q6 0 0 -nl2
7 ｎ

Ч 0 0 -nl2
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3. Proposed Method of Inverse Kinematics
A) Analyical part

The proposed algorithm can be explained in the following (see

Fig.2):
Step one: In first we find 9a because it depend on posture of arrn , tg
represent the distance between start point and target point as shown in
fig .1 , according to kinematics equation

Then g+ : cos-L 
ts' ;:n:-t" Q)2l4Is

,, _{ton-'(#) - * if d"z + o
(3)

t ;-v ifdz-o
θ3~Sこれ

1こ

5εοSθ4+ι4
(4) ‐

Step 4:In this step flnd  θ2:By cOmpare dy 、vithた 2
αy=15(S2S4~σ 2ε3σ4)~ι 4ε2C3
Rearrangementた 2 and dy
S2(ι 5σ4σ3+:4σ3)十 c2(ι5S4)=た 2
~σ
2(15σ 4σ3+:4ε3)+S2(ι5S4)=α y
Let

た3=:5σ 4ε3+ι 4ε3
た4=:5S4
Let

l#:l == I[]  
」1131~lll;l

From iatest equations、 ve get

(5)

(6)

(7)

０
０

(10)

(11)

Atter these procedure θl,θ 2,θ3α71d θ4 are fOund
ln next steps we flnd θ5,θ6αηα θ7
A.*A2*A3*A4iS Specifled,to flnd A5*A6*A7apply

As*Ao*At= [Ar*A2*Ar*[n ]-1 *T (12)

A5*A6*A7=

|」

〕

llililfisili6 1ilil〔 l:il:iiii:7 :::jiCi51(13)

(15)

θ6=Sin~l r23

θ5= ltan~丁
ii:ril=ri3≠

0
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Figure-2:Flowchart for the simplification of human arm inverse kinematic producer

From previous derivative all angle (0t,02,03,05,0u and 0) are made
in term single angle a therefore the our problem convert from
multivariable to one variable which reduce the time required to find the
solution .until last step analytical solution is performed.
B) Optimizationpartレ
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Now the non linear optimization solution is performed depend on

seven angle which depend on single angle g therfor the next problem
has single varaible .The robot kinematics is mathematically represented

byasetof constraints onthejointdisplacementvector 0:10 r 0z' '0
,f' ,where 7 is the degree of freedom. A positional constraint is
represented as

p(o) - pd (17)
Where
The vector 0 depended on the value of g from provieus procdure
pd Target position in the space.

p(0) Calculated position as function ofjoint space

For an orientation constraint, .r
R(0) - Rd (18)
Rd Target orientation in the space.

R(0) Calculated orientation as function ofjoint space

In both cases, the residual vector e(q) can be defined as

,(A\ _ [ pa - P@) (for a positional constraint) 
^ 

q\'\" "' [o(R' * R(g)r )(for an orientational constraint) \^ - /

where a(Rr) = [fr tan-.#,,,J t eo)

(21)
lTsz - Tzzl

I - lrr, -rstl <rr> \
Lrrz - \z)

Our interest starts from solving the following nonlinear Equation [4]:

e(0):0 (23)

The conventional IK based on NR tries to find g : 0 * which satisfies
Eq.(23) by the following update rule

qk+7 - qk - J-re(?k) (24)
Where

| = ve(ok) (2s)
After introduce both analytic and non linear optimization the IK
solution will be considered now. The explanation of solution for the n
kinematic chain introduced in the previous section is present. It required
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minimizing the error between the target transformation matrix and

calculated transformation matrix ,the problem can be formulatizing as

optimization problem as following:
Minimize

θ(θ l′ θ2′ θ3,θ4,θ5,θ 6′ θ7)

Sutject to

θ
`:≦

θι≦θ・ ι i=1.… 7

eI:?: 1lπ    π  π   π   π
~   L  2      2      2   12

π],θ・ =暉 生 二望 二

4. Optimi zation Problem

For optimrzation of the composition of a common reference angle

regarding the similarity measure, one can use the Levenberg-Marquardt
algorithm. The algorithm provides a standard way to solve problems

non-linear least squares before they meet again to the minimum of the

function also expressed the sum of the squares. Combinating Gauss,

Newton's method most ratios, the algorithm unites the advantages of
both methods. And then, using the method of LM, and achieved more

robust convergence behavior at points far from the local minimum,
while the faster close to the minimum. Become because of numerical
stability, and the way LM also a popular tool to solve inverse
kinematics [8].

5. Levenberg-Marquardt Algorithm
The Levenberg-Marquardt (LM) method uses the second-order

derivatives of the mean squared etror, so that better convergence

behavior is observed. It is assumed that function f (6) and its Jacobean J

are known at point [0]. The aim of the Levenberg-Marquardt algorithm
is to compute the variable vector[0] such that

θ(θ)=dι ―F(θ )

is minimum[9].

(27)

6. Virtual Reality
Virtual reality is a technology that is often as a natural extension of the

3D computer graphics with advanced input and output devices. This
technology has only recently matured enough to justiff serious
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engineering applications. Many companies and government agencies
investigating the application of virtual reality techniques to design and
manufacturing processes. . The state technology for the implementation
of projects designed to demonstrate the feasibility and usefulness of VR
in facilitating the design of the product. In very simple terms, VR can be
defined as a synthetic environment that gives a person a sense of reality.
This definition includes any artificial environment that gives the feeling
of "being there. VR generally refers to computer environments that are
created, though there are many environments in which immersive not
manufactured entirely by computer. Examples of these include the use
of a video camera for environments attendance for after or use
embedded devices immersive. more people exposure to the concept of
VR through reports in the media and scientific joumals, and science
fiction, but researchers who participated in the actual knowledge of VR,
and applications are more mundane, and the problems are much more
real [10].

7. Proposed Model and VR Simulation for a Human Arm
The simulation was built using MATLAB with virtual reality tools.
MATLAB provides a powerful tool including geometry functions that
are used frequently. It is easy to implement control algorithm including
the visualization of the data used in the algorithm. In addition, using the
tools of virtual reality, and it is convenient for the treatment of 3D
objects defined with VRML (virtual reality modeling language). Thus, it
is possible to build a simulator within a relatively short period. Virtual
reality (VR) is a system that allows one or more users to move and
interact in a computer environment that was created. Basic VR systems
allow the user to use visual information from computer screens.
Simulation contains two parts, the first, building a model of the human
arm in VRML, second, simulink model constitution in MATLAB and
then call and run the sample using tools virtual reality human arm.
To achieve a model of human arm VRML save your file as All.wrl,
which is the file format for virtual reality programs, VRML model is
designed for the human arm in the world 2.0 V-Atbany. Fig.3 shows
VRML model of the human arm.
And can be seen by the manipulation simply VRML Simulink model in
Fig.4, where a human arm several blocks: the first goal career one name
that represents the desired goal, and is calculated second block
kinematics inverse desired goal required for the production ofangle Part
and Part III is to simulate using VR. Fig.5 shows the proposed method
of drawing block.

-..
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8. RESULTS AND DISCUSSIONS
Simulate human arrn and built in VR technology, and achieved a

solution of inverse kinetic equations MATLAB Ver.R2009a. Fig.4
represents the relationship between MATLAB \ Simulink, which solves
the equations of kinetic, and VR model of the human arm. Calculated
orders are executed to transfer this model in MATLAB and then in the
VR. As input sources to block sites that are part kinematics target, and a
joint account human arm angle using the hybrid method. Using VRML
editor to build a V-MATLAB, is allocated form. Then followed by
planning programming box in Simulink so that the user can control the
human arm structure appears in a VRML browser through MATLAB
controls.
Being simulated to validate the algorithm derived inverse kinematics.
The experiment was carried out to veriff the validity of the proposed
method derived in Section 4, with the positions and orientations
unreachable.
In the experiment Y : 14 cm and z: 6 cm, while X vary from 35 cm to
40 cm. Table 2 shows the error-norm and CPU time in the proposed
method and the method of LM. The trial results indicate that the inverse
kinematics derived to provide the minimum error with the minimum of
time with respect to the other way, because the optimization problem
with a single variable that provides the minimum error, as shown in this
experiment. In addition, human arm movement appears in Figure 6.

マ

・
レ

奪猟

き―

輝轟

Figure-3: The VRML modelof the Human arm
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Figure-4: The Simulink model for A Human Arm

9. Conclusion
This paper describes the feasibility of simulation and animation of a

human arm in order to assess the performance of robot design to meet

some of the rules of the contest. The first interest for the use of virtual
reality is to enable students to assess quickly and clearly visualize the
movement of the human arm, second benefit is the interaction between
the robot and its environment before spending a lot of time in building
the robot. Strategy based on combining the solution with analytical
solutions of nonlinear optimization algorithm that will be proposed to
the IKP solution. combine these methods address the weakness each

other, through the use of analytical solutions, which provides angles

manipulating common effectors end of the arm to a certain position, and

can be accessed any direction with the best method which is linear
solution approximation when the solution is to provide flour. With the
use of MATLAB Ver.R2009a, and results are obtained satisfied with
reducing both the error and CPU time from the way that provides the

ability of the proposed algorithm to solve the inverse problem of the

human arm real engine for several DOF.

Abbas,Mohammed and Abduladhem

Table-2: CPU time and norm error of experiment result r,''ith x vary from to 40

CPU Time(sec)
ofproposed

CPU Time(seC)

ofLM
llell in (cm)
ofproposed

‖ell in(cm)
ofLM

0.0250 1.0698 0.285x 0‐ 3 0.

0.0
‘
υ 1.1378 0 79x 0‐ 3 0 192

37 0.0 1.2134 0 79x 0‐ 3 0 200

0.0 1.2289 0 76x 0‐ 3 0 217

39 0.0 39 1.2176 0 71x 0・ 3 0 247

40 0.0 92 1.0510 0 74x 0‐ 3 0 309
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Figure-5: Block diagram for Human Arm Movement based Kinematic

Figure-6:Human arrn movements

）ヽ
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Run propose method to find
Joint Aneles

Simulate the motion of human arm
with computed joint angles in VR
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ABSTRACT
The paper presents a proposed steganography algorithm to hide text message
without changing cover image. The stegao image and the cover image are same. The
cover image is not used for hiding but it is used to extract the keys for translating
the message. The algorithm has flexibility to choose the length of key and not give
the ability to make change on the cover image because of invisibility.

1. INTRODUCTION
Online facilities are closely tied with securing the information

exchanging over communication media. To make this information out
of used of the intruders, many techniques have been used. one of these
techniques is steganography. The idea of Steganography, which dates
back to the time of ancient Greeks, focuses to

1- hide the secret message from being seen or discovered.
2- avoid draw the suspicion to existence of hidden message.

steganography "in Greek means covered writing" is the science of
hiding information by embedding message within other one [l]. Unlike
cryptography, which simply conceals the content or meaning of the
message, Steganography's goal is to hide a message while steganalysis
is's goal is to detect the presence of hidden message.12,31.
The generic description of image stenographic process has two
important functions, embedding part and extracting part. The
embedding function E is a function that maps the cover-object c,
message m to a stego-object s.

E(c, m) : s.

The extracting function D is a mapping from s to m.
D(s) : m

The major goal of image steganography is to enhance communication
security by embedding a secret message into digital cover_image,
modiffing the nonessential pixels of the image [4]. Stego_iamge, is the
resultant of encapsulate or embed secret message in cover_iamge, is
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sent to the receiver through a public channel. The opponent may attack

the stego_image if he/she doubts it carries any secret message.

For this reason, an ideal steganography scheme is to keep the stego from
drawing the opponent affention; the message should be hidden inside

cover without changing its visible properties. It should look higher
similarities between cover and stego. The dissimilarities should not be

discovered by humanin such a way that the visual system can recognize

the different colors or the human Auditory System (HAS) can recognize

the different audios.
Any steganography technique has to satisfy three basic requirements

[5,6,7]. The first requirement is perceptual transparency or Stego-image
quality, i.e. cover and stego must be perceptually indiscernible.
Transparency between cover-images and stego-images is often
computed using the peak signal-to-noise ratio (PSNR). The second

constraint is capacity ofthe embedded data (message) that can be

hidden with an acceptable resultant stego-image quality. Capacity is

measured in bits per pixel (bpp) in images and in bits per second (bps)

in audio. Lastly, robustness can be explained as the amount of
modification the stego-image can withstand before an adversary can

destroy hidden information.
It can say that a scheme does have its contribution to this field of
research if it proves to either increase the payload while maintaining an

acceptable stego-image quality or improve the stego-image quality
while keeping the hiding capacity at the same level, or beffer if it can
get both promoted.
There are many steganographic schemes have been proposed for still
image. A simple and well-known approach is directly hiding secret data

into the least-significant bit (LSB) of each pixel in an image. Based on
LSB substitutions many algorithms are presented for improving the
stego-image quality[8,9,10]. All these algorithm focuses to shorten the
dissimilarities between cover_image and stego_imageas much as can.

In 2003 an algorithm is published that proposed an algorithm to hide
information without changing cover image [11]. The idea is interested
since no differences between the actual image and the cover image but
actually it suffers from the following weaknesses:

1- Unnecessary additional operations which cause increasing in
complexity

2- There is a big chance that the algorithm may not find all possibilities
from zeros to ones with of length n- I .

3- Large size ofkey.
The algorithm in that paper studied well and some developments has

been made for improvement.
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2. Proposed System
This algorithm is designed for concealing text inside digital

image, by using (XOR) operation, without any changing in the cover
image to prevent as much as possible any suspicion lead to finding the
hidden text. As it is known the algorithm composes of two stages:
Embedding and extracting. Below is the algorithm of each stage.
2.1 Embedding Algorithm
Input: Cover image and secret data.
Output: Key
Stepl: Divide the cover image into blocks, each of size n x n.
i:0;
Step2: Repeat

i:i+1
Obtain all possible combinations for the (block); by:

For each row, exclusive-or all bits. Append the result to get binary
sequence rk2...r(n).
For each column, exclusive-or all bits. Append the result to get
hinary sequence c I c2...c(n).
Save: the block number and (row) or (column) obtained from (a) and
(b)
Until all required combinations of (n) bits are obtained.
Step3: Divide the binary bits of secret message into blocks of n bits
length
Replace each block with block number that has the same value.
Example:
Input: consider the bit representation of cover image is depicted in
figure (l-a), the bit representation of secret image is: 0101000rr00r.
Stepl: The first step is to divide the cover image into blocks each of
size (n x n). Suppose that the block size is 3. Figures 1-b and l-c
represents first and second block respectively.

b
block l

ヤ

Binary cover image
Figure-l:

C

block2

1 0 0 0 1 1 0 1

1 1 0 1 0 0 1 1

1 1 1 0 1 0 1 1

0 0 0 1 0 1 0 1

1 0 1 0 0 1 1

0 0 0 0 1 0 1 0

1 0 1 1 1 1 0 0

0 1 0 1 0 1 1 1

a
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Step2(a): Exclusive-or all bits in each row to get rlr2r3.
r1 : 1 O0 @0 : 1

12: I 01 O0: 0
13: I e)l @l : 1

The result is 101
Step2(b):Exclusive-or all bits in each column to get clc2c3.
cl:1 01 @1: 1

c2:001@1:0
c3:0 OO @1 : I
The result is 101
The result of blockl

[ 10l,l,row] and
[ 101,1,column] ignored because of the same result

Performing the same operation on block 2 gives:
[000, 2, row]
[011, 2, column]

continuing with step2 until all required combinations are
obtained(Table 1).
From Table l, all combinations of n bits are extracted with
block number and row or column and considered to be the
reference keys (Table 2).
53:
The secret binary message is divided into blocks of length 3.
Each block is replaced with its key. (Table 3)
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Block no. Test Result Status

0    1 Row 101 saved
1 Col 101 Ignored

。  2 Row 000 saved
●  2 Col 011 saved

・    3 Row 110 saved
Col 100 Ignored

4 Row 011 Ignored
4 Col 101 Isnored

・   5 Row 010 saved
Col 010 Ignored
Row 000 Ignored

6 Col 101 Ignored
Row 010 Ignored

●   7 Col 001 saved
Row 001 Ignored
Col 010 Ignored
Row 101 Ignored

9 Col Ignored
Row 110 Ignored

10 Col 011 Ignored
Row 101 Ignored

Al- Mustansiriyah J. Sci. Vol.24,No5,2013

Table-l:The output of step 2

T able-2: Reference keys

Reference keys

[000,2,rowl
「001,7,columnl
「010,5,row]

[OH,2,column]
100,13.rowl
「101,1,rOw]

[HO,3,ro w]
[lH,21,columnl

2.2 Extracting Algo rithm
Input: key and cover image
Output: Secret message
for i:: 1 to number of keys
Obtain the block(nxn) from (k"y)'

441

Block

no.

Test Result Status

Col 110 Ignored

Row 000 Ignored
Col 101 Ignored

13 Row 100 saved

Col 010 Ignored
4 Row 011 gnored

4 Col 101 gnored

Row gnored

Col 011 gnored

Row 100 gnored

Col gnored

Row 011 gnored

Col gnored

Row 000 gnored

Col 101 gnored

9 Row 000 gnored

9 Col gnored

20 Row gnored
20 Col 011 gnored

Row saved

Table-3: secret message

Secret
message.

key

010 [$,rowl
100 113,rowl
011 [2,columnl
001 IT.columnl

″
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if key is row then for each row, call step2 (a) and
r112...r(n)
else call step2 (b) and save the result c1c2...c(n).
end.

Saad, Ahmed, Ali

save the result.

Example:
The first key
010
The first key
is 100
The first key
result is 011
The first key
result is 001

is [5, row]. Step2(a) is performed on block 5. The result is

is [3, row]. Step2(a) is performed on block 13. The result

is [2, column]. Step2(b) is performed on block 2.The

is [7, column]. Step2(b) is performed on block 7. The

1.

