
Al-Mustansiriyah Journal of Science 
ISSN: 1814-635X (print), ISSN:2521-3520 (online) Volume 32, Issue 1, 2021 DOI: http://doi.org/10.23851/mjs.v32i1.932

 31
Copyright © 2021 Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution 

Noncommercial 4.0 International License. 

Research Article Open Access 

The Formulas of Möbius-Bretschneider and Möbius-Cagnoli 

in the Poincaré Disc Model of Hyperbolic Geometry 

Gülcan Balakan*, Oğuzhan Demirel 

Department of Mathematics, Faculty of Science and Literature, University of Afyon Kocatepe, TURKEY. 

*Correspondent contact: gulcanbalakan@outlook.com

A r t i c l e I n f o ABSTRACT 

Received 

25/11/2020 

In this paper we present two gyroarea formulas (Möbius-Bretschneider’s formula and Möbius-

Cagnoli’s formula) for Möbius gyroquadrilaterals in the Poincaré disc model of hyperbolic 

geometry. 

Accepted 

27/12/2020 

KEYWORDS: Hyperbolic triangle; hyperbolic quadrilateral; hyperbolic Bretschneider’s 

formula; hyperbolic Cagnoli’s formula 

Published 

20/02/2021 

INTRODUCTION 
In Euclidean geometry, if the lengths of a triangle 

are known, then it is possible to calculate the area 

of the triangle with the Heron’s formula, since the 

Heron’s formula connects the area of the 

Euclidean triangle to its side lengths. Heron’s 

formula states that the area of the triangle 𝐴𝐵𝐶 

whose sides have lengths a, b, c is  

∆(𝐴𝐵𝐶) = √𝑆(𝑆 − 𝑎)(𝑆 − 𝑏)(𝑆 − 𝐶) 

where S is the semi-perimeter of the triangle, that 

is 𝑆 = (𝑎 + 𝑏 + 𝑐)/2. Unlike other triangle area 

formulas, there is no need to calculate angles or 

other distances in the triangle first. Similar to the 

Heron’s formula, the area of a cyclic quadrilateral 

can be found with its semi-perimeter and side 

lengths by Brahmagupta’s formula. More 

precisely, the area of the cyclic quadrilateral 

ABCD whose sides have lengths a, b, c, d is 

𝛺(𝐴𝐵𝐶𝐷) = √(𝑆 − 𝑎)(𝑆 − 𝑏)(𝑆 − 𝑐)(𝑆 − 𝑑), 

where S  is the semi-perimeter of the quadrilateral, 

that is  𝑆 = (𝑎 + 𝑏 + 𝑐 + 𝑑)/2. Similar to 

Heron’s formula there is no need to calculate 

angles or other distances in the quadrilateral first. 

However, if the quadrilateral is not cyclic, then the 

side lengths are not sufficient to get the area of the 

quadrilateral. To calculate the area of a non-cylic 

quadrilateral, besides the side lengths of the 

quadrilateral, the sum of the angles in the two 

opposite vertices should be known. Carl Anton 

Bretschneider, the German mathematician who 

lived between 1808-1878 stated that the area of 

the quadrilateral 𝐴𝐵𝐶𝐷 with side lengths a, b, c, d 

and opposite angles A, C is 

𝛺(𝐴𝐵𝐶𝐷)

= √(𝑆 − 𝑎)(𝑆 − 𝑏)(𝑆 − 𝑐)(𝑆 − 𝑑) − 𝑎𝑏𝑐𝑑𝑐𝑜𝑠2 (
𝐴 + 𝐶

2
) , 

or equivalently 

𝛺(𝐴𝐵𝐶𝐷)

= √(𝑆 − 𝑎)(𝑆 − 𝑏)(𝑆 − 𝑐)(𝑆 − 𝑑) − 𝑎𝑏𝑐𝑑𝑠𝑖𝑛2𝐾 

where S is the semi-perimeter of the quadrilateral 

and 𝐾 = (𝐴 − 𝐵 + 𝐶 − 𝐷)/4. The counterparts of 

these formulas in hyperbolic geometry have been 

studied by some researchers [1]-[4]. In this paper 

we try to present the counterpart of the 

Bretschneider’s formula in the Poincaré disc 

model of hyperbolic geometry. In our proofs, 

instead of classical hyperbolic distance, we use 

gyrodistance function which is not a metric. 

http://creativecommons.org/licenses/by-nc/4.0/
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THE FORMULAS OF MÖBIUS-

BRETSCHNEIDER AND MÖBIUS-

CAGNOLI IN MÖBIUS 

GYROVECTOR SPACE (ℝ𝐬
𝟐,⊕,⊗)

Hyperbolic geometry is a non-Euclidean geometry 

that rejects the validity of Euclid’s fifth postulate. 

Euclid’s fifth postulate states that if two lines are 

drawn which intersect a third in such a way that 

the sum of the inner angles on one side is less than 

two right angles, then the two lines inevitably 

must intersect each other on that side if extended 

far enough. In a sense, Euclid’s fifth postulate says 

that two parallel lines will never meet. Euclid’s 

fifth postulate cannot be proven as a theorem, 

although this was attempted by many researchers. 

Euclid himself used only the first four postulates 

(absolute geometry) for the first 28 propositions of 

the Elements, but was forced to invoke the parallel 

postulate on the 29th. In 1823, Janos Bolyai and 

Nicolai Lobachevsky independently realized that 

entirely self-consistent “non- Euclidean 

geometries” could be created in which the parallel 

postulate did not hold. In hyperbolic geometry, 

through a point not on a given line there are at 

least two lines parallel to the given line. The 

principles of hyperbolic geometry, however, admit 

the other four Euclidean postulates. Although 

there are many common features between 

Euclidean geometry and hyperbolic geometry, 

both geometries have their own different features.  

It is well known that there are many principal 

hyperbolic geometry models, for instance 

Poincare  ́ upper-half plane model, Poincare  ́ disc 

model, Beltrami-Klein model, Weierstrass model, 

etc. In this paper we choose the Poincare  ́ disc 

model of hyperbolic geometry for our results.  

