Research Article

Analytic Approach for Solving System of Fractional Differential Equations

Nabaa N. Hasan^{*}, Zainab john

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, IRAQ.

*Correspondent contact: alzaer1972@uomustansiriyah.edu.iq

Article Info	ABSTRACT
Received 19/11/2020	In this paper, Sumudu transformation (ST) of Caputo fractional derivative formulae are derived for linear fractional differential systems. This formula is applied with Mittage-Leffler function for certain homogenous and nonhomogenous fractional differential systems with nonzero initial conditions. Stability is discussed by means of the system's distinctive equation.
Accepted 27/12/2020	KEYWORDS : Caputo derivatives; Sumudu transform; Mittage-Leffler function; asymptotically stable.
Published 20/02/2021	
	الخلاصة
	في هذا البحث محول سومودو لصيغة مشتقة كابوتو اشتق لحل انظمة المعادلات التفاضلية الكسرية. هذه الصيغة طبقت بأستخدام دالة ميتاك-لفير للانظمة المتجانسة و اللامتجانسة بشوط ابتدائية لاتساوي صفر. الاستقرارية نوقشت بواسطة نظام متجانس.

INTRODUCTION

Applications of fractional derivative in the present day includes fluid flow, dynamical process, electrical networks, probability and statistics, control theory and so on, [1]. ST first defined in 1993, which used to solve engineering control problems see [2]. However, ST solved fractional ordering differential equations and graph twodimensional solutions. As shown in [3], the Taylor collection method was derived for solving fractional differential equations based on taking the truncated Taylor expansions of the vectorfunction solution. In [4] analytical solutions presented for systems of fractional differential equations using the differential transform method. As in [5], several sufficient criteria were established to ensure the Mittage-Leffler stability and asymptotic stability for the differential system of fractional order. In [6] study properties of stability, Mittage-Leffler stability, Lipchitz stability and comparison results of stability.

Preliminaries

Some important preliminaries of fractional calculus are given here.

Definition (2.1), [7]

$$A = \left\{ f(t) | \exists M, \tau_1, \tau_2 > 0, |f(t)| \\ \leq M e^{\frac{|t|}{Tj}} if t \in (-1)^j X[0, \infty) \right\}$$

For all real $t \ge 0$, and $f(t) \in A$, The Sumudu transform of f(t) is denoted by

$$S[f(t)] = F(u), \text{ and it's defined as}$$

$$S[f(t)](u) = \int_0^\infty e^{-t} f(ut) dt, \ u \in (\tau_1, \tau_2)$$
(1)

Definition (2.2), [8]

The Caputo fractional differential operator D_t^v of order v is:

 $D_t^{\nu} f(t) = \frac{1}{\Gamma(n-\nu)} \int_0^t (t-\tau)^{n-\nu-1} f^{(n)}(\tau) d\tau,$ (2) for $n-1 < v < n, n \in \mathbb{N}, t > 0.$

Definition (2.3), [8]

The Mittage Leffler function $E_{\nu}(Z)$ with $\nu > 0$, is define by the following series:

$$E_v(Z) = \sum_{n=0}^{\infty} \frac{Z^v}{\Gamma(nv+1)} , v > 0, Z \in C$$

Definition (2.4), [1]

Mittage-Leffler functions of one and two parameters are defined respectively:

$$E_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(\alpha k+1)}, \alpha > 0, x \in C$$
$$E_{\alpha\beta}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(\alpha k+\beta)}, \alpha > 0, \beta > 0, x \in C$$

Definition (2.5), [1]

The one parameters of Mittage-leffer function of the matrix $\mathcal{A} \in M_n$ (M_n square matrix of order nxn) is defined for $\alpha > 0$

$$E_{\alpha}(\mathcal{A}) = \sum_{k=0}^{\infty} \frac{\mathcal{A}}{\Gamma(\alpha k+1)},$$

$$E_{\alpha}(\mathcal{A}t^{\alpha}) = \sum_{k=0}^{\infty} \frac{\mathcal{A}^{k}t^{\alpha k}}{\Gamma(\alpha k+1)},$$
 (3)

ak

Remark (2.6)