3. RESULTS AND DISCUSSIONS

The algorithm is written in visual basic. The cover image is JPG type
with 256*256 size. Figure (2) shows the user interface to select cover
image and plain text to be sent. The figure also shows the keys that
extracted with 8 bits length. The experimental result points to the
following
The length of key depends on the block size mentioned in stepl. Figure
1 I shows the key of length 8 and the block size is 8*8. (advantage)
Mostly the number of keys extracted to send to the receiver is more than
the length of plaintext. (disadvantage)
The cover image is used to extract keys not to hide information. This is
considered as strength of the algorithm but on the account of the key
length.
As a future work it is important to address the drawbacks by reducing
the the number of keys. Below some suggestions
A:- A database of images is stored in both receiver and sender, so the
cover image is not necessary sent, only the image index number. So the
cover image is not visible to the intruder.
B:- Replace row and column with 0 and 1.

C:- Give flexibility to the sender to choose the suitable block size.

つ

´

3.

4.
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ABSTRACT
The variation in sky lurninance caused by weather,season and tilne of the day are

difflcult to codify.To meetthis,a tined syStem facing the equator has been optically

designed for studying the diumal variation of somc statistical estilnators、vith time.

These estimators are;contrast based on statistical properties(C′ ),MiCkelson contrast

(3め and Signalto Noisc Ratio(潔 R).The analysis process has been pcrfol:lled for
●vo selected lines upon the captured images for the scene inside the optical system;

one passes through homogeneous white region and the other line passes through

different color regions. According to linc's position and among the different used

estirnators,one can noticed the enhancement behavior to the distortion effect in the

case of line that passes through homogcneous white region for SA事 ぞ relationship
with tiine.Besides,there is no effect can be scen in the case of that passes through

different color regions.

1-INTRODUCTION
The sunlight is absorbed when light passes through the

atmosphere,and sky light cOnsists of light scattered by particles in the

air.On the way,passing through the atrnosphere the light is attenuated,

and its spectrum changes[1].The atmosphere is transparent for the

visible solar radiations;this propeJり deflnes the so― caned atmospheric
window. This is a key point since it inakes it possible to heat and to

light the Earth's surface[2].The management of data obtained from a

scene with a large range of lunlinance is an important issue in image

acquisition, analysis and display[3].Image analysis combines
techniques that compute statistics and rneasurements based on the gray‐

level intensities of the irnage pixels. One can use the image analysis

functions to determine whether the image quality is good enough for the

inspectiOn task, understand its content and to decide which type of

inspection tools to use to handle the application. Image analysis

functions also provide measurements that one can be used to perform

basic inspection tasks such as presence or absence veriflcatiOn[415].

"
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2-Image Data Analysis Methods
Computer image analysis largely contains the field of computer

or machine vision, medical imaging, make a heavy use of pattem
recognition, digital geometry and signal processing. The applications of
digital image analysis are continuously expanding through all areas of
science and industry. Computers are indispensable for the analysis of
image amounts of data for tasks that require complex computation or for
the extraction of quantitative information [6].

Image analysis combines techniques that compute statistics and
measurements based on the RGB intensity levels of the image pixels. In
this process, the information content of the improved images is
examined for specific features such as intensity, contrast, edges,
contours, areas and dimensions. The result of analysis algorithms are
feature vectors that give quantified statements about the feature
concerned [7].

3-Contrast Computing Technique
Among the most widely used statistical estimators to analyze

images and according to Zuheri [8], the results of contrast computing
technique based on statistical properties are efficient in determining
contrast values.
The estimates of the mean value of a random variable .r/ whose
probability density function isp(x) is:

p=t, =lx,p(1) .................... .........(l)
,=0

Where

ρ←′)=
M(,,)

K
.......(2)

Here M(x) is the number of times that can obtain the value x; in data set
and K is the total number of random variable in the set, while the
estimates of the standard deviation is given by the following equation
[8][et:

lx′
_二
)2′lx,)…………………………………… (3)

Conrast computing technique (Cr) defined as the standard deviation over the mean
value given by [8][9]:

tlc. =:.............. .............. .....(4)
tt

While the ratio of the mean gray level to its standard deviation is denoted as SNR
which is defined as [8][0]:

ヽ

(=lI
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The contrast can also be specified by the contrast modulation (or Michelson
contrast), C,rz. Michelson contrast measure is used to measure the contrast of a
periodic pattern such as a sinusoidalgrating defined as[8][l l]:

%=:「考ソ滋0≦ %

ヽ

4-The Optical Builted System
The designed system shown in Fig.(l) is a tilted wooden box with a square

apertures (40x40, 30x30, 25x25,20x20, l5xl5, & l0xl0cm2) facing the equator.
The wooden box was painted by a grey paint.
The scene is located at the end of the wooden box facing window's aperture such
that the center of aperture window is optically in line with that of the scene.

Figure- 1 :Schematic diagram of experimental setup

S-Data Acquisition Site
Baghdad (Latitude 33.2" N, Longitude 44.2" E) is the capital and

biggest city of Iraq. The climate of Baghdad region (which is part of the
plain area at the central of Iraq) may be defined as a semi arid,
subtropical and continental, dry, hot and long summer cool winters and
short springs.
6-Acquisition Data

By using the optical builted system shown in Fig.(l), images of
the scene have been captured with size of (323x229) pixels. The
capturing operation has been done at regular intervals from sunrise to
sunset at two clear days (May 27 and December 22 in 2010) and two
other haze days (october 22 and November 27 in 2010) as shown in
Fig.(2). The analysis process has been performed for two selected lines
upon the captured images. one of them passes through homogeneous

447



Diurnal Variation of Some Statistical Estimators with Time

white region (no.224) and the other line passes
pigments (no.l65). The previous lines' locations

Fatin,Ali and Amal

through different c010r

were shown in Fig。 (3).

●

BNONl
27-5‐2010

2216°‐Clear

(a)

RNONI
22‐ 10‐2010

38.2・‐Haze

(b)

BNONl
27‐ 11‐2010
44.19°‐Haze

C)
Figure… 2:Captured images under difFcrent tilted angles and weather conditiOns fOr:

(a)BefOre Noon(BNONl)using 40x40 cm2
(b)At Noon(RNONl)using 40x40 cm2
(C)BefOre Noon(BNONl)using 40x40 cm2
(d)BefOre Noon(BNONl)using 40x40 cm2

224

Figure-3:One of the captured images with the extracted horizontal lines upon it

ヽ

BNONl
22-12-2010

48.2・‐Clear

(C)

ヘ

165
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7- RESULTS AND DISCUSSIONS
According to the fact that most sensitivity of human eyes is to

the yellow-green light, the G-band will be handled in the next results
discussions.

7.a The Horizontal Extracted Line That Passes Through
Different Color Regions (no. \165)

The distortion and high interior illuminance effects distinguished
significantly upon the captured images. That role can be seen obviously
by noting Fig.(a) for diurnal variation of Michelson's contrast with time.
Based on statistical properties, the resulted contrast (i.e. statistical
contrast) as in Fig.(5) seems to be best than that for Michelson. The
role of window's aperture area takes place in contradiction to that for
Michelson contrast where no significant role can be noticed for the
different areas of window's aperture. Fig.(6) represents the diurnal
variation of llCt with time for the horizontal extracted line number 165

for all dates.

7.b The Extracted Line That Passes Through Homogeneous
White Region (no.224)

Due to line's passage through homogenous white region, a
different behavior for each contrast with time was noticed. This can be
noticed in Figs.(7) and (8).
According to the previous result, one cannot use the contrast in its fwo
types in the case of line number 224 to represent the diurnal intensity
variation with time because of its incorrect representation for an
intensity variations with time.
Regions in which lines were extracted are affected strongly. The
effectiveness appeared upon the statistical estimator that best described
the variations of intensity with time. A significant role for statistical
contrast takes place in the case of line number 165 to no role in the case
of line number 224.
Figure(9) shows the diurnal variations of SNR with time for the
horizontal extracted line number 224 for all dates. No role for the area
of window's aperture area can be noticed in such relationships except
for the case of higher interior illuminance presented in Fig.(9c). The
distortion effect doesn't appear in such relationship shown in Fig.(9a).
This presents a good enhanced estimator for such situation without any
processing in contradiction to that for line number 165.
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s.CONCLUSIONS
Regions in which lines were extracted are affected strongly. The

effectiveness appeared upon the statistical estimator that best described
the variations of intensity with time. Thus, a significant role for
statistical contriut takes place in the case of line number 165 to no role
in the case of line number 224.

In SNR relationships with time and according to line's location,
different behaviors for the distortion case have been noticed. An
enhancement for distortion occurred in the case of line passing through
homogeneous white region in its relationship with time. Besides, there
is no effect seen in the case of line passes through different color
regions.
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ABSTRACT
This paper presents a way of constructing a system capable of determine the
dimensions and reconstructs a 3D shape for symmetric wooden object based on
laser triangulation technique to find the depth of object. The results show that the
proposed algorithm for reconstruct 3D surface of object is accurate and get rid of
the difficulties in reconstruction symmetric wooden object using captured images by
photo detect. Also, the images efficiency is less when the angle between the photo
detector and the illumination source is very small.

1. INTRODUCTION
To understand the complexity of laser triangulation scanning process we
have to understand its working principles first. A laser scanner is a well-
known non-contact measuring and scanning device, widely applied in
reverse engineering process used for acquisition of surface forms of
3D objects as well as in other fields of science, especially in
medicine U,2,3]. Their main components are illuminant and a sensor,
which is usually CCD camera. The illuminant can be either coherent or
incoherent. However, coherent illuminants such as lasers offer several
distinct advantages over incoherent light sources [4]. The scanner
design is very straight forward, involving simple trigonometry. The
image captured by the webcam is 2D. The depth of the object cannot be
determined from the image. In order to find the depth, laser scanning is
done. In laser triangulation, the laser is projected over an object and the
image is captured by a camera. Since the price of components used also
affect the accuracy of the laser scanner, higher price and branded
components will produce better result than low price components.
Hence, higher the accuracy to cost ratio, higher will be the optimization.
The line joining the laser, object and the camera makes a triangle; hence
the term triangulation is coined [5]. The purpose of a 3D scanner is
usually to create a point cloud of geometric samples on the surface of
the subject. These points can then be used to extrapolate the shape of
the subject (a process called reconstruction). If color information is
collected at each point, then the colors on the surface of the subject can

"
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also be determined. 3D scanners share several traits with cameras. Like
cameras, they have a cone-like field of view, and like cameras, they can
only collect information about surfaces that are not obscured. While a

camera collects color information about surfaces within its field of
view, a 3D scanner collects distance information about surfaces within
its field of view. The "picture" produced by a 3D scanner describes the
distance to a surface at each point in the picture. This allows the three
dimensional position ofeach point in the picture to be identified [6].
2. Laser Scanner Triangulation
3D Modets can be used in a large range of exciting applications areas:
Animation, Architecture, Dentistry, Education, Fashion and Textiles,
Forensics, Games, Industrial Design, Manufacturing, Medical, Movies,
Multimedia, Museums, As-built Plants Rapid Prototyping, Toys, and
Web Design [7].
The basic geometrical principle of optical triangulation is shown in Fig.
(l). The collection of the scattered laser light from the surface is done
from a vantage point distinct from the projected light beam [8].

Figure- l : Laser based optical triangulation.

The light source and focusing optics generate a collimated or focused
beam of light that is projected onto a target surface. An imaging lens
captures the scattered light and focuses it onto a photo detector. The
photo detector may be either a lateral-effect detector for high-speed
measurement, or a CCD for environments with high background light.
As the target surface distance changes, the imaged spot shifts due to
parallax. Knowing the angle (0) of a triangle relative to its base
(baseline b) determines the dimensions of this triangle. To generate a
three-dimensional image of the part surface, the sensor is scanned in
two dimensions, thus generating a set of distance data that represents
the surface topography ofthe part [9].
3. Experimental Setup
The system consists of: illumination source, photo detector, rotary table
and processing unit as shown in fig.(2). The illumination source is the
gas laser (He-Ne, ML800, power:lmw, wavelength is 600-700nm,
divergence l.7mrad). The photo detector is a CCD camera 16 Mpixel

ヽ

』
一

υヽ
ドイ
‐
一

は
０

456



Al- lt,lustansiriyah J. Sci. Yol.24,No 5,2013

from Nikon Coolpix (4300), image size (1280x720). A camera placed
parallel to the laser source which captures the image of the object while
it is scanned. A rotary table (rotate 360 degree with clockwise) to place
the object on during the test and scanned it horizontally. Finally is the
controlling, operating and image processing unit. In this work, the
object is symmetric wood has dimensions (4x3x2) cm. We have chosen
a wood body, where the previous attempt failed because a complex
logarithmic computation was needed and also required a high resolution
camera t10]. To select suitable sites for equipment tried several
distances between the source, body and camera at different angles, Best
results obtained when the distance between the source and the body is
20 cm, also the camera and the source is 30cm. the angle of the camera
corner can be determined which is (33.69'). Also we capture 72 images
for the different faces of the object which angle of object rotate was 5

degree. The first face includes 2l images and the second face is 15
images, similarity with the other faces of the shape.

Figure-2: System diagram.
4. Images Processing Algorithm
The image preprocessing algorithm consists of edge detection, noise
removing and extract the dimensions of object done automatically in the
same program. Algorithm written by MATLAB software (version
M0l2a), the algorithm steps can be given as follow:
1. Read image as bmp format from CCD camera recorder.
2. Convert color image to grayscale intensity image.
3. Convert image to binary image, based on threshold. Another word for
object detection is segmentation. The object to be segmented differs
greatly in contrast from the background image.
4. Invert the image representation, the (black) background pixels
become (white) foreground.
5. Smoothen the Object, in order to make the detect object without
noise, we smoothen the object by eroding the image with a rectangle
structuring element. We create the rectangle structuring element using
the "strel" function.

"
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6. Find initial point (xi, y:) on each boundary for object using "min" and
"find" function (smallest elements in array and find indices and values
of nonzero elements) and calculate the distance for object polygon in
order to extract the dimensions.
7. Compute standard statistical computations; include median, mean,
standard deviation and coefficient of variation to compare among
dimensions.
8. Write image to graphics file as bmp format (save image).
9. Finally, display graphically the object using "fi113" function creates
flat-shaded polygons (filled 3-D polygons).

5. RESULTS AND DISCUSSION
After apply of the laser triangulation method we can display the results
that we have obtained in the above-mentioned distances in experimental
setup paragraph. Fig. (3) show raw data for some first face of the object
has dimension 1280 in rows and 720 in columns at BNP format. Fig. (a)
illustrate raw data for second face after rotating the object at angle 90
which image take same dimensions and format. Also the third and
fourth faces of the object which gives us similar results of the first two-
faces when rotate the object to angle 360", with the presence of some of
the differences that have been occurred because of the statistical
calculations to determine the dimensions of object. Therefore, Results
will show the first and second faces only.

Figure-3: Raw images for first face.

Figure-4: Raw images for second face.

After using image processing algorithm on the raw image data to all
faces, we get different shape dimensions of each frame (image capture)
in pixel unit. Fig. (5) and (6) shows the first and second face for object
shape after the implementation of a processing algorithm to extract the
three dimensions. Also, table (l) and (2) illustrates the statistical
operations on images which include median, mean, standard deviation
(std) and coefficient of variation (cv) for object dimensions in x-axis
and y-axis of the captured image. Table (1) the values of the x-axis have
changed to the rotation of the object at angle of 90o around the vertical

ミ
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axis. Thus, the x values for first face in table (l) is the first dimension
(object length), and in second face values represent the second
dimension (object width), and the y-axis values represent the values of
the third dimension (object height). Finally, after finding the dimensions
of the object, the program will draw three-dimensional shape within the
limits of the original images captured by the camera. The difference y-
axis values in the tables due to the presence of some of the obstacles
that lead to do not accuracy in measurement. Including the use of metal
rotary table are reflect light falling on them, as well as the loss of high-
accuracy components parts of the measurement system through distance
and inclination, etc. That needs high calibration by the designer. There
are some losses in hardware components, such as resolution of the
photo detector (CCD) and illumination source (laser).

- ! rl.

）́

Figure-5: Images after processing the first face.

Figure-6: Images after processing the second face.

Table-l: Statistics of selected images.

Fig. (7) Illustrate the comparison between the image of the final result
(3D image reconstruction) obtained after the implementation of the
program with the original image of the object before to processing.
when the image size is the same, the results showed a match between
the original image and the image that was built in this program.

(a) (b)
Figure-7: Compare between: (a) original object. (b) final result.

● ● ●

face value Im.1 lm.2 Im.3 median mean std CV
X 119 つ

ん 119 119 1.527 0.0128

v 79 84 84 3.214 0.0389

つ
‘

X 89 90 91 90 90 1.527 0.0169

v 80 3.000 0.0361
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6. CONCLUSIONS
Laser triangulation method provides a rapid and simple way for obtaining
distance measurements in the laser scanner system which is used in the 3D
image reconstruction because of its simplicity and robustness gives more
accurate results as compared with other technique. The reconstruction
investigation was at different distances between parts of the system, the
results showed that the quality of the images less whenever the angle between
the photo detector and the illumination source are very small. In this research,
we get rid of the difficulties in reconstruction symmetric wooden object
image through the use of appropriate algorithms based on morphological
processing. The proposed algorithm has been tested on different sizes of
wooden object and gave results very approach of reality through the graphical
drawing of the object within the software automatically and without the use
of other programs.
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ABSTRACT
This paper attempts to undertake the study of image fusion ,by using pixel -based
image fusion techniques i.e. arithmetic combination ,frequency filtering methods of
pixel -based image fusion techniques and different statistical techniques of image
fusion. The first type includes Brovey Transform (BT), Color Normalize
Transformation (CNT) and Multiplicative Method (MLT). The second type includes
High-Pass Filter Additive Method (HPFA and HFA). The third type includes Local
Mean Matching (LMM), Regression Variable Substitution (RVS). This paper also
devotes to concentrate on the analytical techniques for evaluating the quality of
image fusion (F) , in this study will concentrate on determination image details
quality specially tiny detail and edges by uses two criterion edge detection then
quality measurements determine and estimation homogenous to determine
homogenous in different regions image using Mean (p) and Standard Deviation
(SD), Signal -to Noise Ratio (SNR) ,and compute Absolute Mean Square Error
(AMSE),Mean Square Error (MSE), Peak- Signal- To -Noise Ratio(PSNR) ,

Mutual Information(Ml) and Spatial Frequency(SF) ,therefore will be evaluation
active and good because to take into consideration homogenous and edge quality
measurements .