This model is defined on the complex unit disc 

𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1}.  The points of this model 

are   the points of 𝔻 and the lines (hyperbolic 

lines) of this model are circular arcs whose ends 

are perpendicular to the boundary of 𝔻 (and 

diameters are also permitted). 

Two arcs which do not meet correspond to parallel 

rays, arcs which meet orthogonally correspond to 

perpendicular lines, and arcs which meet on the 

boundary are a pair of limits rays. The angles 

between two hyperbolic lines are the usual 

Euclidean angles between Euclidean tangents to 

the circular arcs. In hyperbolic geometry, the 

angle sum of a hyperbolic triangle is less than 𝜋. 

More generally, the angle sum of an n-sided 

hyperbolic polygon is less than (𝑛 − 2)𝜋. 

Figure 1. A hyperbolic line passing through the 

points 𝐾 and 𝑀 is a circular arc that intersect 

the disc 𝔻 orthogonally. The hyperbolic lines 

passing through the center of disc are also 

correspond to chords of the disc. 

The classical hyperbolic distance between z, w ∈ 𝔻 

is defined by  

𝑠𝑖𝑛ℎ
𝑑𝐻(𝑧, 𝑤)

2
=

|𝑧 − 𝑤|2

(1 − |𝑧|2)(1 − |𝑤|2)
 (1) 

and the triangle inequality is provided. Hence 

(𝔻, 𝑑𝐻) is a metric space. Unlike Euclidean 

geometry, the following famous theorem allows to 

find the area of a hyperbolic triangle whose angles 

are known.  

Theorem 1. (Hyperbolic Girard’s Theorem) Let 

𝐴𝐵𝐶 be a hyperbolic triangle with internal angles 

𝛼, 𝛽 and 𝛾. Then the hyperbolic area of 𝐴𝐵𝐶 is  

𝛤(𝐴𝐵𝐶) = 𝜋 − (𝛼 + 𝛽 + 𝛾). 
The hyperbolic area 𝛤(𝐴1𝐴2 ⋅ ⋅ ⋅  𝐴𝑛) of an n-

sided hyperbolic polygon 𝐴1𝐴2 ⋅ ⋅ ⋅  𝐴𝑛 with 

internal hyperbolic angles 𝛼1, 𝛼2, … , 𝛼𝑛 is 

𝛤(𝐴1𝐴2 ⋯ 𝐴𝑛) = (𝑛 − 2)𝜋 − (𝛼1 + 𝛼2 + ⋯ +𝛼𝑛).

Figure 1. A hyperbolic triangle in the unit disc 

𝔻.  
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Instead of three angles, the area of a hyperbolic 

triangle whose three sides are known can be found 

by the formula below. 

Theorem 2. (Hyperbolic Heron’s Formula, [1]). 

The hyperbolic area of the hyperbolic triangle 

𝐴𝐵𝐶 with side lengths 𝑎, 𝑏, 𝑐 and semi-perimeter 

𝑆 = (𝑎 + 𝑏 + 𝑐)/2  is given by 

𝑡𝑎𝑛
𝛤(𝐴𝐵𝐶)

4

= √𝑡𝑎𝑛ℎ
𝑆

2
𝑠𝑖𝑛ℎ

𝑆 − 𝑎

2
𝑠𝑖𝑛ℎ

𝑆 − 𝑏

2
𝑠𝑖𝑛ℎ

𝑆 − 𝑐

2
. 

Instead of four angles, the area of a hyperbolic 

quadrilateral whose four sides are known can be 

found by the formula below. 

Theorem 3. (Hyperbolic Bretschneider’s 

Formula [3]). The hyperbolic area of the 

hyperbolic quadrilateral 𝐴𝐵𝐶𝐷 with side lengths 

𝑎, 𝑏, 𝑐, 𝑑, angles 𝐴, 𝐵, 𝐶, 𝐷 and semi-perimeter 𝑆 =
(𝑎 + 𝑏 + 𝑐 + 𝑑)/2 is given by 

𝑠𝑖𝑛2
𝛤(𝐴𝐵𝐶𝐷)

4

=  
𝑠𝑖𝑛ℎ

𝑆 − 𝑎
2

𝑠𝑖𝑛ℎ
𝑆 − 𝑏

2
𝑠𝑖𝑛ℎ

𝑆 − 𝑐
2

𝑠𝑖𝑛ℎ
𝑆 − 𝑑

2

𝑐𝑜𝑠ℎ
𝑎
2 𝑐𝑜𝑠ℎ

𝑏
2 𝑐𝑜𝑠ℎ

𝑐
2 𝑐𝑜𝑠ℎ

𝑑
2

− 𝑡𝑎𝑛ℎ
𝑎

2
𝑡𝑎𝑛ℎ

𝑏

2
𝑡𝑎𝑛ℎ

𝑐

2
𝑡𝑎𝑛ℎ

𝑑

2
𝑠𝑖𝑛2𝐾

where 𝐾 = ( 𝐴 −  𝐵 +  𝐶 –  𝐷)/4. 

A Möbius transformation of the extended complex 

plane ℂ ∪ {∞}  is a rational function of the form 

𝑤 =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

of one complex variable z; here the coefficients 

𝑎, 𝑏, 𝑐, 𝑑 are complex numbers satisfying 𝑎𝑑 −
𝑏𝑐 ≠ 0. Möbius transformations are named in 

honor of August Ferdinand Möbius; they are also 

variously named homographic transformations, 

bilinear transformations or fractional linear 

transformations. The set of all Möbius 

transformations forms a group under composition. 

