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INTRODUCTION Some important preliminaries of fractional

Applications of fractional derivative in the present
day includes fluid flow, dynamical process,
electrical networks, probability and statistics,
control theory and so on, [1]. ST first defined in
1993, which used to solve engineering control
problems see [2]. However, ST solved fractional
ordering differential equations and graph two-
dimensional solutions. As shown in [3], the Taylor
collection method was derived for solving
fractional differential equations based on taking
the truncated Taylor expansions of the vector-
function solution. In [4] analytical solutions
presented for systems of fractional differential
equations using the differential transform method.
As in [5], several sufficient criteria were
established to ensure the Mittage-Leffler stability
and asymptotic stability for the differential system
of fractional order. In [6] study properties of
stability, Mittage-Leffler stability, Lipchitz
stability and comparison results of stability.

Preliminaries
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calculus are given here.

Definition (2.1), [7]
Consider a set A defined as:

A = {f(t)la MITIITZ > Or |f(t)|

< Me'TLJ[ if te (—1)/X]o0, 00)}

Forallrealt > 0, and f(t) € A, The Sumudu
transform of f(t) is denoted by

S[f(t)] = F(u), and it's defined as
SIFOIW) = [ e flut)dt, u € (r1,7) (1)

Definition (2.2), [8]
The Caputo fractional differential operator D of
order v is:

1

DEf(®) = s [y (t = D" f M ()dx, (2)
forn-1<v<n,neN, t>0.

Definition (2.3), [8]
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The Mittage Leffler function E,(Z) with v > 0,
is define by the following series:

ZV
E,(Z) = _— 7€
V(@) Z)F(nv+1)'v>0' ¢
n=

Definition (2.4), [1]
Mittage-Leffler functions of one and
parameters are defined respectively:

E(x) <

= L= r(ak+1)
k
Eqp(x) = Z;‘éior(%ﬂg) ,a>0,5>0,x€C

two

,a>0,xeC

Definition (2.5), [1]

The one parameters of Mittage-leffer function of
the matrix A € M,, (M,, square matrix of order
nxn) is defined for a > 0

o _ A
Ea(A) = Lk=0 v -

c/lktak

E (At*) = Zf:om ,

(3)

Remark (2.6)
_[a b7 .
If A= [C d] Is a square Matrix of order

2x2, the Matrix Mittage-leffler function
E,(AX%) is given by:
Eq(AX*) =
a a—/11 —-a b
Eq (X +721E) X4 @
—a_ € —a x , 4-A1
Xiatop  x' (e 4+ 22LE)

where E = E,(1;X%) — E4(A,X%) and A, # 1,
are the eigenvalues of A.

The Method;

Method is derived by ST of Mittage-Leffler
function for solving certain type of fractional
differential equations.

Lemma (3.1), [9]:
Leta > 0,8 > 0,1eR and u™% > |A| then:

B_
S[tP1E, g (At®)|u = [i Aua] (5)
where E, g is Mittage-Leffler function in two

parameters.

Theorem (3.2), [9]:

Letn € Nanda > O besuchthatn —1 < a <
n and F(u) be the ST of the function f(t) then
the ST Caputo « derivative of f(t) is given by:

SID*f(O)]u = u™*F(u) = TR=gu*~*[f®(0)](6)
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Example (3.3)

Take into account the initial value problem (1.V.
Problem) for a homogenous fractional differential
equation

Df(t)+af(t) =0 ,0<a<1 ,

f(0)=c

where a and c are constants, applying ST on both
sides, hence

SO fO)w) +aS(fF®)(w) =0

U Fw) —fOu*+aF(uw) =0

W *+a)F(w) = f(0u“
since f(0) = cthen F(u) =
by eq.(6) replacing =1
F(w) = S[Eg1(—at®)(w)]c
Taking inverse ST, we get
f(@©) = cEy(—at®)

Now, we will generalize lemma(3.1) to solve a
homogenous linear fractional system of order
0<ax<l1

u % c
(u=%+a) 1+au®

Theorem (3.4)

Let A € M, be ascalar matrix ,n € M, bea
scaler vector and y(t) € M, ; be unknown
vector. The exact solution homogenous linear
fractional systemof 0 < @ < 1

D% (t) = Ay(t), y(0) =n (7
IS given by:
y(t) = Eq(At*).n 8

Where E, (At%) is the matrix Mittage-Leffler
function.