I. INTRODUCTION
Satellite remote sensing offer offers a wide variety of image data with
different characteristics in terms of temporal, spatial, radiometric and

spectral resolutions. Although the information content of these images
might be partially overlapping [], imaging systems somehow offer a
tradeoff between high spatial and high spectral resolution, whereas no
single system offers both. Hence, in the remote sensing community, an
image with'greater quality'often means higher spatial or higher spectral
resolution, which can only be obtained by more advanced sensor[ 2].
However, many applications of satellite images require both spatial and
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spectral resolution to be high. In order to automate the processing of these
satellite images new concepts for sensor fusion are needed. It is, therefore,
necessary and very useful to be able to merge images with higher spectral
information and higher spatial information [3]. Image fusion is a sub area of
the more general topic of data fusion. So, satellite remote sensing image
fusion has been a hot research topic of remote sensing image processing [4].
This obvious from a mount of conferences and workshops focusing and data
fusion, as well as the spatial issue of scientific journals dedicated to the topic.
Previously, data fusion, and in particular image fusion belonged to the world
of research and development. In meantime, it has become a valuable
technique for data enhancement in many applications. The term "fusion" get
several words to appear, such as merging, combination, synergy, integration,
and several others the express more or less the same concept have since
appeared in literature. A general definition of data fusion can be adopted as

follows "Data fusion is a formal frame work which expresses means and tools
for the alliance of data originating from different sources. It aims at obtaining
information of greater quality; the exact definition of "greater quality" will
depend upon application. Many image fusion or pan sharpening techniques
have been developed to produce high - resolution multispectral images. Most
of these methods seem to work well with images that were acquired at the
same time by one sensor (single - sensor, single - data fusion).It becomes.
therefore increasing important to fuse image data from different sensors
rvhich are usually recorded at different dates. Thus. there is a need investigate
techniques that allow multi -sensor, multi- data image fusion Generally,
image fusion techniques can divided into three levels, namely: pixel level,
feature level and decision level of representation. This paper was focused on
using previous dependable merge methods to do simulation process by use
camera to make satellite images merge [5]. At suggestions by use contrast
and homogenous to purpose evaluated results image quality, In this study
rvill concentrate on determination image details quality specially tiny details
and edges by uses criterion Edge detection then contrast determine.
2. Arithmetic Combination Techniques
This category includes simple arithmetic techniques. Different arithmetic
combinations have been employed for fusing MS and PAN images. They
directly perform some type of arithmetic operation on the MS and pAN bands
such as addition, multiplication, normalized division, ratios and subtraction
which have been combined in different ways to achieve a better fusion effect.
These models assume that there is high correlation between the pAN and
each the MS bands [6], some of the popular AC methods for pAN sharpening
are BT, cNT and MLT. The algorithms are described in the following
sections.
2.1 Brovey Transform (BT)
The Brovey transform is a ratio method where the data values of each band of
the MS data set are divided by the sum of the MS data set and the multiplied
by the PAN data set .The Brovey transform attempts to maintain the spectral
integrity of each band, by incorporating the proportionate value of each band
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as related to the MS data set before merging it with the PAN data set. By
adjusting the effects of the PAN data set's spectral properties when combining
the data sets, the spectral quality of the MS data set is mainly preserved t7].

BЪょ=枡 ×PИ町
…
… … … (1)

Where BTi;,r is the output image and i and j are pixel coordinates, k is the
band index. The Brovey transform was developed to increasing the contrast
visually at the low and high ends of an images histogram. Consequently, the
Brovey transform should not be use if the condition of preserving the original
scene radiometry in necessary. However, it is good for producing RGB
images with a higher degree of contrast in the low and high ends of the image
histogram, and for producing visually data taking from different sensors [8].
2.2 Color Normalized Transform (CNT)
The color normalized transformation fuses the two spectral and spatial data
sets assuming there is a certain spectral overlap between the MS bands and

the more highly resolved PAN band. This constrains is violated for the near
infrared band, and leads to poor fusion results. Equation 2 shows the merging
process whereby the additive constants avoid division by zero [8]:

σlV■
,ブ ,た
= ,・・…・…・…・…。(2)

2.3 Multiplicative Model (MLT)
The multiplicative algorithm is derived by using the four possible arithmetic
methods to incorporate an intensity image into a chromatic image (addition,
subtraction, division and multiplication). Only multiplication is unlikely to
distort the color. The multiplicative model companies the two data sets by
multiplying each pixel in each band by the corresponding pixel of the PAN
data. To compensate the increased BV'S the square root of the mixed data set
is taking. The square root of the multiplicative data set reduces the data to
combination reflecting the mixed spectral properties of both data sets [7]:

MLTi′ブ,た = "… … … … (3)
Where MLT is the output image, (ij) are pixels coordinates, and k is the band
index.
3. Frequancy Filtering Methods (FFM)
Many outhers have found fusion methods in the spatial domain (high
frequency inserting procedures) superior over the other approaches, which are

known to deliver fusion results that are spectrally distorted to some degree.

Fusion techniques in this group use high pass filters to model the frequency
components between the PAN and MS images by injecting spatial details in
the PAN and introducing them into the MS image. Therefore, the original
spectral information of the MS channels is not or only minimally affected

[9].Such algorithms make use of classical filter technique in the spatial
domain. One of the popular FFM for PAN sharpening is the TIPFA based
methods.
3.1 High-Pass Filter Additive Method (HPFA)
The High Pass Filter Additive (HPFA) technique was first introduced by
Schowengerdt (1980) as a method to reduce data quantity and increase spatial

s. (u s!3Y + r) {eeruhieh + r)

PANi;xM5i,1,1,

"
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resolution lor Landsat MSS data [10]. HPF basically consists of an addition
of spatial details, taken from a high- resolution pan observation, into the low
resolution MS image. The high frequencies information is computed by
filtering the PAN with a high - pass filter through a simple local pixel
averaging, i.e. box filters. It is performed by emphasize the detailed high
frequency components of an image and deemphasize the more general low
frequency information. The HPF method uses standard square box HP filters
.For example, a 3*3 pixel kemel, which is used in this study given by [10]:

t'- 1- 1- 1t
r,o, - il-r B -11. ........(4)

'[-r-r-r]
In its simplest form, the tIP filter matrix is occupied by "-1" at all but at the
center location. The center value is derived by c=n*n-1, where c is the center
value and (n*n) is the size of the filter box. The HP is filters that compute a

local average around each pixel in the PAN image. The extracted high
frequency components of Pspr was superimposed on the MS image by simple
addition and the result divided by two to offset the increase in brightness
values. This technique can improve spatial resolution for either color
composites or an individual band .This is given by I l]:

路 =
(″κ+ら P″ )

′………… (5)

The high frequency is introduced equally without taking into account the
relationship between the MS and PAN images. So the HPF alone will
accentuate edges in the result but loses a large portion ol the information by
filtering out the low spatial frequency components I I I ].

4. Statistical Fusion Methods: In this study work two statistical fusion
methods had been used, they are: 4.1 Local Mean Matching
The general local mean matching (LMM) algorithm to integrate two images,
PAN into MS resampled to the same size as P, as follow is given by [12]:

ヘ

路0=PИ鴫め×饒 … (6)

Where Fqr;y is the fused image ,PAN1r;1 and Mrlr;y are respectively the high
and low spatial resolution images at pixel coordinates (Ij )lMx11,;;(w,rr) and

PAN(i,j)@,n) are the local means calculated inside the window of size
(w,h),which used in this study a 3*3 pixel window .

4,2 Regression Variable Substitution
This technique is based on inter-band relations, due to the multiple
regressions derives a variable, as a linear function of multi-variable data that
will have maximum conelation with unvaried data .In image fusion, the
regtession procedure is used to determine a linear combination (replacement
vector) of an image channel that can be replaced by another image channel

[3]. This method is called regression variable substation (RVS) [14] called
it a statistics based fusion ,which cunently implemented in the PCI&
Geometric a software as special module , pans harp shows significant
promise as an automated technique. The fusion can be expressed by the
simple regression shown in the following eq.
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Fu = au * bt. PAN, "' "'(7)
The bias parameter er< ond the scaling parameter br can be calculated by a

least squares approach between the resembled band MS and PAN images.

The bias parameter ar. and the scaling parameter br can be calculated by
using eq.(8&9) between the resample bands multispectral Mr and PAN band

P (see appendix )
わた=葛
丁

Where Srru and Sppsre the covariance between P with Mr of band K and the

variance P respectively . _
o*= IvIp-bk.P,.... ..........(9)

Where My and F are the mean of Mr and P. Instead of computing global

regression parameters ar and br in this study, the parameter are determine in a
sliding window a 3*3 pixel window was applied.
5. STUDYING CASES
In order to validate the theoretical analysis ,the performance of the methods

discussed above was further evaluated by experiments, data sets used for this
study were collected by the Panchromatic SPOT image (recording data 16

March 2003) with 5 m pixel size which is the size(893x893)pixels this image

explained in the fig.l(a) and multispectral Land sat ETM image (band 1-5

and 7)with 30m ground pixel size which is the size(895x893)pixels and both
possess bit depth (24bits), showing a region east of the city of Aachen
(Germany) was registered to ground coordinates (German GauB-Krtigery
system)and served as the master image .The Land sat image form fig.1(b) was

registered to the SPOT image. Fig.2 shows the fused images of the BT, CNT,
MLT, fmA, HPFA, LMM and RVS methods are employed to fuse (a) and (b)

images in fig.l. To evaluate the ability of enhancing spatial details and

preserving spectral information, some for excite quality measurement
including Mean (p), Standard Deviation (SD), Signal- To -Noise
Ratio(SNR), Absolute Mean Square Error (AMSE),Mean Square Error
(MSE), Peak- Signal- To -Noise Ratio(PSNR) , Mutual Information(Ml) and

Spatial Frequency(SF)of the image were used (Table la,b) are shown the

results.

Figure-l: (a) Land sat Image, (b): Spot Image

の
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(g):RVS
Figure-2: The representation of Fused Images

Tablela,b: Quantitative analysis of original MS and fused image results through
the different methods

a

‐

へ
・

(c卜MLI

レicthods AMSE AMSE‐ c AMSE‐ h MSE MSE‐ c MSE‐ h PSNR PSNR→ PSNR‐ h 1ヽ1

BT 8165 99.73 8091 9.99X103 1.30X104 9.86x103 5.73
CNT 69.33 59.37 69.74 7.56X103 5.39X103 7.65 x l0l 9.29 25.43

MLT 29.13 31.14 2901 I .32x l0l 1.50x l0l 1.31x103 16.87 16.32 16.90

HPFA 58.75 30.53 4.34x103 4.35x103 15.42 10.51

HFA 94.72 85.74 9509 109x104 9.13X103 1.09X104

LMM 23.78 315,83 28618 23.13 17.95 23.56 24.14

RVS 7.67 9.76 7.59 168.9 22642 166.57 25.85 24.58 25.91 1315
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6. Algorithm Correlation and Evaluations p, 6,
SNRrPSNRI,",nrAMSE1,",1 rMSEt,e,h eMI, and SF

lnput: The input of the algorithm is the color image (x, y), where the

values of Img are between 0 and 255 for each bands, of size MxNx3
,and gray image (x,y),where the values of Img are befween 0 and 255,of
size MxN .

Output : The outputs of the algorithm are the p, o,
SNR,AMSEq.,6,AIA1,",I.,, PSNR1,g,h ,M[, and SF for the input image'
Step 1: Extract 5 blocks from the input image; the size of each block is

i equal to 5x5 pixels.
Step2: calculate p, o and SNR as follow:-

count :JxJ:)J (compute number of count in each extracted block) :

sum -- sum+Img (ij)
p:sum/ count

^SNR =4

Step 3: calculate AMSEqe,r,,MSEq",1r, PSNR1,",1, as follows:-
oCompute size of image NxM then calculate AMSET as follows:

mn

i=1ノ=1

oCompute no. of edges then calculate AMSE.as follows:

lヽcthods Bands p SD SNR
ORG.1 R

G

B

ORG.2 R,G,B
BT R

G

B

CNT R

G

B

MLT R

G
B

HPFA R 2.17
G 2.27
B 1.73

HFA R

G 222
B

LMM R 2.30
G

B

RVS R 2.56
G

B

(Img(x,y) - p)n2lcount

"
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4MSEθ =m×

η

.Compute no. of homogenous regions in images during
TT = N x M - no.of ed.ges Then calculate
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I

- M*(i'i)l
I

ilnage,νκ to express ised inlage in

ノ々
・い≫
＾
戸

ｍΣ

Ｈ

ИルrsEた =
m× れ

Whereon F16 to express color
different methods.

ヘ

.Compute MSEt,",r.' as follows :- 
, N1 s- s-

M5E4",11= Gort(*V1 L LGK(i, 
j) - M*(i, j))2)

i=r j=r
.Compute PSNRq",r, as follows:-

PsNRt.u.h - lo log f5*21
lvlJEqg,tt

Step 4: Calculate SF and MI creation of the image

SF=
キスσ ;α)+IFB(ノ ;b)
Step 5:End

(RF)2+(ε F)2 νイ
B=

7. RESULTS AND DISCUSSIONS
A. The original image are shown in (Fig. l(a),(b). From the results, it is
observed that BT,HPFA,LMM and RVS based image fusion algorithms
would provide good fused image and these could be suitable for real
time applications. One way to obtain best fused image is, compute the
performance of the fusion for different quality measurement for image
to evaluate quality image and then select the fused image corresponding
to best performance metrics. Since very high computational facility is
available, it could be possible to implement this idea for real time
applications.
B. One criteria was applied to test image quality particular
homogeneity and edges to be results observed to assume the following
figures .Seven different types of image fusion algorithms based on BT-
CNT-MLT-I{PFA-HFA-LMM and RVS and tused image quality was
evaluated using performance evaluation metrics .From figure (3) show
those parameters for the fused images using various methods .lt can be

468

^



Al- Mustansiriyah J. Sci. Vol.24,No5,2013

seen that from fi9.3a the p of the fused images approximate remains
constant for MLT,LMM and RVS except BT,FIPFA to be lower value
but CNT to come to pass on the higher value. It can be seen that from
fig.3b the SD of the fused images remains constant except CNT and
LMM wherein it is known that standard deviation is composed of the
signal and noise part and this is metrics would be more efficient in the
absence of noise. It measures the contrast in the fused image. Images
with high contrast would have a high standard deviation. According to
the computation results SNR. The results of SNR appear changing
significantly. It can be observed, from the fig.3c,show that the CNT and
MLT methods give the best results with respect to other methods
indicating that these methods maintain most of information spectral
content of the original multispectral image which get the same values
presented the lowest value of the other methods as well as the higher of
the SNR. In contrast, by combining the visual inspection results, it can
be seen that the experimental results overall method are the CNT, MLT
and LMM results which are the best results. As to with respect to fig.3d
and fig.3e to express amount of information added to the original image
wherein that it can be seen changing significantly except MLT, LMM
and RVS wherein AMSEqr, approximating similar values but AMSE. to
different value and it has higher value in BT and CNT while it can be
seen that from fig.3f to be express about PSNRt,n that obtained on higher
values in MLT,LMM and RVS except BT,CNT and HPFA obtained the
lower values but PSNR. that obtained on the higher value in MLT and
RVS except the other methods obtained the lower values. As to with
respect to fig.3g to express about MI approximate remains constant
implies better image quality that can be observed in all these methods
except BT and CNT and it can be seen in the same figure that SF
appears larger value in LMM and CNT methods.
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(b) :chart representation of SD of fused image
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Figure-3: chart representation of p, SD, SNR,AMSE,MSE,PSNR,MI and SF of
fused images
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CONCLOSION
After the following apply two criteria quality image particular
homogeneity and edges to be results observed to assume the following
figures and tables. Seven different types of image fusion algorithms
based on BT,CNT,MLT,I{FA,HPFA,LMM and RVS and fused image
quality was evaluated using performance evaluation metrics.
owe found that the fusion procedures of the first type, which includes
(BT; cN; IvII-T) by using all PAN bands, produce more distortion of
spectral characteristics because such methods depend on the degree of
global correlation between the PAN and multispectral bands to be
enhanced. Therefore, these fusion techniques are not adequate to
preserve the spectral characteristics of original multispectral. But those
methods enhance the spatial quality of the imagery except BT.
oThe fusion procedures of the second type include HpFA based fusion
method by using selected (or Filtering) PAN band frequencies including
HPFA algorithms and the third rypes include LMM and RVS. The
preceding analysis shows that the cNT, MLT, LMM and RVS methods
maintain the spectral integrity and enhance the spatial quality of the
imagery. The HPF A method does not maintain the spectral integrity
and does not enhance the spatial quality of the imagery
oln general types of the data fusion techniques, the use of these
techniques to evaluated quality details image based on criterions
quality images based edge and homogenous to be results evaluation
process active and good because to take into consideration
homogenous and edge quality measurements.
oWe found the importance of quality measurements or evaluation of its
importance in determining the quality of the details of the image and
especially the accurate details and edges.
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ABSTRACT
Term of aerosol mean's set of solid and liquid material non-permanent in the
atmosphere, and the solid particle called dust. its have impact on public health, the
climate, and the quality of the atmospheric environment. The attention to
measurements aerosol because Its presence everywhere, changeable, Complex
installation, and interaction with ambient of atmosphere. In this study, We
developed an algorithm to measure the covered area by the dust particles, and the
radius of dust pafticle deposited for different time hours of the day. We used slices
transparent glass to collect samples of dust particle deposited for different time of
the day in Rusafa area of Baghdad city, were taken digital image of the samples
through a optical microscope (zoom more than X 1000). What has been noticeable
is the difference in radii and areas of dust particles deposited as well as the
difference in the density of dust particles for each slice according to time that put
the slice to deposition.