Möbius transformations preserve the measures of 

the angles with orientation. Euclidean 

transformations, Euclidean rotations, inversions 

𝑧 ↦
1

𝑧
and similarities (𝑧 ↦ 𝑎𝑧 + 𝑏, 𝑎 ≠ 0) are 

well known Möbius transformations. The most 

general Möbius transformation of the complex 

unit disc 𝔻 in the complex plane to itself 

𝑧 ↦ 𝑒𝑖𝜃
𝑧0 + 𝑧

1 + 𝑧0̅𝑧
= 𝑒𝑖𝜃(𝑧0⨁𝑧)

defines the Möbius addition in the disc, which 

allows the Möbius transformation of the disc to be 

viewed as a Möbius left translation [4], [5] 

𝑧 → 𝑧0⨁𝑧 =
𝑧0 + 𝑧

1 +  𝑧0̅̅̅̅ 𝑧

where 𝜃 ∈ ℝ, 𝑧0 ∈ 𝔻, and  𝑧0̅̅̅̅  is the complex 

conjugate of 𝑧0. A left Möbius translation is also 

called a left gyrotranslation [4]. It is known that 

the Möbius addition “⨁” is analogous to the 

common vector addition “+” in Euclidean plane 

geometry. Möbius addition ⨁ is neither 

commutative nor associative. By defining the 

gyrator 

𝑔𝑦𝑟 ∶  𝔻 ×  𝔻 → 𝐴𝑢𝑡(𝔻, ⨁), 

𝑔𝑦𝑟[𝑎, 𝑏] =
𝑎⨁𝑏

𝑏⨁𝑎
=

1 + 𝑎�̅�

1 + 𝑏�̅�

where 𝐴𝑢𝑡(𝔻,⊕) is the automorphism group of 

the Möbius groupoid (𝔻,⊕), the following group-

like properties of 𝔻 can be verified by 

straightforward algebra for all 𝑎, 𝑏, 𝑐 ∈ 𝔻: 

G1. 𝑎 ⊕  𝑏 =  𝑔𝑦𝑟[𝑎, 𝑏](𝑏 ⊕  𝑎), 

(Gyrocommutative Law) 

G2. 𝑎 ⊕  (𝑏 ⊕  𝑐)  =  (𝑎 ⊕  𝑏)𝑔𝑦𝑟[𝑎, 𝑏]𝑐, 

(Left Gyroassociative Law) 

G3. (𝑎 ⊕  𝑏)  ⊕  𝑐 =  𝑎 ⊕  𝑏  𝑔𝑦𝑟[𝑏, 𝑎]𝑐), 

(Right Gyroassociative Law) 

G4. 𝑔𝑦𝑟[𝑎, 𝑏]  =  𝑔𝑦𝑟[𝑎 ⊕  𝑏, 𝑏],  
(Left Loop Property) 

G5. 𝑔𝑦𝑟[𝑎, 𝑏]  =  𝑔𝑦𝑟[𝑎, 𝑏 ⊕  𝑎],  
(Right Loop Property) 

The Möbius gyrodistance function in 𝔻 is 

𝑑𝑀(𝑧, 𝑤) = |
𝑧 − 𝑤

1 −  �̅�𝑤
| 

which is closely related to classical hyperbolic 

distance (1) as follows:  

𝑡𝑎𝑛ℎ
𝑑𝐻(𝑧, 𝑤)

2
= |

𝑧 − 𝑤

1 −  �̅�𝑤
| = 𝑑𝑀(𝑧, 𝑤)  (2) 

For more details, we refer to readers [4]. While 

the classical hyperbolic distance provides triangle 

inequality, the Möbius gyrodistance function does 

http://creativecommons.org/licenses/by-nc/4.0/
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not provide; but the Möbius gyrodistance function 

satisfies the Möbius triangle inequality 

𝑑𝑀(𝑎, 𝑐) = 𝑑𝑀(𝑎, 𝑏) ⊕ 𝑑𝑀(𝑏, 𝑐)

for all 𝑎, 𝑏, 𝑐 ∈  𝔻. Clearly (𝔻, 𝑑𝐻) is a metric 

space but (𝔻, 𝑑𝑀)  is not. Identifying vectors in 

the Euclidean plane ℝ2 with complex numbers in

ℂ, we have 

ℝ2 ∋ 𝒖 = (𝑢1, 𝑢2) ↔  𝑢1 +  𝑖𝑢2 = 𝑢 ∈ ℂ.

The inner product and the norm in ℝ2 then

become 

 𝒖𝒗 ↔
�̅�𝑣 + 𝑢�̅�

2
,   ‖𝒖‖ → |𝑢|. 

If the elements of the complex unit disc mapped to 

the elements of open unit disc ℝ1
2 = {𝑢 ∈ ℝ2 ∶

‖𝑢‖ < 1} then the Möbius addition  𝑢 ⊕  𝑣 in 

(𝔻, ⨁) takes the form 

𝒖 ⊕ 𝒗 =
(1 + 2𝒖𝒗 + ‖𝒗‖2)𝒖 + (1 − 𝒗2)𝒗

1 + 2𝒖𝒗 + ‖𝒗‖2‖𝒖‖2

In the open disc ℝ𝑠
2 = {𝑢 ∈ ℝ2 ∶ ‖𝑢‖ < 𝑠}, the

Möbius addition is defined by 

𝒖 ⊕ 𝒗

=
(1 +

2
𝑠2 𝒖𝒗 +

1
𝑠2 ‖𝒗‖2) 𝒖 + (1 −

1
𝑠2 𝒗2) 𝒗

1 +
2
𝑠2 𝒖𝒗 +

1
𝑠4 ‖𝒗‖2‖𝒖‖2

In the limit of large 𝑠, 𝑠 → ∞, ℝ𝑠
2 expands to the

whole its space ℝ2 and Möbius addition ⊕
reduces the vector addition + in ℝ2.