If $\mathcal{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is a square Matrix of order 2 × 2, the Matrix Mittage-leffler function $E_{\alpha}(\mathcal{A}X^{\alpha})$ is given by: $E_{\alpha}(\mathcal{A}X^{\alpha}) =$

$$\begin{bmatrix} E_{\alpha}\left(\lambda_{1}X^{\alpha} + \frac{a-\lambda_{1}}{\lambda_{1}-\lambda_{2}}E\right) & X^{1-\alpha}\frac{b}{\lambda_{1}-\lambda_{2}}E\\ X^{1-\alpha}\frac{c}{\lambda_{1}-\lambda_{2}}E & X^{1-\alpha}\left(e^{\lambda x} + \frac{d-\lambda_{1}}{\lambda_{1}-\lambda_{2}}E\right) \end{bmatrix} \quad (4)$$
where $E = E_{\alpha}\left(\lambda_{1}X^{\alpha}\right) = E_{\alpha}\left(\lambda_{2}X^{\alpha}\right)$ and $\lambda_{1}\neq 0$

where $E = E_{\alpha}(\lambda_1 X^{\alpha}) - E_{\alpha}(\lambda_2 X^{\alpha})$ and $\lambda_1 \neq \lambda_2$ are the eigenvalues of \mathcal{A} .

The Method;

Method is derived by ST of Mittage-Leffler function for solving certain type of fractional differential equations.

Lemma (3.1), [9]:

Let $\alpha > 0, \beta > 0, \lambda \in R$ and $u^{-\alpha} > |\lambda|$ then: $\mathbb{S}[t^{\beta-1}E_{\alpha,\beta}(\lambda t^{\alpha})]u = \left[\frac{u^{\beta-1}}{1-\lambda u^{\alpha}}\right]$ (5) where $E_{\alpha,\beta}$ is Mittage-Leffler function in two parameters.

Theorem (3.2), [9]:

Let $n \in N$ and $\alpha > 0$ be such that $n - 1 < \alpha < n$ and F(u) be the ST of the function f(t) then the ST Caputo α derivative of f(t) is given by: $S[D^{\alpha}f(t)]u = u^{-\alpha}F(u) - \sum_{k=0}^{n-1} u^{k-\alpha}[f^{(k)}(0)](6)$

Example (3.3)

Take into account the initial value problem (I.V. Problem) for a homogenous fractional differential equation

$$D^{\alpha}f(t) + af(t) = 0$$
 , $0 < \alpha < 1$,
 $f(0) = c$

where a and c are constants, applying ST on both sides, hence

 $S(D^{\alpha}f(t))(u) + aS(f(t))(u) = 0$ $u^{-\alpha}F(u) - f(0)u^{-\alpha} + aF(u) = 0$ $(u^{-\alpha} + a)F(u) = f(0)u^{-\alpha}$ since f(0) = c then $F(u) = \frac{u^{-\alpha}c}{(u^{-\alpha}+a)} = \frac{c}{1+au^{\alpha}}$ by eq.(6) replacing $\beta = 1$ $F(u) = S[E_{\alpha,1}(-at^{\alpha})(u)]c$ Taking inverse ST, we get $f(t) = cE_{\alpha}(-at^{\alpha})$ Now, we will generalize lemma(3.1) to solve a homogenous linear fractional system of order $0 < \alpha < 1$

Theorem (3.4)

Let $\mathcal{A} \in M_n$ be a scalar matrix, $\eta \in M_{n,1}$ be a scalar vector and $y(t) \in M_{n,1}$ be unknown vector. The exact solution homogenous linear fractional system of $0 < \alpha < 1$ $D^{\alpha}y(t) = \mathcal{A}y(t), y(0) = \eta$ (7) is given by: $y(t) = E_{\alpha}(\mathcal{A}t^{\alpha}).\eta$ (8) Where $E_{\alpha}(\mathcal{A}t^{\alpha})$ is the matrix Mittage-Leffler

Where $E_{\alpha}(\mathcal{A}t^{\alpha})$ is the matrix Mittage-Leffler function.