INTRODUCTION
Air pollution is one of the features of the modern age, with increasing use of fuels
from oil and natural gas in various fields of life, spread in the environment in which
we live many air pollutants such as gases resulting from industrial activities or
different modes of transport[1]. Aerosol light-absorption measurements are
important for health, climate, and visibility applications[2]. Previous studies, (C.J.
Wong et al. (2007)X3]. Developed an algorithm to convert multispectral image
pixel values was acquired by an Intemet Video Surveillance camera into
quantitative values of concentrations of particulate matter with diameter less than l0
micrometers (PMl0). This algorithm was based on the regression analysis of
relationship between the measured reflectance components from a surface material
and the atmosphere. The newly developed algorithm can be applied to compute the
PMl0 values. These computed PM10 values were compared to other standard
values measured by a Distract meter. The correlation results showed that this newly
develop algorithm produced a high degree of accuracy as indicated by high
correlation coefficient (R2) of 0.7566 and low root-mean-square-error (RMS)
values of +3.8306 pglm3. This study indicates that the technique of using Internet
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Video Surveillance camera images can be a useful tool for monitoring temporal

development of air quality.[4]. In This study presents a description of the basics of
the proposed atmospheric correction procedure, which combines the darkest object

subtraction principle and the radiative transfer equations. The method considers the

true reflectance values of the selected dark targets acquired in situ and the

atmospheric parameters such as the aerosol single scattering phase function, single

scattering albedo and water vapour absorption, which are also found from ground

measurements. The proposed procedure is applicable to short rvavelenglhs such as

Landsat TM band l, 2 and ASTER band I in which water vapour absorption is

negligible. tll The proposed algorithm has been developed to allow the

quantification of the aerosol optical thickness (AOT) over land .The algorithm
compares multitemporal satellite data sets and evaluates radiometric alterations due

to the optical atmospheric effects of aerosols. Novel features of this algorithm which
is based on the application of radiative transfer calculations are the inclusion of
applying iteration procedures for selecting the suitable object for determining the

aerosol optical thickness and the automatic division into working grid cells.

[5]Developed quantify the concentration of aerosol black carbon (BC). In this
method, a measured volume of ambient air passed through an aerosol sampler, and

the aerosol particles were collected onto aquartz fiber filter. Digital pictures of the
filter were taken, and then analyzed to determine the optical attenuation (ATN) of
the particle layer on the filter. The ATN was related to the mass loading of BC, in
mg BC per cm2 of filter area, by performing calibration against thermal optical
analysis (TOA). The average aerosol BC concentration was then calculated with
known BC loading, sampling time, and filter area.

Atmospheric Aerosols
Aerosols are minute particles suspended in the atmosphere. When these

particles are sufficiently large, can be observedtheir presence as they
scatter and absorb sunlight. Their scattering of sunlight can reduce

visibility (haze) and redden sunrises andsunsets[6].Measured by unit
size micrometer largest minutes of 50 micrometers can be seen by the
naked eye but smaller (0.005) micrometers see only electronic
microscope. Minutes of extreme importance in the study of air pollution
ranging from (0.01 -100) micrometers size and minutes younger than l0
micrometers tend not to sedimentation quickly remain in the atmosphere

for a long time either fumes and smoke and metal dust cement and fly
ash carbon black spray sulfuric acid are all located within the range (10

-100) micrometers which are larger and heavier than the outstanding
and deposited near sources and physical deposition of these minutes are

the most important natural process of self-cleaning to remove the

minutes from the airt6l.Particles are typically classified as total
suspended particulate (TSP: comprising all particle sizes), medium to
fine particulate (PMl0: particles less than 10 mm in diameter), fine
particulate (PM2.5: particles less than 2.5 mm in diameter), and ultra
fine particulate (PMl.0 and smaller).Fine particles, or PM2.5, are the
most significant contaminant influencing visibility conditions because

their specific size allows them to scatter or absorb visible light. It also
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allows them to remain airborne for long periods of time, and under
favorable climatic conditions they may be transported over long
distances. This is one reason why locations distant from the main
pollution sources.Secondary reactions are influenced by a wide range of
factors, such as temperafure, sunlight, the mixture of gases present, and

time. Secondary formation of particles from gaseous pollutants can take
some time to occur and will be exacerbated under conditions of low
wind speed and poor dispersion. The major component comes in the
form of sulfate aerosols created by the burning of coal and oil. The
concentration of human-made sulfate aerosols in the atmosphere has

grown rapidly since the start of the industrial revolution. At current
production levels, human-made sulfate aerosols are thought to outweigh
the naturally produced sulfate aerosols. The sulfate aerosols absorb no
sunlight but they reflect it, thereby reducing the amount of sunlight
reaching the Earth's surface. Sulfate aerosols are believed to survive in
the atmosphere for about 3-5 days[6].

Total Optical Depth (TOD)
To clariff the amount of scattering and absorption of radiation

occurring in the atmosphere and the higher this value the atmosphere
was worse and lamp vision toughest (TOD) Mainly consists of two
components First:aerosol optical depth (AOD) second: Rayleigh optical
depth(ROD) Add other components are not have the effect dispersion
and absorption is happening among layer and the other because of other
rare gases scientific researches suggests that most of the pollution is at
an altitude of less than 1500 2000 meters. (ROD) dispersion and
absorption happening because of the same components of the
atmosphere (nitrogen / oxygen) value generally small and do not change
in one place they fixed rate so it was interesting all global campaigns
the value (AOD) is the value that cannot be calculated accurately or
even expected in the future as change dramatically (AOD) dispersion
and absorption happening in the atmosphere due to hanging from dust,
fumes and ashes and other large plankton[8].
Study Area

Baghdad city is located in central of Iraq within the sector of flat
sedimentary plain. It is consider center of economical and
administrative, instructive for states. were studied the amount of dust
deposited on the slice precisely in Rusafa at Palestine street, it is
classified a commercial residential area, at day (16-3-2013) the weather
was between cloudy and sime-cloudy with gradually rising dust during
the day and the wind was southeasterly mild to moderate (10-20)km/h,
and the visibility (6-8) km, according to what has been obtained from
the Public Authority for meteorological Iraqi
Dusty image capturing

・
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In this research have beenstudying the aerosol deposited in the cited
region of Baghdad city by used the glass slice of thickness (lmm). We
put the slice exposed to the air on height (3m) on the earth's surface, and
(32m)on level of sea surface. Four slices placing in the same time, then
dragging one slice each (4) hours and saving it in the customized
portfolio. Taking picture to slices by used optical microscope, in
greateningfour timestheregularimage (410.1_160/-) of lens. We have
obtained 4 images for different slices and different times. These images
of the type (bmp) and dimensions (1280x1024), size (3.75 MB) these
parameters fixed and shown in figure (l).

ヽ

Figure- I : lmage Microscope slide for (9 am, I pm, 5pm, 9pm)
to image a, b, c, and d respectively.

Application Algorithms
After capture the images for the four slices, we extract n (i)blocks
(i:1, 2, 3, 4), from each target such that most dust particles were
taken, and the size of blocks are different. Next we calculated the
area and radius of dust particles thatfallingon the slices. Figure (2)
shows the blocks of each image.
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Figure -2: The Blocks of each dust particle in the 4-images

For each block we calculated the center ofthe dust particle in the block, firstwe
found the distance between the center and each point in the edge of the dust particle,
and then taking the average, which represents the radius of the object (Rr).
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Rt : mean(rad) ... ...... (l)
Calculate Rr as follow:-ne:O ; rad:[]

for i=l:r
for j:l:c
If imge(ij)::1

d=round (sqrt(i - cx)^2 + (i - cy)^2))
ne:ne*l
rad=[rad;d]

Rr=mean(rad)
Where (r,c)= is the size of block.

d:distance from points the center to point edge of the dust particle.
ne:sum of points the edge.
rad=otaldistance between the center and each point in the edge of

the dust particle
Rr:first radius of dust particle.

Then calculate the covered area of dust particle (Ar) by law of the area of the circle

as follow: AfnR? ...... (z)
Second calculate The number of pixels of the dust particle (nb), which represent the
second covered area of dust particle (Az).

Az:nb ...(3)
then we evaluate (Rz) using the following equation:

t;
Rz= . I-.................(4)\1r

histogram for(Az), (Rr)were evaluated. Figure 3 shows the block, the center of
object, the histogram of the distances and the histogram of radius.

,
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(d) hist. of Image Microscope slide (9pm).

Figure-4:the histogram for the dust particle radii(Rr and R z), and the histogram of
the area that covered by the dust (Ar and Az). For images captured in (9am, lpm,

5pm,9pm).

■口■

ゝ

.*[-*-l"^l '-- I
-otqt

,4.'

t$.q
${ 12lsa a.t ata

5

,,“

““ntt櫻

"●

|…

…

夕1・

,ζ8″

478

ヘ

ン`
ンヽ

＼、ンヘ´

●・

●
５
ｒ
・
”

「
費2・

3"瞑簿



‐

Al- Mustansiriyah J. Sci. Yol.24, No 5,2013

Then calculate the scale factor to chart bar of optical microscopy its

equal (0.0012 mm/pixel), and multiply the results by the scale factor to
get the results in unit (mm).
To compute the ratio of black points to white points we clipped dense

block of dust particle from each image, then obtain the area for each

image as show in the following table(l):

Table- I : of the total covered fd lc in thc i

CONCLUSIONS
In this research studied the aerosol in Baghdad city of dust particles.

We captured four images by optical microscope to four slides. These

slides were put at (5am), and then one slide was dragging each four
hours.Through our study and observe by the optical microscopy,
showing that the most dust particle are the spherical or semi-spherical,
as show in figure 3,and addition to easiness calculate the area, we
suppose that all dust particle spherical, and has the area circular
section. After processing these image the following results were
obtained:
l-The density of dust particle deposited on the first slide was few
compares with other slides, and the covered area to each dust particle is
mediummeasurement.
2- There is significantly increased density of dust particle on the second

slice and different kinds of shapes and sizes of dust particle, that can be

observed from the histogram of the second slice the peaks is reduced for
curve to areas (A1, A'2) that means increased in kinds the covered area

of dust particle gradually from very small to large.

3-On the third slide there was increased density but difference less the
first cases.

4-In the last case was observed that the small particle of the dust is the
most increased, this is due to her nature of slow deposition, and that
clear in histogram, the Curved rise because the dust proportion
increased due to increased hours of the deposition, and the start of the
curve is rise at the low values of covered area to dust particle, and the
peaks non-existent Almost at the high values. was obtain the results
different of shapes and areas, there symmetric, semi-symmetric and
asymmetric and asymmetric is majority.

｀
ablc-1:ofthe to covered area oI dust ln llll

Captured image at day time Size of block The covered area of dust particle mmr

Image Microscope slide (9pm). 632x790 5.9005x10-6

Image Microscope slide (lam). 614x778 1.4924x10~う

Image Microscope slide (5am). 774x772 3.6092x10-5

Image Microscope slide (9am). 602x962 3.3250x10-)

●
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ABSTRACT

The complexity of software systems has been increasing dramatically in the past
decade, and software testing as a labor-intensive component is becoming more and
more expensive. With the complexityof the software, the cost of testing software is
also increased. Thus with automatic test data generation the cost of testing will
dramatically be reduced. This paper uses fuzzy logic concepts to generate test data
automatically and this data will be used for the future to feed software which used in
fuzzy logic applications like(industrial automation, decision making process , such
as signal processing or data analysis...etc). Software testing is probably the most
complex task in the software development cycle. It is one of the most time-
consuming, costing and frustrating process.

1. INTRODUCTION
Software testing is a process, which is used to identify the correctness,
completeness and quality of a software. [1]. The effective generation of
test data is one of the most difficult and expensive problems in software
testing. Test data generation is the process of creating program inputs
that satisfu some testing criterion [2]. Obviously, manually developing a
large test data set to satisfy a testing criterion is usually expensive,
laborious, difficult and error-prone. If test data could be automatically
generated, the cost of software testing would be significantly reduced.
It is usually observed that the input data near the boundary of a domain
are more sensitive to program faults and should be carefully checked. A
domain testing strategy is very effective in veriffing the correctness of
the boundary of a path domain; however, such a domain strategy is hard
to implement since the strategy requires test data generated on and near
the boundary, and the test generation is more difficult when some of the
constraints are nonlinear or in a discrete space [3]. In general automatic
test data generator are contain big challenges especially in the huge
software that could make any decision based ofl fuzzy data here the
challenges will be more[4][5] .Test Data Generation (TDG) is crucial
for software testing because test data is one of the key factors for
determining the quality of any software test during its execution [7]
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In the furzy logic concept if there is no interference among the
generated data intervals that means no fuzziness to solve and it would
be useless data generated to participate as input for fu2ry applications
programs.[6]
But the huge mathematics problem will rise in this case which is "what

are the thresholds values to stop generating" as we know all the close
intervals contains two boundaries start number and end number. let have
close intervals a, b
Symbols: olx<borla,bl
how many numbers between a and b need to be generated to find the
intersection with other closed intervals to decide this two intervals
useful to feed fuzry program or useless then we could eliminate it from
the test data generator. This mechanism will play good threshold
condition for filtering our generated data, for instance if we have the
following two intervals s and p as

□

□

In the above figure we see that the whole interval f [c, d] intersect with
u la, b] in such case the generated interval will be useful but in the
following case will show how it is useless input that we should
eliminate it

□

□
In the above cases we show how the intersection will work in the close
intervals but the intersection is only one of basic concept in fuzzy logic
due to the fu2ry set has intersection with each other with degree of
membership for each element in the fuzzy set.

2.Fuzzy logic and fuzzy set
In figure (l) showing below we have the following sets A [-4,4] and

B [0, 8] and they are intersect in the interval [0, 4] these two intervals
will be useful as input for fu2ry program

4
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Figure:l- two fuzzy set A and B with degree of membership

Fuzzy set can have different mechanisms to implement but they are all
have the same concept, on the other hand if there is no intersection it
will be useless pair to consider as input for fuzzy program.

3. Proposed Mechanism
Here we create three factors ( q, e , p) for filtering test data generated

form random data generator that generate random intervals the rule of
the first factor a will decide which two or more interval useful or not by
found if there is an intersection among them or not, the rule of the
second factor e is to determine the value of intersection that will decide
based on user demand or program requirements, and the third one is to
decide the maximum number (capacity) that the intervals could take
which also can be determined based on user demand that can fulfill user
requirement. As show in the figure (2 ) :

″
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Figure:2- propsed mechanism

4. Experimental Result
As the random generator generate random pairs of intervals we run the

program several times with different possible values of our

factors a, t qnd p and show the effect of that factors over generated

intervals. we can see clearly here if the value of a equal to zero that is
mean there is no intersection among the generated interval, and we can

take crisp decision that will be useless interval pair and if it is one that

means there is an intersection values then move to the next factor s to
test how much the minimum ratio required to take in our account and

third factor is p use to determine how much possible degree you divide
the intersection intervals. Thus we can see the big effect of that three

factors to filterize random gnerated intervals and eliminate the useless

interval pairs as shown in the following table.
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Table- I :and figure(3) showing the affection of cr, e, and
intervals

We can see the big filtering process done over
intervals.

p factors on the generated

the random generated

25000

20000

15000

圏#generated intervals

10000  目#uSefulintervals

5000

0

Figure-3: shows the automatic test data generator and useful one of it

5. Suggestions and Conclusion
The automatic test data generation is huge concept to deal with and

our invent mechanism to use not normal data but fuzzy data that would
use to test fuzry software in all its applications and we can see how
three filters did significant reduction over the automatic random
generated data. This approach also can fit the crisp decision software
by manipulating the second and third factor. we suggest as future work
to take adaptive factor that will select based on program that we want to
test it that will be great factor can we use to determine the useful path
will take to have good test data generator.

Table-1:

# generated
intervals

a value e value p value # useful intervals

0582 1 02 27 7010
0110 1 0.15 52 7301
2001 0.4 42 0
5040 1 0.5 20 1560
7080 1 0.13 48 8120
8090 1 0.029 41 8601
20100 1 0.02 49 9092
21988 1 0.015 50 10906
22078 0 0.0011 0.0023 0
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ABSTRACT
The N-Queens problem is considered as one of the hard problem to be solved. Many
researches have been interested to solve it with different intelligent methods. This
paper solves the N-queens problem using three swann intelligence algorithms: Bees
algorithm, Particle Swarm Optimization (PSO) and Cuckoo search. The
experimental results with these algorithms method give the best results relatively.
By comparing, Bees algorithm is better than the PSO, PSO is better than Cuckoo
search to handle n-queens problem.

1. INTRODUCTION
The eight queens is a well known NP-complete problem proposed by C.
F. Gaus in 1850. The Problem was investigated by several 19th century
mathematicians. The characteristic property of this problem is that it
requires large amount of computations. The general N-Queen problem
was explored in 1950's by Yaglom and Yaglom. A general N-Queen
problem is defined by the following constraints on an N*N grid [1]:
l. Only one queen can be placed in any row.
2. Only one queen can be placed in any column.
3. Only one queen can be placed on any diagonal.
4. Exactly N queens must be placed on the grid.

Because queens can move any number of squares vertically in a
single turn, such placement is not cost efficient. Rather than viewing the
board as consisting of n x n squares, it can be seen iN comprised of n
columns, each with n rows. Because we are placing n queens in n
columns, there has to be one and only one queen in each column that
can be determined. Applying this knowledge to the recursive algorithm
makes placing the queens more efficient. This is also true for the
horizontal direction, as the board can be rotated. As for the last, the
diagonal direction must be accounted for as well [2].

There have been several approaches taken in the study of this
problem (as diverse as algorithmic design, program development,
parallel and distributed computing, and artificial intelligence). This
widespread interest in the N-Queen problem is in part due to the
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property that characterizes difficult problems, viz., satisfying a set of
global constraints [].

Swarm-based algorithms mimic nature's methods to drive a
research towards the optimal solution. A key difference between
Swarm-based algorithms and direct search algorithms such as hill
climbing and random walk is that Swarm-based algorithms use a
population of solutions for every iteration instead of a single solution.
As a population of solutions is processed in an iteration, the outcome of
each iteration is also a population of solutions. If an problem has a
single optimum solution, Swarm-based algorithm population members
can be expected to converge to that optimum solution [3]. There are
several swarm algorithms such as Bees Algorithm (BA), Ant Colony
Optimization (ACO), Particle Swarm Optimization (pSO), Cuckoo
Search (CS), Fish Swarm Algorithm (FSA).