A Möbius gyroline in (ℝ𝑠
2, ⨁)  (also in (𝔻, ⨁))

that passes through the points 𝑎 and 𝑏 can be 

expreesed by 

𝐿 = 𝑎 ⊕ (⊖ 𝑎 ⊕ 𝑏) ⊗ 𝑡,     𝑡 ∈ 𝑅 

where ⨂ is Möbius gyroscalar product defined by 

𝑟⨂𝑎 = 𝑠𝑡𝑎𝑛ℎ(𝑟𝑡𝑎𝑛ℎ−1 (
‖𝑎‖

𝑠
)

𝑎

‖𝑎‖

𝑟 ∈ ℝ, 𝑎 ∈ ℝ𝑠
2. In literature the gyroalgebraic

structure (ℝ𝑠
2,⊕, ⨂) (and (𝔻, ⊕, ⊗)) is called as

Möbius gyrovector space. Interestingly, a Möbius 

gyroline that passes through points 𝑎 and 𝑏 is 

actually the classical hyperbolic line that passes 

through points 𝑎 and 𝑏. Naturally, a Möbius 

gyropolygon in (ℝ𝑠
2,⊕, ⨂) (and in (𝔻, ⊕, ⊗)) is

also classical hyperbolic polygon in the Poincaré 

disk model of hyperbolic geometry with the same 

interior angles and same vertices. The gyroarea 

∆(𝐴𝐵𝐶) of a Möbius gyrotriangle 𝐴𝐵𝐶 with 

gyroangles 𝛼, 𝛽, 𝛾 is 

∆(𝐴𝐵𝐶) =
1

2
𝑡𝑎𝑛 (

𝜋 − (𝛼 + 𝛽 + 𝛾)

2
) 

and the gyroarea ∆(𝐴𝐵𝐶𝐷) of a Möbius 

gyroquadrilateral 𝐴𝐵𝐶𝐷 with gyroangles 𝛼, 𝛽, 𝛾, 𝜃 

is 

∆(𝐴𝐵𝐶𝐷) =
1

2
𝑡𝑎𝑛 (

2𝜋 − (𝛼 + 𝛽 + 𝛾 + 𝜃)

2
). 

A.A. Ungar obtained the counterpart of Heron’s 

formula as follows: 

Theorem 4. ([4]). Let 𝐴𝐵𝐶 be a gyrotriangle in 

(ℝs
2,⊕,⊗) with vertices 𝐴, 𝐵, 𝐶 corresponding

gyroangles 𝛼, 𝛽, 𝛾 and side gyrolengths 𝑎, 𝑏, 𝑐. 

The gyroarea of 𝐴𝐵𝐶 is given by Möbius-Heron’s 

formula 

∆(𝐴𝐵𝐶)   =

𝑠2

2

√(
𝑎

𝑠
+

𝑏

𝑠
+

𝑐

𝑠
+

𝑎

𝑠

𝑏

𝑠

𝑐

𝑠
)(

−𝑎

𝑠
+

𝑏

𝑠
+

𝑐

𝑠
−

𝑎

𝑠

𝑏

𝑠

𝑐

𝑠
)(

𝑎

𝑠
−

𝑏

𝑠
+

𝑐

𝑠
−

𝑎

𝑠

𝑏

𝑠

𝑐

𝑠
)(

𝑎

𝑠
+

𝑏

𝑠
−

𝑐

𝑠
−

𝑎

𝑠

𝑏

𝑠

𝑐

𝑠
)

2+(
𝑎

2
)

2
(

𝑏

2
)

2
(

𝑐

2
)

2
−(

𝑎

2
)

2
−(

𝑏

2
)

2
−(

𝑐

2
)

2

Remarkably, in the Euclidean limit 𝑠 →  ∞, when 

the open disc ℝ𝑠
2 expands to ℝ2, Möbius-Heron’s

formula reduces to Heron formula of the triangle 

area in ℝ2. Now we try to obtain Möbius-

Bretschneider’s formula in  (𝔻, ⨁, ⨂) with the 

help of the relation in (2). In addition to (2), there 

is a relation between the gyroarea ∆(𝐴𝐵𝐶𝐷) of the 

Möbius gyroquadrilateral 𝐴𝐵𝐶𝐷 and the classical 

hyperbolic area 𝛤(𝐴𝐵𝐶𝐷) of the same 

quadrilateral as follows: 

∆(𝐴𝐵𝐶𝐷) =
1

2
𝑡𝑎𝑛

𝛤(𝐴𝐵𝐶𝐷)

2
.                      (3) 

Assume 𝑑𝐻(𝐴, 𝐵) =  𝑎,  𝑑𝐻(𝐵, 𝐶) =  𝑏,
𝑑𝐻(𝐶, 𝐷) =  𝑐, 𝑑𝐻(𝐷, 𝐴) =  𝑑.  Then, by (2), we

get 

𝑎 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐴, 𝐵), 𝑏 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐵, 𝐶)

𝑐 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐶, 𝐷), 𝑑 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐷, 𝐴).

Thus the semi-perimeter 𝑆 = (𝑎 + 𝑏 + 𝑐 + 𝑑)/2 

can be written by 

𝑆 = 𝑡𝑎𝑛ℎ−1𝑥 + 𝑡𝑎𝑛ℎ−1𝑦 +  𝑡𝑎𝑛ℎ−1𝑧 + 𝑡𝑎𝑛ℎ−1𝑤,
where 𝑥 = 𝑑𝑀(𝐴, 𝐵), 𝑦 = 𝑑𝑀(𝐵, 𝐶), 𝑧 =
𝑑𝑀(𝐶, 𝐷), 𝑤 = 𝑑𝑀(𝐷, 𝐴). Hence the hyperbolic

Bretschneider’s formula in Theorem 3 which is 

𝑠𝑖𝑛2
𝛤(𝐴𝐵𝐶𝐷)

4
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=
𝑠𝑖𝑛ℎ

𝑆 − 𝑎
2

𝑠𝑖𝑛ℎ
𝑆 − 𝑏

2
𝑠𝑖𝑛ℎ

𝑆 − 𝑐
2

𝑠𝑖𝑛ℎ
𝑆 − 𝑑

2

𝑐𝑜𝑠ℎ
𝑎
2 𝑐𝑜𝑠ℎ

𝑏
2 𝑐𝑜𝑠ℎ

𝑐
2 𝑐𝑜𝑠ℎ

𝑑
2

− 𝑡𝑎𝑛ℎ
𝑎

2
𝑡𝑎𝑛ℎ

𝑏

2
𝑡𝑎𝑛ℎ

𝑐

2
𝑡𝑎𝑛ℎ

𝑑

2
𝑠𝑖𝑛2𝐾

takes the form 

𝑠𝑖𝑛2 𝑡𝑎𝑛−1(2∙∆(𝐴𝐵𝐶𝐷))