Proof

Taking Sumudu transformation to both sides of eq. (7) and use the Sumudu transformation of the Caputo derivative to get

$$u^{-\alpha}Y(u) - u^{-\alpha}y(0) = \mathcal{A}Y(u)$$
$$(u^{-\alpha}I - \mathcal{A})Y(u) = u^{-\alpha}\eta$$
$$Y(u) = \frac{u^{-\alpha}\eta}{u^{-\alpha}I - \mathcal{A}}$$
$$= \frac{\eta}{I - u^{\alpha}\mathcal{A}}$$
by lemma (3.1)

 $y(t) = S[E_{\alpha,1}(\mathcal{A}t^{\alpha})(u)].\eta$ taking inverse of Sumudu transform we get eq. (8) $y(t) = E_{\alpha}(\mathcal{A}t^{\alpha}).\eta$

Example (3.5)

Let the I.V. Problem for a fractional differential system of order $0 < \alpha < 1$, $y(t) = \mathcal{A}y(t) , y(0) = \eta$ (9) where $\mathcal{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $\eta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The eigenvalues of
$$\mathcal{A}$$
 are $\lambda_1 = 1 + i$, i
 $\lambda_2 = 1 - i$
 $E_{\alpha}(\mathcal{A}t^{\alpha}) = \begin{bmatrix} E_{\alpha}(1+i)t^{\alpha} + \frac{-1}{2}(E_{\alpha}(1+i)t^{\alpha}) - E_{\alpha}((1-i)t^{\alpha}) & t^{1-\alpha} \\ t^{1-\alpha} - \frac{1}{2i}(E_{\alpha}(1+i)t^{\alpha}) - E_{\alpha}((1-i)t^{\alpha}) & t^{1-\alpha}(e^{(1+i)t^{\alpha}}) \end{bmatrix}$
 $y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$ and $\eta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Hence:

$$\begin{split} y_1(t) &= t^{1-\alpha} \frac{-1}{2i} (E_{\alpha}(1+i)t^{\alpha}) - E_{\alpha}((1-i)t^{\alpha}) \\ y_2(t) &= t^{1-\alpha} (e^{(1+i)t} + \frac{-1}{2} (E_{\alpha}(1+i)t^{\alpha}) - E_{\alpha}((1-i)t^{\alpha}) \end{split}$$

To solve nonhomogeneous linear fractional system of order $0 < \alpha < 1$, we first introduce the Sumudu transform convolution theorms.

Theorem (3.5)[10]

let $W_1(t)$ and $W_2(t)$ functions in the set of functions A having Sumudu transforms F(u) and G(u) respectively. Then the ST of the convolutions of $W_1(t)$ and $W_2(t)$, where $(W_1 * W_2)(t) = \int_0^\infty W_1(t) W_2(t-\tau) d\tau$

 $\mathbb{S}((W_1 * W_2)(t)) = uF(u)G(u).$

Now, we will generalize lemma(3.1) , theorem(3.4) and theorem(3.5) to solve nonhomogenous linear fractionals system of order $0 < \alpha < 1$

Theorem (3.6)

Let $\mathcal{A} \in M_n$ be a scalar matrix, $\eta \in M_{n,1}$ be a scalar vector $W_1(t) \in M_{n,1}$ and $y(t) \in M_{n,1}$ be unknown vector. The exact solution nonhomogenous linear fractional systems of $0 < \alpha < 1$,