This paper solves N-queens using three types of swarm intelligent
algorithms: Bees, PSO and Cuckoo Search. Section 2 includes the
principle of PSO and parameters. Bees Algorithm will be explained in
Section 3. Section 4 contains Cuckoo Search Algorithm with Levy
flight. The solving of N-queens problem using swarm intelligent
algorithms will be illustrated in section 5. The experimental results will
be shown in section 6. Finally, section 7 includes the conclusion.
2- Particle Swarm Optimization (PSO)

Particle swarm optimization (pSO) is a population based
stochastic optimization technique developed by Dr. Eberhart and Dr.
Kennedy in 1995 [4], inspired by social behavior of bird flocking or fish
schooling and swarm theory.
2.1The Principle

PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA). The system is inltialized
with a population of random solutions and searches for optima by
updating generations. However, unlike GA, pSO has no evolution
operators such as crossover and mutation. In pSO, the potential
solutions, called particles, fly through the problem space by following
the current optimum particles. Compared to GA, the advantages of pSO
ar,e that PSO is easy to implement and there are few parameters to
adjust. PSO has been successfully applied in many areas; function
optimization, artificial neural network training and fuzzy system
control. PSO simulates the behavior of bird flocking, suppose a group of
birds are randomly searching food in an area. Not all the birds know
where the food is. The effective strategy is to folrow the bird that is
nearest to the food. In PSO, each single solution is a..bird,'in the search
space. We call it 'particle". All particles have fitness values that are
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evaluated by the fitness function to be optimized, and have velocities,
which direct the flying of the particles [4].
PSO is initialized with a group of random particles (solutions) and then
searches for optima by updating generation. In each generation, each

particle is updated by following two "best" values. The first one is the
best solution (fitness) it has achieved so far. This value is called pbest.

Another "best" value that is tracked by the particle swarrn optimizer is

the best value, obtained so far by any particle in the population. This
best value is a global best and is called gbest. When a particle takes part
of the population as its topological neighbors, the best value is a local
best and is called ibest. After finding the two best values, the particle
updates its velocity and position with the following equations [4]:
V i[t+t] : w Yi[t] + Cr * rl * (pbesti[t] - presenti [t])+ Cz * 12 * (gbesti [t] -
presentl [t])...(l-a)
presentl [t] : present, [t] + Vi [t] . . . ...( I -b)

where, i:1,2,.....,N; w is the inertia weight, V[t] is the particle's
velocity, present[t] is the current particle (solution), pbest and gbest are

defined as stated before, r1 and 12 arc two random numbers between
(0,1), Cr and Cz are learning factors. However these values of C1, Cz arc
problem dependent. These are very essential parameters in PSO [4].
Particles' velocities on each dimension are clamped to a maximum
velocity Vmax.
2.2 Discrete PSO

Several adaptations of the method to discrete problems, known as

Discrete Particle Swarm Optimization (DPSO). Since, in words of the
inventors of PSO, it is not possible to "throw to fly" particles in a

discrete space 147, several Discrete Particle Swarm Optimization
(DPSO) methods have been proposed.

A DPSO whose particles at each iteration are affected
alternatively by its best position and the best position among its
neighbors was proposed by Al-Kazemi and Mohan [6]. Pampara et al.

[7] solved binary problems by combining continuous PSO and Angle
Modulation with only four parameters. Furthermore, several PSO
variants applied to problems where the solutions are permutations were
considered in [8, 9]. The multi-valued PSO (MVPSO) proposed by
Pugh and Martinoli [0] deals with variables with multiple discrete
values.

Another DPSO was proposed in U 1] for feature selection
problems, which are problems whose solutions are sets of items. A new
DPSO proposed infl2, 13] does not consider any velocity since, from
the lack of continuity of the movement in a discrete space, the notion of
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velocity loses sense; however they kept the attraction of the best
positions.
2.4 Parometers of PSO

The convergence and performance of PSO are largely dependent
upon parameters chosen w is termed as inertia weight [17] and is
incorporated in the algorithm to control the effect of the previous
velocity vector of the swarrn on the new one. It facilitates the trade-off
between the local and the global exploration abilities of the swarm and
may result in less number of iterations of the algorithm while searching
for an optimal solution. It is experimentally found that inertia weight w
in the range [0.8, 1.2] yields a better performance [14]. The velocity lies
in the range [-Vmax , Vmax ] where, - Vmax denotes the lower range
and vmax is the upper range of the motion of the particle. The roles of
Cr and Cz dre not so critical in the convergence of PSO, however, a
suitably chosen and fine tuned value can lead to a faster convergence of
the algorithm. A default value of Cr :C2 : 2 is suggested for general
purpose, but somewhat better results are found with C r: Cz:0.5 [15].
However, the values of cognitive parameter, C 1 larger than the social
parameter Cz are preferred from the performance point of view with the
constraint Cr +Cz s 4 [16]. The parameters rl and r2 used to maintain
the diversity of the population in equation (1a).
3. The Bees Algorithm
3.1. Bees in nature

A colony of honey bees can extend itself over long distances to
exploit a large number of food sources 120,21]. A colony prospers by
deploying its foragers to good fields U8,22,23).

The foraging process begins in a colony by scout bees being sent to
search for promising flower patches. Scout bees move randomly from
one patch to another [18,21].

when those scout bees found a patch which is rated above a certain
quality threshold (measured as a combination of some constituents, such
as sugar content) deposit their nectar or pollen and go to the "dance
floor" to perform a dance known as the'\vaggle dance" [20].

This mysterious dance is essential for colony communication, and
contains three pieces of information regarding a flower patch: the
direction in which it will be found, its distance from the hive and its
quality rating (or fitness) [l8, 20,23). This information helps the colony
to send its bees to flower patches precisely, without using guides or
maps [23]. After waggle dancing on the dance floor, the dancer (i.e. the
scout bee) goes back to the flower patch with follower bees that were
waiting inside the hive. More follower bees are sent to more promising
patches. This allows the colony to gather food quickly and efficiently
ll 8, 231.

ヘ

ぬ

‐

490

ミ



Al- N,lustansiriyah J. Sci. Yol.24,No 5, 2013

3.2. B ees AlgorithmllSl
As mentioned, the Bees Algorithm is an optimization algorithm

inspired by the natural foraging behaviour of honey bees to find the
optimal solution [9]. Figure 1 shows the pseudo code for the algorithm
in its simplest form. The algorithm requires a number of parameters to
be set, namely: number of scout bees (n), number of sites selected out of
n visited sites (z), number of best sites out of m selected sites (e),
number of bees recruited for best e sites (nup), number of bees recruited
for the other (*-") selected sites (rsp), initial size of patches (rgh)
which includes site and its neighborhood and stopping criterion. The
algorithm starts with the n scout bees being placed randomly in the
search space. The fitnesses of the sites visited by the scout bees are
evaluated in step 2.

In step 4, bees that have the highest fitnesses are chosen as "selected
bees" and sites visited by them are chosen for neighborhood search.
Then, in steps 5 and 6, the algorithm conducts searches in the
neighborhood of the selected sites, assigning more bees to search near
to the best (e) sites. The bees can be chosen directly according to the
fitnesses associated with the sites they are visiting. Alternatively, the
fitness values are used to determine the probability of the bees being
selected. Together with scouting, this differential recruitment is a key
operation of the Bees Algorithm.

However, in step 6, for each patch only the bee with the highest
fitness will be selected to form the next bee population. In step 7, the
remaining bees in the population are assigned randomly around the
search space scouting for new potential solutions. These steps are
repeated until a stopping criterion is met. At the end of each iteration.
the colony will have two
from each selected patch
random searches.

new population- representatives
scout bees assigned to conduct

ｉｔｓ

ｅｒ

ｔ。

Ｏｔ
ｈ帥
ａｎｄ-t

Bees Algorithm
l. Initialize population with random solutions.
2. Evaluate fitness of the population.
3. While (stopping criterion not met)

//Forming new population.
4. Select sites for neighborhood search.
5. Recruit bees for selected sites (more bees for best e sites) and evaluate
fitnesses.
6. Select the fittest bee from each patch.
7. Assign remaining bees to search randomly and evaluate their fitnesses.
8. End While.

Figure -l: Pseudo code of the basic bees algorithm
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4- Cuckoo Search Algorithm
CS is a heuristic search algorithm which has been proposed

recently by Yang and Deb p\. The algorithm is inspired by the
reproduction strategy of cuckoos. At the most basic level, cuckoos lay
their eggs in the nests of other host birds, which may be of different
species. The host bird may discover that the eggs are not its own and
either destroy the egg or abandon the nest all together. This has resulted
in the evolution of cuckoo eggs which mimic the eggs of local host
birds. To apply this as an optimization tool, Yang and Deb used three
ideal rules 124,251:
(1) Each cuckoo lays one egg, which represents a set of solution co-
ordinates, at a time and dumps it in a random nest;
(2) A fraction of the nests containing the best eggs, or solutions, will
carry over to the next generation;
(3) The number of nests is fixed and there is a probability that a host can
discover an alien egg. If this happens, the host can either discard the egg
or the nest and this result in building a new nest in a new location.
Based on these three rules, the basic steps of the cuckoo Search (CS)
can be summarized as the pseudo code shown as in Fig.2.

Algorithm of Cuckoo Search via Levy Flight
Input: Population of the problem;
Output: The best of solutions;
Begin
Objective function f(x), x: (xl, x2, ...*o)'

Generate initial population of n host nests xi
(i= l, 2,...,n)

While (t <Max Generation) or (stop criterion)
Get a cuckoo randomly by Levy flight
Evaluate its quality/fitness Fi
Choose a nest among n(sayj)randomly
If (Fi> F.;) replace j by the new solution;
A fraction(pa) ofworse nests are abandoned and new ones are
built;

Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the current best;
Pass the current best solutions to the next generation;

End While
End.

Figure- 2: Basic Cuckoo Search Algorithm

When generating new solutlon *(t+l) for, say cuckoo i, aLevy flight is
performed 

x(,+r)- : x(t)i+ a @ Levy(p) ... .... (2)
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where a > 0 is the step size which should be related to the scales of the
problem of interests. In most cases, d: I can be used. The product @

means entry-wise walk while multiplications. Levy flights essentially
provide a random walk while their random steps are drawn from a Levy
Distribution for large steps

Levy - tt: r1-o Q < 812).........(3)
This has an infinite variance with an infinite mean. Here the

consecutive jumps/steps of a cuckoo essentially form a random walk
process which obeys a power-law step-length distribution with a heavy
tail. In addition, a fraction pa of the worst nests can be abandoned so
that new nests can be built at new locations by random walks and
mixing. The mixing of the eggs/solutions can be performed by random
permutation according to the similarity/difference to the host eggs.

5. Srvarm Intelligence for N-Queens Problem
In Bees algorithm each bee represents a solution of N-queens

problem using integer numbers style. The mutation operator will be
used to update these solutions. Figure (3-a) illustrates how it appears in
the population, the particle for N:6 problems may be the following: 3 6
2 4 | 5. The first number means the first queen is at the third position in
the first row, the second number means the second queen is at the sixth
position in the second row, and so on. Figure (3-b) shows a translation
from the permutation to the chessboard positions [26].
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(b) Mutation operator for N-queen permutation random solution

(c) N-queen permutation random solution representation as 2-dimension matrix

Figure-3: Permutation representation of n-queens problem with mutation operator

By using permutations, the horizontal and vertical conflicts of the

queens are eliminated [27]. Thus to find a solution, the objective is to
eliminate the diagonal conflicts. The fitness function is defined as the

number of conflicts or collisions along the diagonals of the hoard. The

objective is changed to minimize the number of conflicts or collisions.

The fitness value of an ideal final solution should be zero.

In Cuckoo search algorithm each cuckoo's egg represents a solution of
N-queens problem using integer numbers style. The mutation operator

will be used to update these solutions. The Bees algorithm, the same

representation of N-queens problem in Cuckoo search will be used.
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In PSO, each particle represents a solution in the parameter space. The
particle is encoded as a string of positions, which represent a
multidimensional space. All the dimensions typically are independent of
each other, thus the updates of the velocity and the particle are
performed independently in each dimension. This is one of merits of
PSo. However, it is not applicable for permutation problems since the
elements are not independent of each other. It is possible that two or
more positions can get the same value after the update, which breaks the
permutation rule. Thus the conflicts must be eliminated. Here a new
particle update strategy is proposed. In traditional PSo, the velocity is
added to the particle on each dimension to update the particle, thus it is
a distance measure. If the velocity is larger, the particle may explore
more distant areas. Similarly, the new velocity in the permutation
scenario represents the possibility that the particle changes. If the
velocity is larger, the particle is more likely to change to a new
permutation sequence. The velocity update formula remains the same.
However the velocify is limited to absolute values since it only
represents the difference between particles. The particle update process
is changed as follows: the velocity is normalized to the range of 0 to 1

by dividing it by the maximum range of the particle. Then each position
randomly determines if there is a swap with a probability determined by
the velocity. If a swap is required, the position will set to the value of
same position in nBest by swapping values. This process is shown in
Figure 41261.

tf;t

F nbest

Figure -4: Particle update
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6.RESULTS AND DISCUSSIONS
In Bees algorithm, experiment with several numbers of parameters

has been done. Table (1) shows the best value for each parameter in
Bees algorithm to solve N-queens problem.

Table-l: Best Value for Bees Algorithm Parameters to
Solve

Parameter Best Value
Population size 100

Number of selected sites 60

Number of elite sites く
フ
つ
４

Number of recruited bees for best m sites
く
υ

Number of recruited bees for best e sites 8

Number of iterations 150

Problem

Cuckoo search algorithm has two important parameters in addition to

the classical others, these are Pu, o and p. experiment with Several

numbers of parameters. Table (2) shows the best value for each

parameter to solve N-queens problem.

Table-2: Best Value for Cuckoo Search Algorithm Parameters
Probleto Solve N-Queens Problem

Parameter Best Value
Population size 100

Fraction(Pu) 0.25

α 1.2

1 1.5

Number of iterations 250

Table (3) shows the best value parameters to solve N-queens

problem using PSO. These values represent the best in average, ..

therefore some time there are other values are succeeded to find the

solutions of N-queens Problem.

Table-3: Best Value for PSO Parameters to
Solve N-Oueens Problem

Parameter Best Value
Number of Particle in the Swarm 80

The Maximum of Velocity l.5N
Self-Confidence (Cl) 2

Swarm-Confidence (C2) つ
，

Inertia Weieht 1.4

Number of iterations 230

Figure (5) shows the results for the problems of 10 to 150 queens.

Each parameter combination was run 25 times and the results represent \

4
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the mean number of function evaluations to reach a solution. From the

results, it can be seen that all these swarm intelligence algorithms
successfully find a solution of the n-queens problems in a good time.
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Figure-5: Fitness Evaluations Chart for the 3 Swarm Intelligence Algorithms
(Bees, Cuckoo Search and PSO)

7- CONCLUSIONS
The objective of this paper was to determine how well some

intelligence algorithms can handle permutation parameter sets by

solving the n-queens problem. The performance of these algorithms

gives a good and near results. It shown that Bees algorithm is better

than the PSO, PSO is better than Cuckoo search to handle n-queens

problem. The run time of these algorithms depend on the parameters of
each one but in almost it is depend on maximum generation.
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ABSTRACT
This paper presents an authentication method to establish the authenticity of
fingerprint images by embedding the watermark data into fingerprint image. The
method depends on the thinning file of fingerprint image in determining the
appropriate locations in which the watermark bits will be stored in the original
fingerprint image to preserve feature regions without any change, therefore the
proposed method inserts watermark data in locations which not use in feature
extraction operation thus prevents watermarking of regions used for fingerprint
classification and recognition. The experimental results show the high visibility of
the proposed method depending on the properties of human visual system. Our
method is also efficient as it only uses simple operations.

1. INTRODUCTION
A biometric is defined as a unique, measurable, biological characteristic
or trait for automatically recognizing or veri&ing the identity of a

human being. Statistically analyzing these biological characteristics has
become known as the science of biometrics. These days, biometric
technologies are typically used to analyze human characteristics for
security purposes. Five of the most common physical biometric patterns
analyzed for security purposes are the fingerprint, hand, eye, face, and
voice [1].
With the wide spread utilization of biometric identification systems,
establishing the authenticity of biometric data itself has emerged as an
important research issue. The fact that biometric data is not replaceable
and is not secret, combined with the existence of many types of attacks
that are possible in a biometric data, makes the issue of
security/integrify of biometric data extremely critical [2].
The fingerprints are digitized, stored, and transmitted over a network;
they become susceptible to malicious as well as accidental attacks.
Therefore, it becomes necessary to protect the originality of fingerprint
images that stored in databases or transmitted through transmitter
channels against intentional and unintentional affacks. In order to
preserve the authenticity of this information and prevent alterations
from being made at will, a protective scheme must be used [3].
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Digital watermarking of fingerprint images can be used in some
applications like: (a) protecting the originality of fingerprint images
stored in databases against intentional and unintentional attacks, (b)
fraud detection in fingerprint images by means of fragile watermarks
(which do not resist to any operations on the data and get lost, thus
indicating possible tampering of the data), and (c) guaranteeing secure
transmission of acquired fingerprint images from intelligence agencies
to a central image database, by watermarking data prior to transmission
and checking the watermark at the receiver site [4].
In recent years, a number of adaptive watermarking methods for digital
image have been proposed. Bilge and et al [a] introduce spatial method
in order to embed watermark data into fingelprint images, without
corrupting their features. Anil and et al. [5] introduce an application of
steganography and watermarking to enable secure biometric data (e.g.,
fingerprints) exchange. In [6], Chouhan and et al. blind watermarking
scheme based on wavelet domain has been proposed as a means to
provide protection against false matching of a possibly tampered
fingerprint by embedding watermark data in the fingerprint itself.
In this paper, we propose method to hide watermark into fingerprint
image to guarantee the image source is authentic and the information
content in the image has not been modified in transit to its destination or
that stored in database.
This paper is organized in the following manner.The watermark
inserting and detecting method is proposed in Section 2. Experimental
results are shown in Section 3. Section 4 concludes this paper.