2
=

𝑠𝑖𝑛ℎ𝑆𝑥∙𝑠𝑖𝑛ℎ𝑆𝑦∙𝑠𝑖𝑛ℎ𝑆𝑧∙𝑠𝑖𝑛ℎ𝑆𝑤

cosh(𝑡𝑎𝑛ℎ−1𝑥)∙cosh(𝑡𝑎𝑛ℎ−1𝑦) cosh(𝑡𝑎𝑛ℎ−1𝑧)∙cosh(𝑡𝑎𝑛ℎ−1𝑥𝑤)
∙

−

𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾, 

where 𝑆𝑥 = 𝑆 − 𝑡𝑎𝑛ℎ−1𝑥, 𝑆𝑦 = 𝑆 − 𝑡𝑎𝑛ℎ−1𝑦,

𝑆𝑧 = 𝑆 − 𝑡𝑎𝑛ℎ−1𝑧, 𝑆𝑤 = 𝑆 − 𝑡𝑎𝑛ℎ−1w. Thus we

get 

𝑠𝑖𝑛
𝑡𝑎𝑛−1(2 ∙ ∆(𝐴𝐵𝐶𝐷))

2
 =

√
𝑠𝑖𝑛ℎ𝑆𝑥∙𝑠𝑖𝑛ℎ𝑆𝑦∙𝑠𝑖𝑛ℎ𝑆𝑧∙𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾  

where, 𝛾𝑥 =
1

√1−𝑥2
, 𝛾𝑦 =

1

√1−𝑦2
,  𝛾𝑧 =

1

√1−𝑧2
, 

 𝛾𝑤 =
1

√1−𝑤2
 and this implies 

∆(𝐴𝐵𝐶𝐷)

=
1

2
𝑡𝑎𝑛 (2𝑠𝑖𝑛−1√

𝑠𝑖𝑛ℎ𝑆𝑥 ∙ 𝑠𝑖𝑛ℎ𝑆𝑦 ∙ 𝑠𝑖𝑛ℎ𝑆𝑧 ∙ 𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤

− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾) 

Since 

1

2
𝑡𝑎𝑛(2𝑠𝑖𝑛−1𝐴) =

1

2

2𝑡𝑎𝑛(𝑠𝑖𝑛−1𝐴)

1−(𝑡𝑎𝑛 (𝑠𝑖𝑛−1𝐴)2 =
𝐴√1−𝐴2

1−2𝐴2 , we 

get 

∆(𝐴𝐵𝐶𝐷)

= √
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾

∙ √1 − (
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾)

∙
1

1 − 2 (
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾)

. 

Clearly, 

𝑠𝑖𝑛ℎ𝑆𝑥 = 𝑠𝑖𝑛ℎ(𝑡𝑎𝑛ℎ−1𝑦 + 𝑡𝑎𝑛ℎ−1𝑧 + 𝑡𝑎𝑛ℎ−1𝑤)

and this yields 

𝑠𝑖𝑛ℎ𝑆𝑥 =
(𝑥+𝑦+𝑧+𝑤)−𝑥−𝑤𝑦𝑧

√(1−𝑦𝑧)(1−𝑤)−(𝑦+𝑧)(1+𝑤)√(1−𝑦𝑧)(1+𝑤)+(𝑦+𝑧)(1−𝑤)

𝑠𝑖𝑛ℎ𝑆𝑦 =
(𝑥+𝑦+𝑧+𝑤)−𝑦−𝑥𝑤𝑧

√(1−𝑧𝑤)(1−𝑥)−(𝑧+𝑤)(1+𝑥)√(1−𝑧𝑤)(1+𝑥)+(𝑧+𝑤)(1−𝑥)
, 

𝑠𝑖𝑛ℎ𝑆𝑧 =
(𝑥+𝑦+𝑧+𝑤)−𝑧−𝑥𝑦𝑤

√(1−𝑤𝑥)(1−𝑦)−(𝑤+𝑥)(1+𝑦)√(1−𝑤𝑥)(1+𝑦)+(𝑤+𝑥)(1−𝑦)

, 

𝑠𝑖𝑛ℎ𝑆𝑤 =
(𝑥+𝑦+𝑧+𝑤)−𝑤−𝑥𝑦𝑧

√(1−𝑥𝑦)(1−𝑧)−(𝑥+𝑦)(1+𝑧)√(1−𝑥𝑦)(1+𝑧)+(𝑥+𝑦)(1−𝑧)

Hence we are ready to present the Möbius-

Bretschneider’s formula in 𝔻 as follows: 

Theorem 5. (Möbius-Bretschneider’s Formu-la). 

The gyroarea of the Möbius gyroqu-adrilateral 

𝐴𝐵𝐶𝐷 in 𝔻 with side gyrolengths 𝑥, 𝑦, 𝑧, 𝑤, and 

with gyroangles 𝐴, 𝐵, 𝐶, 𝐷 is given by 

∆(𝐴𝐵𝐶𝐷)

= √
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤

− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾

∙ √1 − (
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤

− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾)

∙
1

1 − 2 (
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
− 𝑥𝑦𝑧𝑤𝑠𝑖𝑛2𝐾)

where 𝐾 =  (𝐴 −  𝐵 +  𝐶 −  𝐷)/4. 

In (ℝ𝑠
2,⊕,⊗) it is known that the gyroarea of a

Möbius gyroquadrilateral 𝐴𝐵𝐶𝐷 with gyroangles 

𝐴, 𝐵, 𝐶, 𝐷 is 

∆(𝐴𝐵𝐶𝐷) =
𝑠2

2
𝑡𝑎𝑛 (

2𝜋 − (𝐴 + 𝐵 + 𝐶 + 𝐷)

2
). 