 $D^{\alpha}y(t) = \mathcal{A}y(t) + W_1(t), \ y(0) = \eta \quad (10)$ is given by:

$$y(t) = E_{\alpha}(\mathcal{A}t^{\alpha})\eta + \int_{0}^{t} (t-s)^{\alpha} E_{\alpha}(\mathcal{A}(t-s)^{\alpha}W_{1}(s)) ds$$
(11)
where $E_{\alpha}(\mathcal{A}t^{\alpha})$ is the matrix Mittage-Leffler

Proof

function.

taking ST to both sides of eq.(10),

$$u^{-\alpha}Y(u) - u^{-\alpha}y(0) = \mathcal{A}Y(u) + F(u)$$
 (12)
 $Y(u) = \frac{u^{-\alpha}\eta}{u^{-\alpha}I - \mathcal{A}} + \frac{F(u)}{u^{-\alpha}I - \mathcal{A}}$
Appling the inverse ST to both sides of eq. (12)

Appling the inverse ST to both sides of eq. (12), we have

$$\frac{1}{2i}(E_{\alpha}(1+i)t^{\alpha}) - E_{\alpha}((1-i)t^{\alpha})$$

)t + $\frac{-1}{2}(E_{\alpha}(1+i)t^{\alpha}) - E_{\alpha}((1-i)t^{\alpha})$
 $S^{-1}{Y(u)} = S^{-1}\left\{\frac{u^{-\alpha}\eta}{u^{-\alpha}I - \mathcal{A}}\right\} + S^{-1}{F(u)}$
 $* S^{-1}{(u^{-\alpha}I - \mathcal{A})^{-1}}$

By substituting the Sumudu transform of the Mittage-Leffler function lemma (3.1) and theorem (3.6) we get the solution as in eq. (11).

Example (3.6)

Consider the initial value problem for a nonhomogeneous fractional differential system of order $0 < \alpha < 1$

$$D^{\alpha}y(t) = \mathcal{A}y(t) + W_{1}(t), \quad y(0) = \eta$$

$$0 < \alpha < 1$$

where $\mathcal{A} = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}, \eta \begin{bmatrix} 1 \\ -2 \end{bmatrix}, f(t) = \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$
hence by eq.(11):

$$y(t) = \left(E_{\alpha} \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} t^{\alpha}\right) \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \int_{0}^{t} ((t-s)^{\alpha})(E_{\alpha} \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} (t-s)^{\alpha}) \begin{bmatrix} \sin s \\ \cos s \end{bmatrix} ds$$

Then

$$y_1(t) = E_\alpha(-2t^\alpha) + \int_0^t (t-s)^\alpha + E_\alpha(-2(t-s)^\alpha) \quad \sin s \, ds$$
$$y_2(t) = -2E_\alpha(3t^\alpha) + \int_0^t (t-s)^\alpha + E_\alpha(3(t-s)^\alpha) \quad \cos s \, ds$$

STABILITY ANALYSIS

Stability of the linear fractional differential system defined by the Caputo's derivative $0 < \alpha < 1$ is discussed here acording to two theorems

Theorem (4.1), [11]

The system eq.(7) is a symptotically stable if and only if the eigenvalues $\lambda(\mathcal{A})$ of the matrix \mathcal{A} satisfy, $\frac{Cos(\lambda(\mathcal{A}))}{\|\lambda(\mathcal{A})\|} < 1 - \alpha$

Theorem (4.2), [12]

The system eq.(7) is a symptotically stable if and only if $|\arg(spec(\mathcal{A}))| > \alpha \frac{\pi}{2}$, where $\operatorname{spec}(\mathcal{A})$ is the spectrum of \mathcal{A} .

Now discuss the stability of the linear system given in example (3.5) as follows:

Since
$$\mathcal{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, and $\lambda = 1 \mp i$
By theorem (4.1),
 $\cos \lambda = \frac{1}{2}$ and $\|\lambda\| = \sqrt{2}$
then $\frac{\cos \lambda}{\|\lambda\|} = \frac{1}{2} < 1 - \alpha$
Hence $\alpha < 1/2$, there values of α get the system
is asymptotically stable where
 $0 < \alpha < 1$.
By theorem (4.2):
 $|\arg(spec(\mathcal{A}))| = |\theta| = 0.785$

 $0.785 > \alpha \frac{\pi}{2}$

hence $\alpha < 0.5$, then the system (10) is asymptotically stable when $\alpha < 0.5$.