2. Proposed Watermarking Method

In this section, we describe the main steps of the proposed watermark
embedding and extraction procedures. The block diagram of the
proposed watermarking method is presented in Fig.l.

l
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Watermark
Data

Figure-1: The Block diagram of proposed watermarking method.

2.1 Noise Removal

Fingerprint image may not always be well defined due to elements
of noise that corrupt the clarity of the ridge structures. This corruption
may occur due to variations in skin and conditions of capturing such as

humidity, dirt, and non-uniform contact with the fingerprint capture
device. Thus, this step is employed to reduce noise, to improve the
clarity of ridge structures of fingerprint images, and to prepare
fingerprint image to determine the hiding locations. In this step, the
median filter is used for the noise removal from fingerprint image.
2.2 Binarization Process

Binarization is the process that converts a fingerprint image into a
binary image.One ways of accomplishing this process is by using the
edge detection operation and optimal thresholding technique.

As described in literature a number of different gradient filters to
edge detection are available. Since the Sobel operator is the most
popular one used for edge detection purposes and it yields the best
results and very quick to computer and rather simple to implement, it
will be used in the proposed method to detected edges in fingerprint
image [7].

レ
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F'ingerprint image

Watermarked
fingerprint image

Select Hiding
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Embedding

ヽ

503



Authentication of Fingerprint Image Based on Digital Watermarking 
Methaq

The Sobel operator is followed by a global thresholding operation
in which each pixel in the image is assigned a value representing either
white or black depending on the magnitude of the gradient at that point
as follow:

B(毎り =
Iif EM(x, )')>Tn

0 if EM(x, y) 3 T^

...(l)

where EM(x, y) is the edge magnitude value which results from
convolution a Sobel operator.The threshold (f,) isrepresents mean value
for pixels values in neighborhood of pixel at index (x,y).The optimal
thresholding technique is effective in separating the ridges (white
pixels) from the valleys (black pixels). Somehow the fingerprint image
is converted to binary image {1, 0} where the value /corresponds to
object (ridges) and 0 to background (valleys).

2.3 Thinning Operation

Thinning is normally only applied to binary images, and produces
another binary image as output. After the fingerprint image is converted
to binary form, it is then submitted to the thinning algorithm which
reduces the ridge thickness to one pixel wide. The thinning must be
performed without modiffing the original ridge.

The purposes of thin image which produced from the thinning
algorithm are and play very important role to determine the hiding
locations in which the watermark bits will be stored in the original
fingerprint images.

The standard thinning operation is described in [8] [9], which
perform the thinning algorithm using two sub-iterations.The thinning
algorithm is described as follows:

ｒ
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Thinning Algorithm

け

Begin
Stepl: Create the fwo Buffers that equalto the binary file (BUFI, BUF2).
Step2: Step:0.
Step3: Repeat

Flag:0.
For i: I to Image Hight-l
Forj= I to Image Width-l

Begin

' If BUF2 [i, j] = I Then compute N (P il. {Equation (2.3)}
Else go to Step4.

. lf (2<: N (P )<:6) Then compute T (P ).
Else go to Step4.

. lf T (P D:l Then test the condition (C) as:

If Step:0 then C : Pz'Pq' Pa.
Else C:Pz 'Pq. Ps.

Else go to Step4.
, If condition (C) is True Then test the condition (D) as:

If SteP:O then D : Pq'Po' Pe'
EIse D --Pz.Pe. Py

Else go to Step4.
. If condition (D) is True Then BUFl [i, j] :0, Flag :1.

Next j, Next i.
Step4: If Flag:l Then BUF2:BUFl.
Step5: If Step:0 Then Step:l Else Step:0.
Step6: If Flag l0 Then go to Step3.
End.

2.4 Select Hiding Locations

After getting the resulted thin image file from the thinning
operations as shown in section before, this file consists two values are 0
or lonly these values will be used to determine the places in which thet- watermark bits will be stored in the original fingerprint image.And this
is done by checking pixel of the edgeimage file and thin imagefile as

follow:
r
I lif B(i, j)=1 and Thin(ij)=0

a (i'i)= 
1 o otherwise "'(2)

t
To obtain d, (i, j), it is got the resulted binary image file from the

binarization process section as described before, and get the resulted
thin image file from thinning operation section as described before, if
binary pixel (i, j) :land thinning pixel (i, j) :0 then o (i, j) :l otherwise
a (i, j) :0. The B(i, j)and Thin (ij)represent the values of binary and
thinning files, respectively. For example:

(fr
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0 1 1 0 0

0 l 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1

B (i,j)

0 I 0 0 0
0 0 1 0 0

0 0 0 1 0

0 0 0 0

0 0 0 0 0

Thin (i, j)
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2.5 Watermark Embedding

In this method, Watermark data are embedded onto pixels of
fingerprint image according to the embedding condition given below:

If a (i, j) =lThen insert watermark bit (ly) in I (i, j)...(3) .

where-I (i, j) are pixel values referring to original pixels at watermark
embedding location (i, j).The value of watermark bit is denoted as V/,

where We 10, l]. The a (i, j) term guarantees the pixels (called marked
pixels) which will store watermark bit are not belonging to region which
used in the recognition and classification processesof fingerprint
images, therefore the performance of a method which will using the
watermarked image (e.g., fingerprint verification in the case of
watermarked fingerprint images) is unchanging; a (i, j), takes the value
0 if the pixel (i; j) under consideration belongs to a fingerprint feature
region; it has value I otherwise.In other words, the watermark bit will
be embedded in edge pixels or busy regions only which are not
belonging to features areas.The algorithm of this method is as shown
below:

Input: Original Fingerprint Image, Binary File, Thin File, and Watermark Data.
Output: Watermarked Image.

0 0 0 0

0 I 0 0 0
0 0 I 0 0
0 0 0 0

0 0 0 0

a (i, i)

Begin
Stepl: Load original fingerprint image.
Step2:Get the binary fingerprint image file, this file resulted from binarization

process.

Step3: Get the thinning file this file resulted from thinning operation.
Step4: Read the watermark data.
Step5: Convert the watermark data into a bits stream.
Step6: Compute a (i, j) from binary file and thin file.
StepT: Insert watermark data to original fingerprint image, the fingerprint pixel

values are changed according to the following condition:
If a (i, j) :lThen Insert watermark bit (W) in I (i, j)

StepS:Save and display fingerprint watermarked image.
End.
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2.6 Watermark Extraction

Watermark extraction is the inverse process of watermark
embedding. We need to compute the a (i, j) values and the secret key.
The algorithm of watermark extraction is as shown below:

Input: Fingerprint Image.
Output: The Image Authentic or Unauthentic.

Stepl: Compute a (i, j) from binary file and thin file.
Step2: Extract the watermark bit from the hiding locations in the loaded fingerprint

image depending on a (i, j).
Step3: If watermark bits are found in fingerprint image then

. Collect the extracted bits and convert them to values.

' Display the extracted watermark data on screen; this means the
loaded fingerprint image is authentic.

. Display message" the loaded fingerprint image is unauthentic "; this
means the fingerprint image is either replaced or modified".

Else

End.

3. RESULTS AND DISCUSSIONS
In this method, the watermark bits are embedded in locations

selected based on the a (i, j) values that is built by using thinning
operation. This experiment has been implemented using twofingerprint
images of size 5l2x5l2.TheFig.2 shows the original fingerprint image
with the corresponding binary image, thin image, and watermarked
image for each one.
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(a2)

(a3) (b3)

Figure-2: (a&b) Original images, (al&bl) binary image, (a2&b2) thin image,
(a3&b3) watermarked image.

As seen in Fig.2, the proposed method is providing high degree of
transparencybetween original fingerprint image and its watermarked
image, because the hiding locations are the edge pixels regions only.
Due to the fact that human visual system is relatively less sensitive to
changing pixel value in busy image regions and edge image regions, the
visibility of the watermark does not increase significantly. Therefore,
watermarked fingerprint image is similar to original fingerprint image.

To determine the amount of distortion ofproposed watermarking
method introduced into the host image. Thetwo of image quality
measures are used. These measures are PSNR [0] and SSIM [ 1]

measures. The results of quality evaluation are shown in Table 1.
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Table― l. Quality evaluation for
Image PSNR SSIM

Imaee A 42.13 9.72

Image B 39.77 9.s3

method

As noted results of PSNR and SSIM in Table l, the proposed
method has the highest quality degree. The reasons for that, the
proposed method embedded the watermark bits in the edge regions
which are not belong to the main structure of fingerprint image. In this
case, the watermark bit will not effect on the feature regions.

It is taken another example of test to fingerprint image watermark
which affacked by attacker (unauthorized) as shown in Fig.3 thus the
watermark not extract that means this image is unauthentic.

ヽ

Figure-3 : Attacked Watermarked Image.

In Fig.3, the all images are unauthentic, because the some type of
attacks aredone on the fingerprint watermarked image. In this case, the
synchronization of watermark is lost in extraction side.
4. Conclusions

In this paper, we have proposed a watermarking method based
on thinning operation which can be used for authentication of
fingerprint image. Experimental results show that the degradation by
embeddingthe watermark is too small to be visualized. Also, the
proposed method can enhance the security of a fingerprint-based
personal authentication system.
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ABSTRACT

The objects in the underwater images are not clearly visible due to low contrast
and scattering of light and the large noise present in the environment which leads to
lose its original color and details. The Retinex is an image enhancement algorithm
that improves the brightness, contrast and sharpness of an image. In this stridy, we
proposed a new image enhancement algorithm dependent on the Modified i7ulti
Scale Retinex Algorithm with Color Restoration lUtUSnCn;. This technique is
using the lightness component in YIQ color space thar is transfoimed by the Siimoid
Function and then it is applied in the traditional multi scale retinex algo-rithm
MSRCR image after reveres transformation. Relationship between the mean and the
average of standard deviation for image has been done to examine the efficiency of
the method.All algorithms has implemented using program (Matlab).

1. INTRODUCTION
underwater image enhancement techniques provide a way to

improving the object identification in underwater environment. There is
lot of research started for the improvement of image quality, but limited
work has been done in the area of underwatei i*ug.r, because in
underwater environment image get blurred due to poor visibility
conditions and effects like absorption of light, reflection of light,
bending of light, denser medium (g00 times denser than air) ind
scattering of light. These are the important factor which causes the
degradation of underwater images [l]. The researchers have reviewed
several techniques related to images enhancement viz .,contrast
Stretching" "Histogram Equalization',,,contrast Limited Adaptive
Histogram Equalization (CLAHE)". The (MSRCR) is a non-finear
spatial and spectral transform that produces images that have a high
degree of visual fidelity to the observed scene [2]. Here we are goingio
the process of testing, developing and extensivJy using the H[togiam
Equalization Gm), Adaptive Integrated Neighborhood Deperidentい
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Approach (AINDANE), Multiscale Retinex with Color Restoration
(MSRCR) and Modiff Multi scale Retinex with Color Restoration
(MMSRCR) algorithms for image enhancement.
2. Related Works

A number of researches have been conducted to study the contrast
and lightness color image enhancement in different ways, in the
following some of these studies:
. Foster [3] (2011) identified fundamental problems with defining color
constancy in complex natural visual environments and in the same year
they proposed an adaptive multi-scale retinex that determines the size
of the Gaussian filters and corresponding weights according to the
intensity distribution of the input image [4].
. Hana H. l5l (2012) enhanced the color images with dim regions by
using modi$ histogram equalization (MHE) algorithm. This technique
uses the lightness component in YIQ color space is transformed using
sigmoid function.

3. MATERIALS AND METHODS
For the results in this study, we have selected test color which is

consisting of (red, green, blue, magenta, cyan, yellow, white and black).
After that we spraying paint on the metallic ptate by using the sprayer
dyes, the metallic plate (13.5x 15 cm) connected with wood pole of
length (4.5 m) to controlling of the distance between the object and
camera at different depths as showing in Figure l. The video clips have
been done by using underwater camera (Sony DSC-TXIO), we used
"Ulead Video Studio program version 11" to obtain images of BMP
format with size (243x243 pixel); note of that these images were taken
from the swimming pool (clean water), after that these images are
processed in Matlab.

3.1 Histogram Equalization (HE)

A global technique which works well for a variety of images is
histogram equalization If lightness levels are continuous quantities
normalized to the range (0, l) and pr(r) refers to the Probability

Figure-l : Experimental Setup.
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Density Function (PDF) of the lightness levels in a given image,
where the subscript is used for differentiating between the PDFs of
the input and output images. Suppose that the following
transformation perform on the input levels get output (processed)
intensity levels [6].

3.2 AINDANE Algorithm
Adaptive Integrated Neighborhood Dependent Approach for

Nonlinear Enhancement of Color Images (AINDANE) is an algorithm
to improve the visual quality of digital images captured under extremely
low or uniform lightening conditions. It is composed of three main
parts: Adaptive Luminance enhancement, contrast enhancement and
color restoration [5].
3.3 MSRCR Algorithm

The Multi-Scale Retinex (MSR) is explained from Single-scale
Retinex (ssR) that is a combination of weighted different scale of SSR,
which given by [7]:

R, (x,y,c) : log[t, G,v)]- log[F(x,y,c) 8I, (x,y)]

where, Ri (x, y, c) the output of channel i (i e R,G,B) at position X, y, c
is the Gaussian shaped surrounding space constant, Ii (x, y) is the image
value for channel i and symbol I denoted convolution. F (x, y, c)
Gaussian surrounds function that is calculated by F,q.2.

聰
"裁
ノ学 ]

∬F(χ,ン,6)教め′=1

(2)

(3)

(4)

The MSR output is then simply a weighted sum of the outputs of several
different SSR output where [8]:

RMsR(X'y,W,C)=Σ ttRI(x,y,Cn)
n‐ :

t where, N is the number of scales, Ri (x, y, cn) the I'th component of the
n'th scale, RMSR (x, y, w, c) the I'th spectral component of the MSR
output and Wn the weight associated with the n'th scale. We insist that
(\t4tn:1). The result of the above processing will have both negative
and positive RGB values and the histogram will typically have large
tails. Thus a final gain-offset is applied as mentioned in t8l and
discussed in more detail below. This processing can cause image colors
to go towards gray and thus an additional processing step is proposed in
[7] to calculate MSR with color restoration by Esqs. (5&6):

R:=RNIsR*IIは
'y,c)

where,I'given by[8]:

ヤ
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where, we have taken the liberty to use log (1 + x) in place of log (x) to
ensure a positive result. In [8] a value of 125 is suggested for (a); we
empirically settled on a value of (b: 100) for a specific test image. The
difference between using these two values is small. In eq. (4) a second
constant is used which is simply a multiplier of the result. And the final
step is gain-offset by 0.35 and 0.56 respectively. The present research
uses: (w1 : w2 : w3 : l/3) and (cr : 250, c2: 120, ca : 80) [9].
3.4 MMSRCR Algorithm

First step in this algorithm is transform color image from basic RGB
color space to YIQ color space, the forward transform is given by Eq. 7
[8]:

I,(x,y,a.b)= o,"rf,*u,'.(*'') I
I II'r*'vl.]

乳判(+肝)

Nabeel,Ali and Hazim

(6)

(8)

(7)

where, y is lightness component, i,q are chromatic components. In
second step is transformed normalized lightness value by using sigmoid
function that is given by Eq.8 [9]:

where, In is the normalized lightness value that is equal (I/255). Figure2
shows the relationship between input lightness in versus output
lightness Sn.

Figure-2:Relationship between input lightness versus output lightness.
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Finally the MSRCR had been applied on new component in Eq.9.
4. Image Quality Assessment

Some researchers in NASA Langley research center studied regional
means (visual lightness) and standard deviations (visual contrast) and
found that they tend to converge on consistent global aggregates [10].
This implies that a good visual representation can be associated with
well-defined statistical measures for visual quality. In scientific terms,
this implies the existence of a canonical visual image as a statistical
practical ideal. Such a defined ideal can then serve as the basis for the
automatic assessment of visual quality.

To compute the regional parameters, we divide the image into non
overlapping 25x25 pixel blocks. For each block, a mean Ir and a
standard deviation ou &re computed. This regional scale is sufficiently
granular to capture the visual sense of regional brightness and contrast.
Both the global contrast and lightness can then be measured in terms of
the regional parameters. The overall lightness is measured by the image
mean F: Io , which is also the ensemble measure for regional lightness.
The overall contrast is measured by taking the mean of regional
standard deviations % as shown in Figure 3 and it provides a gross
measure of the regional contrast variations. A classification of excellent,
good, or poor is then based on how many of these regional blocks
exceed a given contrast and brightness threshold.

5. RESULTS DISSCUSSIONS
we study new ways to control intensity of light and color for the

purpose of capturing better quality data in poor visibility
environments. The images which used in the present study have been
illustrated in Figure 4. These images were enhanced by ,.ing different
algorithms as shown in Figs. (5-8), the relationship between mean of
local standard deviation and mean for image it is illustrated in Figure 9
a-g the points of MMSRCR tend to visual optimal region. In fact, this
algorithm was enabled to increase both lightness and contrast in image
which compared with other points. we can conclude that the MMSRCR
is robust method to enhance color-image with degraded lightness levels.
6. Conclutions

A computation like the MMSRCR appears to have two very useful
properties simultaneously: a diminishment in the dependence of the
appearance of the image on poor visibility environments and extraneous
variables, such as spatial spectral and lighting. The former is inherently
useful because it can lead to better image classifications and the latter
because it shows very clearly that the appearance of a color is
dependent not only on the spectral characterisiics of a pixel, but also its
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suffound. Together these properties may be able to provide a basis for
bringing more advanced levels of visual intelligence into computing.

0    10   10   30    10    50    6Cl    '0

Figure-3:Image quality description[10]・

Figure-4: Original images (a) in air, (b) in depth

cm underwater, (d) in depth 150 cm underwater,

in depth 250 cm underwater.

50 cm underwater, (c) in depth 100

(e) in depth 200 cm underwater, (f)

F

Figure-5: Enhanced images by using MMSRCR algorithm (a) in air, (b) in depth 50

cm underwater, (c) in depth 100 cm underwater, (d) in depth 150 cm underwater, (e)

in depth 200 cm underwater, (0 in depth 250 cm underwater.