Hence the gyroarea of the Möbius 

gyroquadrilateral 𝐴𝐵𝐶𝐷 with side gyrolengths 

𝑥, 𝑦, 𝑧, 𝑤, and with gyroangles 𝐴, 𝐵, 𝐶, 𝐷 is given 

by 

∆(𝐴𝐵𝐶𝐷)

= 𝑠2√
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
−

𝑥

𝑠

𝑦

𝑠

𝑧

𝑠

𝑤

𝑠
𝑠𝑖𝑛2𝐾

∙ √1 − (
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
−

𝑥

𝑠

𝑦

𝑠

𝑧

𝑠

𝑤

𝑠
𝑠𝑖𝑛2𝐾)

∙
1

1 − 2 (
𝑠𝑖𝑛ℎ𝑆𝑥𝑠𝑖𝑛ℎ𝑆𝑦𝑠𝑖𝑛ℎ𝑆𝑧𝑠𝑖𝑛ℎ𝑆𝑤

𝛾𝑥𝛾𝑦𝛾𝑧𝛾𝑤
−

𝑥
𝑠

𝑦
𝑠

𝑧
𝑠

𝑤
𝑠

𝑠𝑖𝑛2𝐾)

where 𝐾 =  (𝐴 −  𝐵 +  𝐶 −  𝐷)/4, 

𝑠𝑖𝑛ℎ𝑆𝑥

=
(

𝑥

𝑠
+

𝑦

𝑠
+

𝑧

𝑠
+

𝑤

𝑠
)−

𝑥

𝑠
−

𝑤

𝑠

𝑦

𝑠

𝑧

𝑠

√(1−
𝑦

𝑠

𝑧

𝑠
)(1−

𝑤

𝑠
)−(

𝑦

𝑠
+

𝑧

𝑠
)(1+

𝑤

𝑠
)√(1−

𝑦

𝑠

𝑧

𝑠
)(1+

𝑤

𝑠
)+(

𝑦

𝑠
+

𝑧

𝑠
)(1−

𝑤

𝑠
)

, 

𝑠𝑖𝑛ℎ𝑆𝑦

http://creativecommons.org/licenses/by-nc/4.0/
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=
(

𝑥

𝑠
+

𝑦

𝑠
+

𝑧

𝑠
+

𝑤

𝑠
)−

𝑦

𝑠
−

𝑥

𝑠
𝑤𝑧

√(1−
𝑧

𝑠

𝑤

𝑠
)(1−

𝑥

𝑠
)−(

𝑧

𝑠
+

𝑤

𝑠
)(1+

𝑥

𝑠
)√(1−

𝑧

𝑠

𝑤

𝑠
)(1+

𝑥

𝑠
)+(

𝑧

𝑠
+

𝑤

𝑠
)(1−

𝑥

𝑠
)

, 

𝑠𝑖𝑛ℎ𝑆𝑧 

=
(

𝑥

𝑠
+

𝑦

𝑠
+

𝑧

𝑠
+

𝑤

𝑠
)−

𝑧

𝑠
−

𝑥

𝑠

𝑦

𝑠

𝑤

𝑠

√(1−
𝑤

𝑠

𝑥

𝑠
)(1−

𝑦

𝑠
)−(

𝑤

𝑠
+

𝑥

𝑠
)(1+

𝑦

𝑠
)√(1−

𝑤

𝑠

𝑥

𝑠
)(1+

𝑦

𝑠
)+(

𝑤

𝑠
+

𝑥

𝑠
)(1−

𝑦

𝑠
)

, 

𝑠𝑖𝑛ℎ𝑆𝑤

=
(

𝑥

𝑠
+

𝑦

𝑠
+

𝑧

𝑠
+

𝑤

𝑠
)−

𝑤

𝑠
−

𝑥

𝑠

𝑦

𝑠

𝑧

𝑠

√(1−
𝑥

𝑠

𝑦

𝑠
)(1−

𝑧

𝑠
)−(

𝑥

𝑠
+

𝑦

𝑠
)(1+

𝑧

𝑠
)√(1−

𝑥

𝑠

𝑦

𝑠
)(1+

𝑧

𝑠
)+(

𝑥

𝑠
+

𝑦

𝑠
)(1−

𝑧

𝑠
)

, 

and 𝛾𝑥 =
1

√1−(
𝑥

𝑠
)

2
, 𝛾𝑦 =

1

√1−(
𝑦

𝑠
)

2
, 𝛾𝑦 =

1

√1−(
𝑧

𝑠
)

2
,  

𝛾𝑤 =
1

√1−(
𝑤

𝑠
)

2
. Remarkably, in the Euclidean limit 

𝑠 →  ∞, of large 𝑠, when the open disc ℝ𝑠
2

expands to ℝ2, Möbius-Bretschneider’s formula

reduces to Bretschneider’s formula in ℝ2.

Just like in Euclidean geometry, there are many 

triangle area formulas for hyperbolic triangles and 

these formulas are used to get the area formulas of 

hyperbolic quadrilaterals. Cagnoli’s theorem 

states that in hyperbolic plane, the hyperbolic area 

of the hyperbolic triangle 𝐴𝐵𝐶 with side lengths 

𝑎, 𝑏, 𝑐 and the opposite angles 𝐴, 𝐵, 𝐶 is 

 𝑠𝑖𝑛
𝛤(𝐴𝐵𝐶)

2
=

𝑠𝑖𝑛ℎ
𝑏
2 𝑠𝑖𝑛ℎ

𝑐
2 𝑠𝑖𝑛𝐴

𝑐𝑜𝑠ℎ
𝑎
2

or equivalently, 

𝛤(𝐴𝐵𝐶) = 2𝑠𝑖𝑛−1 (
𝑠𝑖𝑛ℎ

𝑏
2 𝑠𝑖𝑛ℎ

𝑐
2 𝑠𝑖𝑛𝐴

𝑐𝑜𝑠ℎ
𝑎
2

) 

For more details, we refer to readers [6]. Let 

𝐴𝐵𝐶𝐷 be a hyperbolic quadrilateral in the 

hyperbolic plane 𝔻 and 𝑃 be the common points 

of the hyperbolic diagonals 𝐴𝐶 and 𝐵𝐷. Now we 

assume ∠𝐴𝑃𝐵 = 𝛼,  𝑑𝐻(𝑃, 𝐴) =  𝑒, 𝑑𝐻(𝑃, 𝐵) =
 𝑓, 𝑑𝐻(𝑃, 𝐶) = 𝑔,  𝑑𝐻(𝑃, 𝐷) =  𝑘, 𝑑𝐻(𝐴, 𝐵) =  𝑎,