Proof
Taking Sumudu transformation to both sides of
eg. (7) and use the Sumudu transformation of the
Caputo derivative to get
u Y (u) —u%*y(0) = AY(u)
% — A)Y(u) =u
“n

Y ===
T

I —u%A
by lemma (3.1)
y(t) = S[Eqg1(At*)(W)].n
taking inverse of Sumudu transform we get eq. (8)

y(t) = Eq(At*).n

Example (3.5)
Let the L.V. Problem for a fractional differential
system of order 0 < a < 1,
y(&) = Ay(t) y(0) =17

where A = [_11 ﬂ andn = [(1)]

(9)



Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (print), ISSN:2521-3520 (online) Volume 32, Issue 1, 2021 DOI: http://doi.org/10.23851/mijs.v32i1.929

The eigenvaluesof A are 4, =1+1,1

Ay=1-—1i Using eqg. (8) and eq.(4), we have
E, (1+Dt*+ ;(Eau + Dt — E.((1 - Dt¥) tl‘“%(Ea(l +1)t%) — Eo((1 — D)t%)
Eq(At%) = 1 b
7 o (Ba (1 + D) = Eg (1= D) (e — (Ba(1 + D) — Eo((1 = D)
-
_ _ Ui _
© =[O = STHY @) = S ) + STHP W)

R G Bl 61 * STHW ™ — A)
Hence:
y1(t) = tl_“_z—il(Ea(l + Dt — Eo (1 — )t%) By substituting the Sumudu transform of the

_ d—apa(tit 4 1 N Mittage-Leffler function lemma (3.1) and theorem
y2(D) = t"(e + T(E“(l + 0t - (3.6) we get the solution as in eq. (11).
Eq((1—Dt%)

To solve nonhomogeneous linear fractional —~ Example (3.6)

system of order 0 < a < 1, we first introduce the Consider the initial value problem for a

Sumudu transform convolution theorms. nonhomogeneous fractional differential system of
order0<a<1
Theorem (3.5)[10] Dy () = Ay(t) + Wi (), y(0) =1

let W;(t) and W,(t) functions in the set of 0O<a<l
functions A having Sumudu transforms F(u) and where A = [—02 g]” [_12] F(E) = [sm t]

G(u) respectively. Then the ST of the cost
convolutions of W, (t) and W, (t), where hence by eq.(11):

(W1 = Wo)(¢t) = foo Wi (OW,(t — 1)dr _ -2 0]..\[1

Defined by: ° y(tt) = (B | 0 3]t )[_2] + |

S((Wy x W) () = uF ()G (w). [ =97 e-99[n]as

Now, we will generalize lemma(3.1) 'IPhen

theorem(3.4) and theorem(3.5) to solve t
nonhomogenous linear fractionals system of order vy, (t) = E,(—2t%) + f (t—29)“
0

O0<axl1
+ E,(—2(t —s)*) sins ds

Theorem (3.6 ‘

Let A € 1\(4n ge a scalar matrix, n e M, , be a Y2(t) = —2E,(3t%) +J0 (t —s)°

scaler vector W,(t) € M,,; and y(t) € M, be +E,(3(t—s)%) coss ds
unknown  vector. The exact  solution

nonhomogenous linear fractional systems of STABILITY ANALYSIS

0<a<l, Stability of the linear fractional differential system
D*y(t) = Ay(t) + W1 (1), y(0) =n  (10) defined by the Caputos derivative 0 < a < 1 is
is given by: discussed here acording to two theorems

t
y(©) = Eq (At + [ (t — $)¥Eq(A(t —

Theorem (4.1), [11]

s)* Wy(s)ds (11) . : .
Wher(_a E, (At%*) is the matrix Mittage-Leffler Ir?ley S?ftfr?; ee?g.;(e?rzvlaslje:yT(F:,t;l))t 'ij”i/hztaﬂ;tr':xarﬁ
function.  Cos((A))
satisfy, TR <l-a

Proof
taking ST to both sides of eq.(10), Theorem (4.2), [12]
u Y () —uy(0) = AY(w) + F(uw) (12) The system eq.(7) is a symptotically stable if and

Y(u) = un + Fw only if |arg(spec(A))| > ag , Where spec(A) is

u—-—A ul-A
Appling the inverse ST to both sides of eq. (12),
we have

the spectrum of A.
Now discuss the stability of the linear system
given in example (3.5) as follows:

16
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. 711 I
Since A = [_1 1], and A=1%+i
By theorem (4.1),

cos) = % and [|A]| = V2

CosA
then -2 =

1
ar < 1ma
Hence a < 1/2, there values of a get the system
Is asymptotically stable where

0<a<l

By theorem (4.2):

|arg(spec(A))| = |6| = 0.785

0.785 > a >

hence «a < 0.5, then the system (10) is
asymptotically stable when a < 0.5.
CONCLUSIONS

In this work, we studied and proved the ST
operational transform method as shown in
theorems, which are important in solving certain
homogenous and non-homogenous fractional
differential systems associating the Caputo
fractional derivatives.
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