■
．

Figure- 6: Enhanced images by using HE (a) in air, (b)

underwater, (c) in depth 100 cm underwater, (d) in depth 150 cm

depth 200 cm underwater, (f) in depth 250 cm underwater.
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C
Figure-7: Enhanced images by using MSRCR algorithm (a) in air, (b) in depth 50
cm underwater, (c) in depth 100 cm underwater, (d) in depth 150 cm underwater,
(e) in depth 200 cm underwater, (0 in depth 250 cm underwater.

DA

C
Figure-8: Enhanced images by using AINDANE algorithm (a)
50 cm underwater, (c) in depth 100 cm underwater, (d) in depth
(e) in depth 200 cm underwater, (0 in depth 250 cm underwater.

in air, (b) in depth
150 cm underwater,
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Figure -9:Relationship between mean of local standard deviations and mean of
original and enhanced images (a) in air, (b) in depth 50 cm underwater, (c) in depth
100 cm underwater, (d) in depth 150 cm undenvater, (e) in depth 200 cm
underwater, (f) in depth 250 cm underwater.
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ABSTRACT
Glottal signals may carry more information about speakers than the speech signal
itself when they used in the con- text of text-dependent speaker identificaiion
system. Source signals that came from voice-containing utterance appear to
improve the system performance up to 10% comparing with the speech signal itself
while those came from non-voiced utterance appear to have similar or pietty less
accuracy comparing with the speech signals. Features are extracted from each
speech/source signal by the method of AM-FM signal modulation. This method is
able to introduce a set of descriptors that are encoded as a parameters for speaker
identification. The purposes of this paper is to show that the voiced speech .or.".
signal contains more speaker dependence information than the speech signal in the
context of speaker identification system. The speech signal and its iour." ur.
parameterised in the method of AM-FM signal modulation. The results show that
the source signal will give better performance just when it comes from voiced
source.

1. INTRODUCTION
The task of speaker recognition can be divided into two fundamental
parts: identification and verification [1]. Speaker identification is the task
of assigning an unknown voice to one of the speakers known by the
system; it is assumed that the voice must come from a fixed set of
speakers. Speaker verification, on the other hand, refers to the case of
accepting or denying a claim to be a particular speaker. In general, a
speaker recognition system is composed of a speech parametrisation
module and a statistical modelling module. These are responsible for the
production of a machine readable parametrisation of the speech samples
and the computation of a statis- tical model from the parameters [2].
During the past years the base model for speech parametrisation (the
front-end of the recognition system) usually adopted is the source-filter
model. This model has lead to the extraction of parameters such as
linear predictive coding (LPC), mel-frequency cepstral coefficients
(MFCCs) and perceptual linear prediction

T
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(PLP) coefficients. These have proved highty successful in robust
speech recognition, however the amplitude spectrum typically
employed is highly sensitive to changes in speaking conditions such as

changing channels and speaking style [3]. Also, this model is known
to neglect some structure present in the speech signal, such as; unstable

airflow, turbulence, and nonlinearities arising from oscillators with time-
varying masses [4]. In recent years, new ways of modelling and

characterising speech have been proposed. Of particular interest here is
AM-FM modelling, which is used to decompose a speech signal into its
modulated components of envelope (instantaneous amplitude) and phase

(instantaneous frequency). However, AM-FM modelling becomes

meaningless (containing many unaccepted negative frequencies)
without breaking the signal down into its components, as the

instantaneous frequency for a multicomponent real-valued signal is not
well defined [5]. This model has adopted for many application related
to the speech signal processing. Methods presented in [6,7,8] have
employ this model in speaker parameters extraction for speaker

recognition. The method in [6] used the AM-FM model to extract the
nonlinear features caried by speech signal. In [7] the model has

used to improve the speech spectrum of the reverberation sound. The

model is also adopted with speech recognition area. In [9, 10] the AM-
FM model has used to investigate the performance of the modulation
components with the speech recognition. The short-time processing and

the instantaneous band- width are used in the model to estimate the
speech related features rather than the speaker person. This would open
the door about more investigation to this model in the context of
speech and speaker recognition. This paper explore the use of AM-FM
source signal representation (rather than a speech signal) to introduce a

new set of descriptors. This set is good descriptor of time-varying
frequencies inherent in the speech signal that can be encoded as

parameters for speaker identification. A popular statistical model in the

context of text-independent speaker recognition, where there is no prior
knowledge of what the speaker will say, is the Gaussian mixture model
(GMM) [2]. This model is sufiiciently powerful to discriminate among
individual features, and so is used in this work.

2. GLOTTAL PARAMETERS ESTIMATION
In several important applications of speech processing, including speech
analysis, speaker recognition, and speech coding, it is advantageous to
extract features of the excitation signal. These features can contain
speaker-specific and phoneme-specific properties that can be

exploited in a targeted way to improve performance of several speech
processing applications. For example, it has been shown in [11] that
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excitation features can be used to improve the speaker recognition
task. Source signals, which in some application referrers to as glottal
flow or excitation signal, can be achieved by inverse filtering of the
speech waveform. According to the source-filter model view of speech
production, in discrete time, the speech waveform s[n] is the output of
the vocal tract filter with impulse response h[n], excited by the source
signal u[n]. According to an all- pole representation of the vocal tract
with transfer function in frequency domain:

JJ4・ )= t - IL, n,i:-i

The speech signal basically is a result of convolving between the source
signal (excitation) and the vocal tract impulse response. Therefore, we
have:

1'

判 =ΣEら中l一弩+七日
i=l

The speech signal in discrete time domain. To get the source from
speech signal, the filter coefficients a; should be estimated from the
speech signal s[n]. To do so the covariance method of linear prediction
is used. Covariance-based linear prediction is preferred over the
autocorrelation method because, when the waveform follows the
assumed all-pole model, the analysis window over which the prediction
effor is defined results in the correct solution for any window length
greater than the prediction order [12]. After the filter coefficients are
calculated, The source signal can be determined through the
deconvolution operation. Simply, it is the convolution of the speech
signal with an all-zero filter parameters obtained from the previous
method. Figure I shows an example of the voiced speech signal
waveform and its envelope (vocal tract transfer function) and the source
signal (the excitation). The LPC order used in our method is equal to
sampling frequency in kHz.

(2)
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Figure- l: Segment of voiced speech ,., o-"", ,J:1,;- *o ,o.u, tract envelope
estimation (b), Glottal source signal(LP residual signal spectrum (c).

3. AM.FM MODEL
AM-FM speech signal modulation used to decompose a speech signal
into its modulated components of envelope (instantaneous amplitude)
and phase (instantaneous frequency). Subject to nonlinear and time-
varying phenomena during speech production, i.e., the frequency
content or spectrum changes with time, the AM-FM modulation model
comes to seek and exploit the rich set of time-varying frequencies
inherent in the speech signal and employed them in many speech signal
applications. For example, in [13] AM-FM approach was used in the
context on formant tracking, in [l4] the model is employed in the
speech recognition application. In [15] and [16] the AM-FM model is
adopted for the purpose of speaker identification, both works used
speech signal in the parameters encoding for speaker identification.
In order to characterise a modulation component for a speech signal,
first, a single-valued frequency signal must be generated by breaking
the signal down into its frequency components. To do that, a filterbank
consist of set of bandpass filters are adopted. The idea is to perform
the method of multi band demodulation analysis (MDA) as its described
in [3]. we used the Gabor bandpass filters because they are optimally
compact and smooth in both the time and frequency domains. This
characteristic guarantees accurate amplitude and frequency estimates in
the demodulation stage [13]. The analytic signal is then constructed for
each bandpass output waveform; it is a transformation of the real signal
into the complex domain and it is adopted because it permits the
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characterisation of the real input in terms of instantaneous amplitude
and frequency [17]. Mathematically; given a real input signal s[n], its
analyic signal can be computed as

sa[nJ : s[n] +jH[s[nJ] : s[n] + ji[n] (3)

where the quadrature signal s^[n] is the Hilbert transform of speech
signal s(t). From the analytic and speech signal the phase g(t) can be
calculated as

d,ln] - irrctan (4)

be computed directly

羽
一刺

／

１

１

＼

The instantaneous frequency (IF) of the signal can
from the phase as:

fi*l -*#
The instantaneous amplitude is computed as:

(5,

轟1可 =
To get the proper values of instantaneous frequency, instantaneous
amplitude and instantaneous frequency are combined together to
obtain a mean-amplitude weighted short-time estimate Fi of the
instantaneous frequency for each bandpass filter output (waveform)
[13].

鳥 =
躍
十丁
『
阿.a2レ壌ldf

(6)

(7,
,麟F十

ア
la2シ 1:ご1

where t is the selected length of the time-frame. The adoption of a mean
amplitude weighted instantaneous frequency in (7) is motivated by the
fact that it provides more accurate frequency estimates and is more
robust for low energy and noisy frequency bands when compared with
an unweighted frequency mean [13].
The computation of the short-time instantaneous frequency for each
source signal leads to the extraction of the speaker descriptors set that
used as a system parameters. Figure 2 shows a example of one channel
output source signal and its instantaneous amplitude and frequency.
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Figure-2: One channel source signal (a), The instantaneous amplitude (b), The
instantaneous frequency (c).

4. THE MODULATION PARAMETERS OF THE GLOTTAL
COMPONENTS
For our experiment, the filterbank adopted consist of 4O-channels
Gaussian filterbank with center frequencies that are Mel-scale spaced on
the frequency axis and varying bandwidth follows the principles of
constant-Q or Multiscale wavelet-like filterbank. Feature vector should
be generated from each channel output ofthe band passed source signal
with the use of a filterbank. The bandpassed waveform is then
demodulated and its instantaneous amplitude and frequency computed.
Through the application of AM-FM modulating schema on the source
signal it has been found that the source signal firstly should be pre-
emphasised (in order to balance the signal spectrum) by applying the
following single-zero fi lter:
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where the value of a is generally taken in the interval [.95,.98]; its .96 in
our experiment. The instantaneous amplitude and frequency of each
filter bank channel are then components together to obtain a mean-
amplitude weighted short- time estimate of the instantaneous frequency
of each source signal. As shown in equation (7) each frame with the
length of t will give one value represents the weighted instantaneous
frequency of that length. Therefore, the output of each channel of the
filter will be (with an overlap window of r l2):

A・
=(1学 ))-1 (9}

where I represents the length of the signal.

After applying all channels of the filter bank and compute the feature
vector of each channel output, the utterance of each individual can be
represented by N xK an matrix, where N is the number of filter
channels, and K corresponds to the number of times that the input signal
(one channel output) can be segmented into the short time segment with
a given window length; the value t in (7). The generating of the
features vectors will be repeated for all that we used in the database.
This will allow us to keep information about all the persons that we
need to test their features.

5. SPEECH DATABASE
In our speaker identification experiments, a set of text- dependent
British Telecom Millar database was used. The set contains the
recordings of 60 speaker(46 male and 14 female) obtained in five
different session with a time separation of about three months. The
recordings were carried out in a quiet environment with high-quality
microphone and each speaker participated in five recording sessions
and spoke the digits I through 9, zero, oh and nought five times in each
session. The first and second recording sessions (10 repetitions) were
used for training while the rest of the data (15 repetitions) were used for
testing.

6. SPEAKER IDENTIFICATION
The adopting experiment is not working on the frame-by- frame basis,
instead the whole speech signal is taken as one segment passing through
the Gabor filterbank. The wave- form of each channel is demodulated
by Hilbert transform de- modulation (HTD)method and then its
instantaneous ampli- tude and instantaneous frequency is computed.
Then the two (instantaneous amplitude/frequency) are combined
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together to produce the mean amplitude weighted instantaneous fre-
quency, which represent many values that describe the mod- ulating
components of the signal at that filter channel. After passing the signal
through the whole filter channels, a set of feature vectors (the model
parameters for speaker identifica- tion) will be generated. The speaker
identifiability based on the AM-FM signal modulation features is then
determining through a Gaussian mixture model (GMM). Its adopted as

is famously known of the most successful method in modeling human
identity from speech [2]. Each Gaussian is characterized by a diagonal
covariance matrix. This choice is based on the empirical evidence that
diagonal matrices outperform full matrices and the fact that the
probability density modeling of an Mth-order full covariance matrix can
equally well be achieved using a diagonal covariance lager-order
mixture [18]. Based on theGMMmodeling, each speaker (in both
training and testing stages) is described by a mixture of M Gaussian
models ; which are the weighted sum of the M
component densities and called the mixture densities. Statistically, for
each feature vector -x, the conditional probability is computed from the
mixture equation:

.t,

p(flf): I c,,.."i-(i)
m=l

where cm are the mixture weights and ym (-x) an N-variate Gaussian
function.
The dimensionality of the Gaussian function equal to the
dimensionality of the feature vector or the filterbank channel used in the
experiment.
For the values of mixture weights a special case of the expectation-
maximization (EM) algorithm [18] is used, while for the number of
component densities in the mixture model is chosen to be between (5 to
7) Gaussians. Our experiments showing that increasing the number of
Gaussians beyond this values did not improve the performance of the
classifier with AM-FM features. A set of S speakers {sl , s2 , ..., sS } is
represented by S Gaussian mixture models {f l , f2 , ..., I-S }.
A given observation sequence X = [xr , ..., xx J is tested by finding the
speaker model which has maximum a posteriori probability. By
applying Bayes rule and using the logarithm [18], the probability can be
computed as

L{
,9 - arg-* I logp(qr). (l t)

m=l
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To make the system more flexible, the process of feature vectors
generation should focus only on the parts of ufferance when frames
contain meaningful and speaker dependent fea-tures (voiced segments
in this case).

7. RESULTS
Many parameters can have an extremely important role in the
computation of the signal modulating features as well as the system
performance. These extend from the type of central frequencies scale
employed in the experiment, the effective rms bandwidth of each filter
channel, and the number of mod- els in the Gaussian mixture used in the
decision-making step. In our experiment the filterbank adopted consist
ofa set of30
Gabor bandpass filters with center frequencies that are evenly spaced on
the Mel-scale frequency axis, while the bandwidth of the filters are set
AS:

ふ
r7ぉ1=3面

雨
・ (12)

ヤ

where f* is the central frequencres. I nls ls slmply tne constant-Q
property or multiscale wavelet-like filter bank. It adopted because the
error band across the filter channels should be made constant across
the spectrum [19].
In terms of the number of mixture models of the GMM, 5 to 7
Gaussians is the proper number; the experiment shows that the
increasing of Gaussian model component does not improve the
performance. The speaker identification system construct of those
parameters is employed in the calculation of modulating features of the
speech and source signals. Based on the short-time energy function,
where unvoiced regions have lower short-time energy than voiced
regions, the rate of voiced regions (vR) that are embedded in each
spoken word is referred to in each figure. Figure 3 show the result of
digits zero, three, and eight for both source and speech signals
respectively. They show how that the AM-FM source signal modeling
features presented from voiced-containing utterance can achieve up to
ljYo accuracy over the results obtained from the speech signal of the
same word. Figure 4 shows the result of digits one, two, and nougth for
both source and speech signals respectively. Its clearly that the source
signal of the voiced ufferance can captured a more speaker dependence
features than the speech signal in the context of AM-FM signal
modulation approach.
Finally, Figure 5 shows speaker identification system performance
for the whole database (all digits combined together) for both source
and speech signal. This Figure will represent the voiced and unvoiced
ufferance in the speech database, which in term reflect the power of the
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modulation components of both cases.

Form this Figure we can see that source and the signal components can
hold lots of modulation information that can be used in estimation the
speaker parameters that can be used in speaker recognition system.