𝑑𝐻(𝐵, 𝐶) = 𝑏, 𝑑𝐻(𝐶, 𝐷) =  𝑐, 𝑑𝐻(𝐷, 𝐴) =  𝑑.
Clearly the hyperbolic diagonals 𝐴𝐶 and 𝐵𝐷 

divides 𝐴𝐵𝐶𝐷 to four hyperbolic triangles 

𝐴𝑃𝐷, 𝐷𝑃𝐶, 𝐶𝑃𝐵, 𝐵𝑃𝐴 satisfying 

𝛤(𝐴𝐵𝐶𝐷) = 𝛤(𝐴𝑃𝐵) + 𝛤(𝐵𝑃𝐶) + 𝛤(𝐶𝑃𝐷) 

 +𝛤(𝐷𝑃𝐴)  (4) 

which implies 

𝛤(𝐴𝐵𝐶𝐷) =   2𝑠𝑖𝑛−1 (
𝑠𝑖𝑛ℎ

𝑒
2

𝑠𝑖𝑛ℎ
𝑓
2

𝑠𝑖𝑛𝛼

𝑐𝑜𝑠ℎ
𝑎
2

) 

 +2𝑠𝑖𝑛−1 (
𝑠𝑖𝑛ℎ

𝑓
2 𝑠𝑖𝑛ℎ

𝑔
2 𝑠𝑖𝑛𝛼

𝑐𝑜𝑠ℎ
𝑏
2

) 

 +2𝑠𝑖𝑛−1 (
𝑠𝑖𝑛ℎ

𝑔
2 𝑠𝑖𝑛ℎ

𝑘
2 𝑠𝑖𝑛𝛼

𝑐𝑜𝑠ℎ
𝑐
2

) 

 +2𝑠𝑖𝑛−1 (
𝑠𝑖𝑛ℎ

𝑘
2 𝑠𝑖𝑛ℎ

𝑒
2 𝑠𝑖𝑛𝛼

𝑐𝑜𝑠ℎ
𝑑
2

).

(5) 

Notice that (4) is not provided for the Möbius 

gyroquadrilateral 𝐴𝐵𝐶𝐷 and the Möbius 

gyrotriangles 𝐴𝑃𝐷, 𝐷𝑃𝐶, 𝐶𝑃𝐵, 𝐵𝑃𝐴. As with the 

Möbius-Bretschneider’s formula, a new formula 

for the Möbius gyroquadrilaterals can be obtained 

by (2) and (3). Indeed, by using the relations 

∆(𝐴𝐵𝐶𝐷) =
1

2
𝑡𝑎𝑛

𝛤(𝐴𝐵𝐶𝐷)

2

∆(𝐴𝑃𝐵) =
1

2
𝑡𝑎𝑛

𝛤(𝐴𝑃𝐵)

2

∆(𝐵𝑃𝐶) =
1

2
𝑡𝑎𝑛

𝛤(𝐵𝑃𝐶)

2

∆(𝐶𝑃𝐷) =
1

2
𝑡𝑎𝑛

𝛤(𝐶𝑃𝐷)

2

∆(𝐷𝑃𝐴) =
1

2
𝑡𝑎𝑛

𝛤(𝐷𝑃𝐴)

2
and 

𝑎 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐴, 𝐵), 𝑏 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐵, 𝐶)
𝑐 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐶, 𝐷), 𝑑 =  2𝑡𝑎𝑛ℎ−1𝑑𝑀(𝐷, 𝐴)
𝑒′  =  𝑑𝑀(𝐴, 𝑃), 𝑓′  =  𝑑𝑀(𝐵, 𝑃), 𝑔′ =  𝑑𝑀(𝐶, 𝑃)
𝑘′ =  𝑑𝑀(𝐷, 𝑃), 𝑎 ′ =  𝑑𝑀(𝐴, 𝐵), 𝑏′  =  𝑑𝑀(𝐵, 𝐶)

𝑐 ′ =  𝑑𝑀(𝐶, 𝐷), 𝑑′ =  𝑑𝑀(𝐷, 𝐴)
(5) takes the form 

𝑡𝑎𝑛−1(2 ∙ ∆(𝐴𝐵𝐶𝐷))=

𝑠𝑖𝑛−1
𝛾𝑒′𝑒′𝛾𝑓′𝑓′𝑠𝑖𝑛𝛼

𝛾𝑎′
+ 𝑠𝑖𝑛−1

𝛾𝑓′𝑓′𝛾𝑔′𝑔′𝑠𝑖𝑛𝛼

𝛾𝑏′

+𝑠𝑖𝑛−1
𝛾𝑔′𝑔′𝛾𝑘′𝑘′𝑠𝑖𝑛𝛼

𝛾𝑐′
+ 𝑠𝑖𝑛−1

𝛾
𝑘′𝑘′𝛾𝑒′𝑒′𝑠𝑖𝑛𝛼

𝛾𝑑′

where 𝛾𝑒′ =
1

√1−𝑒′2
, 𝛾𝑓′ =

1

√1−𝑓′2
, 𝛾𝑔′ =

1

√1−𝑔′2
, 

𝛾𝑘′ =
1

√1−𝑘′2
 . Thus we get 
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∆(𝐴𝐵𝐶𝐷) =
1

2
tan (𝑠𝑖𝑛−1

𝛾𝑒′𝑒′𝛾𝑓′𝑓′𝑠𝑖𝑛𝛼

𝛾𝑎′

+ 𝑠𝑖𝑛−1
𝛾𝑓′𝑓′𝛾𝑔′𝑔′𝑠𝑖𝑛𝛼

𝛾𝑏′

+ 𝑠𝑖𝑛−1
𝛾𝑔′𝑔′𝛾𝑘′𝑘′𝑠𝑖𝑛𝛼

𝛾𝑐′

+ 𝑠𝑖𝑛−1
𝛾𝑘′𝑘′𝛾𝑒′𝑒′𝑠𝑖𝑛𝛼

𝛾𝑑′
). 