CONCLUSIONS

In this work, we studied and proved the ST operational transform method as shown in theorems, which are important in solving certain homogenous and non-homogenous fractional differential systems associating the Caputo fractional derivatives.

ACKNOWLEDGMENTS

I would like to thank Mustansiriyah University (<u>www.uomustansiriyah.edu.iq</u>) Baghdad-Iraq for its support in the present work.

REFERENCES

- [1] Kılıçman, A., & Altun, O. (2014). Some remarks on the fractional Sumudu transform and applications. *Appl. Math*, 8(6), pp. 1-8. http://dx.doi.org/10.12785/amis/080625
- Bulut, H., Baskonus, H. M., & Belgacem, F. B. M. (2013, January). The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. In *Abstract and Applied Analysis*, Vol. (2013). https://doi.org/10.1155/2013/203875

[3] Sheikhani, A. H. R., & Mashoof, M. (2017). A Collocation Method for Solving Fractional Order Linear System. Journal of the Indonesian Mathematical Society, 23(1), pp. 27-42. https://doi.org/10.22342/jims.23.1.257.27-42

- [4] Ertürk, V. S., & Momani, S. (2008). Solving systems of fractional differential equations using differential transform method. *Journal of Computational and Applied Mathematics*, 215(1), pp. 142-151. https://doi.org/10.1016/j.cam.2007.03.029
- [5] Li, X., Liu, S., & Jiang, W. (2018). q-Mittag-Leffler stability and Lyapunov direct method for differential systems with q-fractional order. *Advances in Difference Equations*, 2018(1), pp. 1-9. https://doi.org/10.1186/s13662-018-1502-5
- [6] Skhail, E. S. E. A. (2018). Some Qualitative Properties of Fractional Order Differential Systems (Doctoral dissertation, Faculty of Science Department of Mathematics Some Qualitative Properties of Fractional Order Differential Systems Submitted by: Esmail Syaid Esmail Abu Skhail Supervisor Dr. Mohammed M. Matar Department of Mathematics, Faculty of Science, Al-Azhar University–Gaza).
- [7] Takaci, D., Takaci, A., & Takaci, A. (2017). Solving fractional differential equations by using Sumudu transform and Mikusinski calculus. J. Inequal. Spec. Funct, 8(1), pp. 84-93.
- [8] Al-Shammari, A. G. N., Abd AL-Hussein, W. R., & AL-Safi, M. G. (2018). A new approximate solution for the Telegraph equation of space-fractional order derivative by using Sumudu method. *Iraqi Journal of Science*, 59(3A), pp. 1301-1311. https://doi.org/10.24996/ijs.2018.59.3A.18
- [9] Bodkhe, D. S., & Panchal, S. K. (2016). On Sumudu transform of fractional derivatives and its applications to fractional differential equations. *Asian Journal of Mathematics and Computer Research*, *11*(1), pp. 69-77.
- [10] Belgacem, F. B. M., Karaballi, A. A., & Kalla, S. L. (2003). Analytical investigations of the Sumudu transform and applications to integral production equations. *Mathematical problems in Engineering*, 2003. <u>https://doi.org/10.1155/S1024123X03207018</u>
- [11] Li, H., Cheng, J., Li, H. B., & Zhong, S. M. (2019). Stability analysis of a fractional-order linear system described by the Caputo–Fabrizio derivative. *Mathematics*, 7(2), pp. 1-9. https://doi.org/10.3390/math7020200
- [12] Chaid, A. R. K. K. M. (2016). Stability of Linear Multiple Different Order Caputo Fractional System. Control Theory and Informatics, 6(3), p.55-68.