NurrbGr cr SpCt (gE

(a) Speaker identification accuracy of the reference GMM classifier for the word zero. YR=25%

Nurm€r cr SO€C('E

(b) Speaker identification accuracy of the reference GMM classifier for the word three. VR:35%

1c) Speaker identification accuracy of the reference GMM classifier for the word eight. VR:20%

Figure-3: Shows the effect of the source signal on speaker recognition in the case of
voiced speech.
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Number of Speakers

(a) Speaker identification accuracy ofthe reference GMM classifier for the rvord one. VR=l0%

(b) Speaker identification accuracy of the reference GMM classifier for the word two. VR=5%

0            10           20           30           4(
Nurnber of Speakers

(C)SpCakcr idelltifcation accuracy ofthe reference GMM ciasЫ fcr for the、vord nougltt VR=10%

Figure-4: Shows the effect of the source signal on speaker recognition in the case of
unvoiced speech.
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Figure-5:Speaker identification accuracy of the complete (all digits) database

8. CONCLUSION
In this paper, we showed that the source signal came from voiced-
containing utterance contain speaker dependence features more than the
speech signal itself. The result shows that the modulating features of the
source signal extracted by the method of Hilbert transform
demodulation (HTD) can improve the performance up to l0% when
these sources came from voiced speech. However, the speech signals
can give similar or beter result in the case of non-voiced speech. The
only justifo of this situation is, in the context of text- dependint speaker
identification application, since the source signal .un b. assumed as a
digital image of what happening in the vocal folds during speaking that
can be reflected in the slitlike opening befween the folds, *hi.h referred
to as the glottis. Also, such glottal characteristics have been proven to
contain speaker dependence [11]. Moreover, the phoneme classes are
acoustically associated with the formant structure (central frequency
and bandwidth), and the formant structures are relatively stable for L
specific phoneme across different speakers t2ol. Thus the features
derived from the vocal tract spectrum carry the information useful for
speech recognition and its just not pertinent to the speaker identity. In
the case of non-voiced utterance, the source signal can be *rr.id 

^noise-like signal. So the features come from one individual can happen
at the same class of the features come from another individual, unA- init
case can profoundly degrade the performance of the speaker
identification system.
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nnax 〔Ly(α )・ Lx(α)′ Ly(α )。 Rx(α)′ Ry(α )。 Lx(α),Ry(α )。 Rx(α) }]

:げいうだ■甲ナ」| .5

[kLx(α),kRx(α)]  ; k≧ 0

[kRx(α),kLx(α )]  ; k<0

ヘ

(kX)α ={

tttiVttiSLEll盲糠|り
Xs=酬
緊 冨

」,■J .Rx(1)<0 0Lζ l] strict negative Lり 1・ ^LLコ |ぅ・ヽ ●,角J Rx(1)≦ 00K
.■LLだ さ Jぃ 夕 Lだパ ●K格!い島 6りり |し゛ YJX● 岬崚」|夕劃 01

:Ⅲ出 1尋」1鋼」口 1出 _3
Fuzzy Linear Systenl of Equations

`αで
二 墜
が
ミ`1 由
ヽ (2)」 (1)とがヽ ■一 九 」I JlJ ・ 』 dL_、 1 ,こ 、く  12]て 卜 」 らり

｀ ■

Aα=[α F,α,]‐K嘩
`XJB JAぃ よ」  α_む」≦げ」lυ■島 X α=[χF ,χ,]J Bα=[bF ,b,]J
Xα =[ bl α よ」ltギ 。メ亀 Aα  + Xα = Bα 祖上」loい Jヒ

“

J`JI,」|げ上

:υもし

`出
`|ム
1■通り|も!_al α,b2α一a2α]

`Cα(0,1]評 けd b2α‐a2α≧blα―al α。1
げ!!ヴう夕」` oいα≦ β●KI].2

b2β ‐a2β ≦ b2α―a2α.≦ blβ―al β≦bl α_al α

:[6]びYIロリ・ ●勇 (1)Ⅲ」 |｀日 |ふ夢び リヽ

.xα」F.野3ざ
さご出
`も
い 彗り|,Xα =[bl α/al α,b2α /a2α]脚 I Aα .Xα =Bα 亀J‐ ^‖ oJ亀 `41｀くリ

:い L
`α
C(0,1]戸けJ`b2α /a2α ≧blα /alα .1
」!ヴ。夕ご鵬こ瀞α≦β●KI].2

b2β /a2β ≦b2α /a2α.≦ blβ /al β≦bl α/al α

.α C(0,1]評 けJ`a2α ≠OJ alα ≠O ol‐
:びYI口 |」・●勇 (2)Ⅲ」 |ヽ日 |ふ騨ぃ、リ

ヘ

ヽ
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X=Uα∈(0,.Xα・
.Xα =α o Xα ●11・ 11ヽ

A,―し ひ→ OKI判 fuzzy matr破

… …

A=[al]亀メ“
」|げ-6:(11)饉JJ」 |

(A<0)A>0甲 ),J(神L)―ぃ ■出 亀二“ A亀脚 lc´」J`伍LJェ 1ひ
.[3](ⅢL)一ぃ エ メ Aンこ ひ _が ●K嘲

ひ bン Lひ い OK出!fuzzy vector l半
“
■出 b=(bう ■ヨ |“脅り:(12)嗅ノ出|

.[3]ム+LJ工 i

elJiill t+J Oi .r-,r,1 :(13).+*:ll
alyX Xr * arzX Xz+ ... + alnx Xn : br
azrX Xr * azzXXz* ... * aznX Xn: bz

い
一ッ

♂́
¨

(3)

い

anl× Xl+an2× X2+.… +ann× Xn=bn
n× n― も」ユ |り|… 亀二“ ひ 1≦ i′ブ≦n`A=[a」 ]凸｀日 1亀二“ ●

|〔
レ
11ヽ

尋 」 1由ゞ・
Lユ|1出 じ彎 Fu日 ||ゝ 静 `ユ

ltスムJェ 1ひ 1≦ i≦ n`XiJ h JJ`
.[4]AX=b:ξり|ジヨ|。ル ■ヽJヽ■」|

撃 Ψ出 |ご国 |1国1脚 L口IL脚 |‐4

甲II奮i留潮    種芋
榔 樵描主   笛と濾 ユ1壮 :言』
[3]`・
1ヽ口|しれメ 』」 `α=10メ し、軽―

|う ‐ヽ1l α‐こ当 c月賞 げ上
」ヽ01【 ‖、スハヽ

|

oェ メ 災 x́が ぃ 。が Ld‐ ぃ 年 」 |ド LJ J工iげヽJ脚 Ⅲ 井 ´

“

」 c壽 出 も́ い晰 峰 ″ btt xぃ ぃ Lx(1)=Rx(1)辞 ♂
…
…

さ」 Hμ lりt事1山」 |ぃ 中 』」 ・J呵 ― ター Lx(1)J Rx(1)“
ぷ ■ x甲 ‐ 」 |う」 |●区 メ 枯Loり |.じユ 1ま‖甲ナ 」 16二L≒ ≦ 」 国 |り 望 長 釧

ご ミ ユ 池 :苗 」 こゴ L讐 響 二闘 じ ミ ユ

=夢 ‥ J工 |♂!AX=bが LJ♂ Ⅲ

…

ヘニ が■ 111二 JJ工 ゝ 山 脚
～

井

い 出 ■
1.出
Ⅲ J日い去 ■ 1ヽが LJt卜 壽 ´ `工

1-』 【― スJ♂ 国 |が LJが く1■

ンきこ嵩背 迅1菖」二黙 だだ描 f擦
■■出』IJエツ|(ェ島ひ≦ ぃ リユニ が LJttLし Ⅲ 井 上」J●)生二』 。Lニ

仙

ひ 1≦ ι,ブ ≦ n`A=[aJ]凸光 日 1亀‐ ●IⅢ、(3)― |メ」 I FC国 |、」。K IJ
Jェ1ひ 1≦ i≦ n`Xi J bi olJ n× nⅢ ■

…

Ⅲ さⅢ Ⅲ― J工 i亀‐
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S=II」
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Rail(1)り“
L」Ltt R(S2)十 R(Sl)olJ Laij(1)り“LJ■ L(S2)+L(Sl)●にぃ

:びY口 1許 い 手a≦ sl´国 |り
`

:oい 0≦ La」 (1)出K IJ

(1),Laj Sl=
:oい 0>Laij(1)CSK I]

(1),Laj Sij+n=
:oい 0≦ Raj(1)‐KI]

(1),Raj Si+nj+n=

:oい 0>Raij(1)出 K IJ

(1),Ratt Si+nj=

。1≦ Lj≦ n評 け 事 `iル ヴJL s亀 」■
」 IJ巨し 、IJ

(な」口 1与jJ脚り:(1)午jυlメ11-4

へ
）

:α=lLだ
“
(2n× 2n41●
出
)び |`ひ」IF園 |ごい

】[i計議;II;lI)lillも  ,1≦ i≦ n     }
・1

ヽ
　
ヽ

(4)

´ 』1渉 1≦ Lj≦ n J Lxi(1)Ⅲ Ⅲ LЫ (1)J La,(1)い が 6りLI」cJ^lrylJ

:ごり|

:oい 1≦ i′ j≦ n J La。 (1)>0」 Lbi(1)>00`lも !

L(aij× Xi)(1)=La“ (1)× Lxj(1)

:静 1≦ i′ j≦ n」 La,(1)>O J Lbi(1)<0 0KI]J

L(aij× Xj)(1)=Raij(1)× Lxj(1)

:oい 1≦ i′ j≦ n」 Laij(1)<0,Lbi(1)>0 0KI]J

L(aij× Xj)(1)=Laij(1)× Rxj(1)

:oい 1≦ i′ j≦ n」 Laij(1)<O J Lbi(1)<0 0KIも!J

L(aij× Xi)(1)=Raij(1)× Rxi(1)

メ |じLl≦ i′ j≦ n`Rxj(1)t手 ■ Rbi(1)J Ra“ (1)tン が 6υじ|じLJ^年 yぃ
う11｀く

:♂yl

:静 1≦ i′ j≦ n`Ra"(1)>0」 Rbi(1)>0 0KI]

R(aij× Xj)(1)=Raij(1)× Rxj(1)

:oい 1≦ i′ j≦ n`Ra"(1)>0り Rbi(1)<0 0KIム !」
R(aij× Xj)(1)=Laij(1)× Rxj(1)

て瀞 1≦ i′ j≦ n`Raij(1)<O J Rbi(1)>0 0KIJJ

R(aij× Xj)(1)=Raij(1)× Lxj(1)

て瀞 1≦ i′ j≦ n`RaJ(1)<O J Rbi(1)<00`|も !J
R(aij× Xi)(1)=Laij(1)× Lxj(1)

oKI半 .1≦ j≦ n戸 ♂ R巧 (1)JL対 (1)o螂」 IJ甲 lJじ tい島 JttJ
い 1■・⌒ ♂ IR巧 (1)JL巧 (1)戸 」‐ 1平 1≦ j≦ n戸 ♂ R巧 (1)≧ L巧 (1)
Lxj‐´J■ L並レ1≦ j≦ n♂ 脚 Rxj(1)<Lxj(1)OK I]Li`上 メ出」IJ国|ご螂

.L巧 (1)L工 玉LR巧 (1)JR巧 (1)■■ 工L(1)

へ

・

へ
ヽ



云"■出1,■■lo」コ lrL脚 祉 Ⅲメ
出 り`

'し
口i

J・ ム1ハツいJ JJゝ 16」■ヨ|ぃ J・ 1■ ,ハ fヽ」 ld」|が ミヽ1・"|          .2
評げ゙ びツ|ひ」|。国 |(卜LA亀脚 申 1亀」■ヨ|が ミ`1`■Jι口||ゝ 6。し|

:α C[0,1)

(5aゥ

(5b)

XlL. L1.i;,.*j) (0) : Lui(o)

XfL, R1"i;'*it (u) : Rui(o) ,1 < i < n

"

腎 ヽ́ χ
さ」 IJご → 1準 (国… 工 hX」 )→ ぃ 。工 t4AX R巧 (1)J Lxi(1)● K応い

が 嘲 L41.[3]´ L≦ 、」島出」1凸|,Lょ が
ミヽ1-い
(5)が
鳳‖t卜 ●メ沖 』も く■ L」 )

:びツ|=か」1許 。メ■。(5)。畦」lι卜 0い 1≦ k≦ n OI■→ `Lxk(1)<O J Rxk(1)>0

1^`」 、1ふ Jゝ`―″い帷-4もハbり 4ム″ユ11、スハ
“
‐ A● 1りL■|ル i■

:ぴゝメ 1許 ●a)げ国 |1国|い L対 (α)
Σ1lL(aJ× x,)(α)=Lbi(α )

=Lall(1)× Lxl(α)+La11(α )× Lxl(1)― Lail(1)× Lxl(1)
+.…+Lalk(1)× Rxk(α )十 Laik(α)× Rxk(1)― Laik(1)× Rxk(1)
+.…+Lain(1)× Lxn(α )十 Lain(α )× Lxn(1)― Lain(1)× Lxn(1)・

:oい」日IJ

Lall(1)X Lxl(α)十 …十Laik(1)× Rxk(α)十 …十Lain(1)× Lxn(α)=Lbi(α )一
{(Lail(α)一 Lall(1))× Lxl(1)+.… +(Laik(α )一 Laik(1))×

Rxk(1)+.…+(Lain(α )一 Lain(1))× Lxn(1)}。

.1≦ i≦ n」 αc[0,1)出
:ごゝ脚 い (5b)♂1押い R対 (α)■ 鍵 !ふ 」ゝ

卜lR(aり×xi)(α)=Rbi(α )
=Rall(1)× Rxl(α )+Rai■ (α)× Rxl(1)― Rai■ (1)× Rxl(1)
十.…+Ralk(1)× Lxk(α )+Ralk(α)× Lxk(1)― Raik(1)× Lxk(1)
+.…十Rain(1)× Rxn(α)+Rain(α )× Rxn(1)― Rain(1)× Rxn(1)。

:oい」国IJ

Rail(1)× Rxl(α)+… +Ralk(1)× Lxk(α)+… +Rain(1)× Rxn(α)=Rbi(α )
一{(Rail(α)― Ra11(1))× Rxl(1)+.…+(Raik(α)一 Raik(1))×

Lxk(1)+.… +(Rain(α)一 Rain(1))× Rxn(1))。

.1≦ i≦ n」 αc[0,1)出

」(5→ ♂ ΔL.ll卜 d脚L臨 X」 いLb、 」IJ神LA亀メ |●メ亀L♂J

:ユ L許 。LY      (5b)IJ♂出国 1甲)」 16ェL_

:[3]等 1`凸y国1喚」もいW=X×Y。」|●K町

:oい ●→メ o‐“ む
。工 Y J X oK ttl

Lw(α )=Lx(α).Ly(1)+Lx(1)。 Ly(α)~Lx(1)。 Ly(1)

Rw(α )=Rx(α).Ry(1)+Rx(1)。 Ry(α)~Rx(1)。 Ry(1)

:辞 ■ L。工 YJぃ ´ 。工 X● K応 |

ａ
／
１
ヽ

ｂ／
１
ヽ

‐
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Lw(α )=Rx(α).Ly(1)+Rx(1).Ly(α )~Rx(1).Ly(1)
Rw(α )=Lx(α )。 Ry(1)+Lx(1).Ry(α )~Lx(1).Ry(1)

:静 ぃ y工 Y」 ■L工 X oKI]
Lw(α )=Lx(α).Ry(1)+Lx(1).Ry(α)~Lx(1)。 Ry(1)

Rw(α )=Rx(α)。 Ly(1)+Rx(1).Ly(α)~Rx(1).Ly(1)

:oい が Lぃ‐盪 υさ工 Y」 X oKI]
Lw(α )=Rx(α).Ry(1)+Rx(1).Ry(α )~Rx(1).Ry(1)
Rw(α )=Lx(α).Ly(1)十 Lx(1)。 Ly(α)~Lx(1).Ly(1)

!.l-il*ll ejJ. d+-

4

Ｃ
／
１
ヽ

ｄ／１
ヽ

」y“― |メ雷t北』1
(6,8,1,1)Xl+(3,5,1,1)X2=(7,9,1,1)

:♂しL許 出墨 (6)。国 |ひむ
…
～

[6+α ,10‐ α]× Xl+[1+α ,5-α ]× X2=[4+α ,8… α]
[5+α ,9-α ]× XI+[2+α ,6-α ]× X2=[6+α ,10-α ]

JYI_口1許 AX=bム‐ 」甲 Ш IIゝ
～
K出

ll::1町 l::III  I:‡  li::I Ill II:l==IIよ il(I′ i::I Ill
:●1べ3(1)へぃうり|メ」|とい(1)6,上占」|…リ
1≦ i′ j≦ n評♂ `Ra巧 (1)>0り RЫ(1)>0出≦`Lal(1)>0り LЫ (1)>0
許 ●メ α=lLエリX2J Xlひメ」』α―c■ d“ぼ A亀脚 申 1亀口 loい

:♂ylメ」|

7Lxl(1)+2Lx2(1)= 5
6Lxl(1)+3Lx2(1)= 7
9Rxl(1)+4Rx2(1)=7

8Rxl(1)+5Rx2(1)=9
:凛 L許 よ^メ ゝF国

1山」
Lxl(1)=0.11l J Rxl(1)=-0.07
Lx2(1)=2。 11l J Rx2(1)=1.9

■●Jメ|ぃ (1)=メ」|…J`Rx2(1)<Lx2(1)』≦`Rxl(1)<Lxl(1)01Lゝ
:びYIし注■」|・ |り L゙.,螢“(1)

Lxl(1)=-0.07」 Rxl(1)=0.111
Lx2(1)= 1.9   」 Rx2(1)=2.111
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０
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i!":Jl .4rul dr):t-Jl r1l;r ,J.l Lt" {rJJt
J-J.1 j ,t*i

X20ユ」|●1((lo)Ⅲ J二」|■
“・ )ヽ_籠

ぬJい´ さ工 しぬ)≦ Rx2(1)り Lx2(1)。 ILゝ 区

ぃ (2)6メ」 |≒コ Jヽ Lx.(1)<O J Rxl(1)>0 静 Xl m』 |し´ン 中 LI`ぃメ
:ぴゝメ |ル (6)1園 |よL(1)与う」メ |

00
00
94
85

:● |`´
1`｀

Ll = Lb.(α )一 [(La■ 1(α)―Lall(1)).Rxl(1)十  (La12(α )~La■ 2(1))・ Lx2(1)]

=(4+α
)― [(6+α -7)(0.Hl)+(1+α …2)(1.9)]

=6.011-1.01l α

L2 = Lb2(α)~ [(La21(α )¨ La21(1))。 Rxl(1)+ (La22(α )~La22(1))・ Lx2(1)]

=(6+α
)― [(5+α -6)(0.Hl)+(2+α -3)(1.9)]

=8.011-1.01l α

= Rbl(α )一 [(Ra■ 1(α)― Rall(1))。 Lxl(1)+(Ra12(α )~Ra■ 2(1))。 Rx2(1)]

H)]1=(8-α )― [(10-α -9)(-0.07)+(5-α -4)(2.

=5。96+1.04α

= Rb2(α )~[(Ra21(α)~Ra21(1))。 Lxl(1)+(Ra22(α )~Ra22(1))・ Rx2(1)]

11)]1=(10-α )¨ [(9-α -8)(-0.07)十 (6-α -5)(2.
=7.96+1.04α
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０
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JCよ=墾 Jl」いJ
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０
０
＜α＞
０
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Ｘｌ

」
Ｘ２
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6.011-1.01l α
8.011-1.01l α
5。96+1.04α
7.96+1.04α

ヴ」|■ツ|じ上」|が LJり

7Rxl(d)+2Rx2(α )=6.011 -1.01l α
6Rx.(α)+3Rx2(α)=8,011-1.01l α
9Lxl(α)+4Lx2(α)=5.96+1.04α
8Lxl(α)+5Lx2(α)=7,96+1.04α

:許 よ墨 メ ゝ押 IF国1山」

Rx.(α )=0.22-0.112α ,JLx.(α)=-0。 15+0.08α

Rx2(α)=2.23-0.113α . 」Lx2(α)=1.832+0.08α

:メ (6)♂」|が L｀1上メ」1脚 |●賭|
Xlα =[Lxl(α ),Rxl(α )]=[-0。 15+0.08α  ,0.22-0.112α ]

X2α=[Lx2(α
)′ Rx2(α)]=[1.832+0.08α ,2.23-0。 113α ].
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