After simple calculations with trigonometric 

identities, one can easily get 

∆(𝐴𝐵𝐶𝐷) =
𝑠𝑖𝑛𝛼

2

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑒′𝑒′𝛾𝑓′𝑓′

𝛾𝑎′

𝛾𝑔′𝑔′𝛾𝑘′𝑘′

𝛾𝑐′
) ∙

(
𝛾𝑓′𝑓′𝛾𝑔′𝑔′

𝛾𝑏
+

𝛾𝑘′𝑘′𝛾𝑒′𝑒′

𝛾𝑑′
) +

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑓′𝑓′𝛾𝑔′𝑔′

𝛾𝑏′

𝛾𝑘′𝑘′𝛾𝑒′𝑒′

𝛾𝑑′
) ∙

(
𝛾𝑒′𝑒′𝛾𝑓′𝑓′

𝛾𝑎′
+

𝛾𝑔𝑔′𝛾𝑘′𝑘′

𝛾𝑐′
)

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑔𝑔′𝛾𝑘′𝑘′

𝛾𝑐′

𝛾𝑘′𝑘′𝛾𝑒′𝑒′

𝛾𝑑′
) ∙

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑒′𝑒′𝛾𝑓′𝑓′

𝛾𝑎′

𝛾𝑓′𝑓′𝛾𝑔′𝑔′

𝛾𝑏
)

− (
𝛾𝑔′𝑔′𝛾𝑘′𝑘′

𝛾𝑐′
+

𝛾𝑘′𝑘′𝛾𝑒′𝑒′

𝛾𝑑′
) ∙

(
𝛾𝑒′𝑒′𝛾𝑓′𝑓′

𝛾𝑎′
+

𝛾𝑓′𝑓′𝛾𝑔′𝑔′

𝛾𝑏
) 𝑠𝑖𝑛2𝛼

Hence we obtain the following theorem: 

Theorem 6. (Möbius-Cagnoli’s formula). If 

𝐴𝐵𝐶𝐷 is a Möbius gyroquadrilateral in 𝔻 with  

𝑑𝑀(𝑃, 𝐴) = 𝑒, 𝑑𝑀(𝑃, 𝐵) = 𝑓, 𝑑𝑀(𝑃, 𝐶) = 𝑔 ,
𝑑𝑀(𝑃, 𝐷) = 𝑘 where 𝑃 is the common points of 

the diagonals 𝐴𝐶 and 𝐵𝐷, then the gyroarea 

∆(𝐴𝐵𝐶𝐷) of 𝐴𝐵𝐶𝐷 is 

∆(𝐴𝐵𝐶𝐷) =
𝑠𝑖𝑛𝛼

2

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎

𝛾𝑔𝑔𝛾𝑘𝑘
𝛾𝑐

)

(
𝛾𝑓𝑓𝛾𝑔𝑔

𝛾𝑏
+

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

+ (1 − 𝑠𝑖𝑛2𝛼
𝛾𝑓𝑓𝛾𝑔𝑔

𝛾𝑏

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

(
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎
+

𝛾𝑔𝑔𝛾𝑘𝑘
𝛾𝑐

)

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑔𝑔𝛾𝑘𝑘

𝛾𝑐

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎

𝛾𝑓𝑓𝛾𝑔𝑔
𝛾𝑏

)

− (
𝛾𝑔𝑔𝛾𝑘𝑘

𝛾𝑐
+

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

(
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎
+

𝛾𝑓𝑓𝛾𝑔𝑔
𝛾𝑏

) 𝑠𝑖𝑛2𝛼

where ∠𝐴𝑃𝐵 = 𝛼. 

In (ℝ𝑠
2,⊕,⊗), the Möbius-Cagnoli’s formula

takes the formula 

∆(𝐴𝐵𝐶𝐷)

=
𝑠2𝑠𝑖𝑛𝛼

2

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎

𝛾𝑔𝑔𝛾𝑘𝑘
𝛾𝑐

)

(
𝛾𝑓𝑓𝛾𝑔𝑔

𝛾𝑏
+

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

+ (1 − 𝑠𝑖𝑛2𝛼
𝛾𝑓𝑓𝛾𝑔𝑔

𝛾𝑏

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

(
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎
+

𝛾𝑔𝑔𝛾𝑘𝑘
𝛾𝑐

)

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑔𝑔𝛾𝑘𝑘

𝛾𝑐

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

(1 − 𝑠𝑖𝑛2𝛼
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎

𝛾𝑓𝑓𝛾𝑔𝑔
𝛾𝑏

)

− (
𝛾𝑔𝑔𝛾𝑘𝑘

𝛾𝑐
+

𝛾𝑘𝑘𝛾𝑒𝑒
𝛾𝑑

)

(
𝛾𝑒𝑒𝛾𝑓𝑓

𝛾𝑎
+

𝛾𝑓𝑓𝛾𝑔𝑔
𝛾𝑏

) 𝑠𝑖𝑛2𝛼

where 𝛾𝑒 =
1

√1−
𝑒2

𝑠2

, 𝛾𝑓 =
1

√1−
𝑓2

𝑠2

, 𝛾𝑔 =
1

√1−
𝑔2

𝑠2

, 

𝛾𝑘 =
1

√1−
𝑘2

𝑠2

. 

In the Euclidean limit 𝑠 →  ∞, when the open disc 

ℝ𝑠
2 expands to ℝ2, Möbius-Cagnoli’s formula

reduces 
1

2
|𝐴𝐶||𝐵𝐷|𝑠𝑖𝑛𝛼, where 𝛼 is the measure 

of the angle between 𝐴𝐶 and 𝐵𝐷. 

CONCLUSIONS 
The counterparts of the hyperbolic Bretschneider's 

theorem (that gives the hyperbolic area of a 

certain hyperbolic quadrilateral if the side lengths 

and the interior angles are known), and the 

hyperbolic Cagnoli's theorem (that gives the 

hyperbolic area of a certain hyperbolic 

quadrilateral if the distances of the vertices to the 

common point of the diagonals and the measure of 

the angle between the diagonals are known) are 

provided for a Möbius gyroquadrilateral in 

(ℝ𝑠
2,⊕,⊗) by using the same geometric

information.  
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