Finding Fixed Points for Set-Valued Mappings by Graph Concepts

Salwa Salman Abed*, Shaimia Qais Latif
Department of Mathematics, College of Education for Pure Science, Ibn Al- Haitham, University of Baghdad, Baghdad, IRAQ
*Contact email: salwaalbundi@yahoo.com

Article Info

Received
24/08/2020
Accepted
12/10/2020

Abstract

The researchers have presented some theorems of the fixed points of single-valued mappings by defining known contractive conditions on those points in the same path from a given graph. Here, this procedure will be modified and used to find fixed points of order-preserve mappings in a complete partially ordered g-metric space.

KEYWORDS: Fixed point, Directed graph, g-metric space, Set-valued mappings.

الخلاصة

Published \quad لقق قام الباحثون بعض مبر هنات من النقاط الصامدة لتطبيقات أحادية القيمة من خلال تحديد شروط انكماثية تعرف على تلك تكا 20/12/2020

النقاط في نفس المسار من رسم بياني معين. هنا، سوف ينم تعديل هذا الإجراء واستخدامها لإيجاد نقاط صـامدة لنطبيقات
تحافظ علّى التنرتيب في الفضاء -g اككأمل المرتب جزيّيا.

INTRODUCTION

For set-valued mappings, Nadler [1] presented one of the most important research on fixed points in complete metric space. Then, fixed point theorems for set-valued mappings were established in different directions due to Reich[2], Many other results can see in [3-8] In 2005, Mustafa [9] introduced g-metric spaces, as, a generalization of a metric space (X, d). Subsequently, many fixed point results on such spaces appeared in [1012]. Recently Jachymski [13] established a result of single-valued mapping in metric spaces with a graph instead of partial ordering. Beg and Butt [45] obtained sufficient conditions about the existence of fixed points by a graph. This article aims to employ previous ideas to present fixed points and common fixed points for set-valued in g - metric spaces. These results relate to the content of the references [4-5, 13]. We begin with the following definition

Definition (1.1) [8]:
Let \mathcal{M} be a nonempty set and $\omega: \mathcal{M}^{3} \rightarrow[0, \infty)$ be a satisfying the following condition:
$1-\omega(p, q, e)=0$ if and only if $p=q=e$.
$2-0<\omega(p, p, q), \forall p, q \in \mathcal{M}$ with $p \neq q$.
3- $\omega(p, p, q) \leq \omega(p, q, e)$ for all $p, q, e \in$ \mathcal{M} with $\mathrm{q} \neq e$.
4- $\omega(p, q, e)=\omega(p, e, q)=\cdots$, (symmetryin all three variables).
5- $\omega(p, q, e) \leq \omega(p, a, a)+\omega(a, q, e)$ for all, $q, e, a \in \mathcal{M}$.
then the function ω is called generalized metric on \mathcal{M} and the pair (\mathcal{M}, ω) is called a g-metric space.

Example (1.2) [9]:

$\mathcal{M}=R^{+}$, with usual distance $d(p, q)=|p-q|$, for all p, q in \mathcal{M}. Define $\omega: \mathcal{M}^{3} \rightarrow R^{+}$
$\omega \quad(p, q, e)=|p-q|+|q-e|+\mid e-$ $p \mid$, for all $p, q, e \in \mathcal{M}$. Then ω is a g-metric on \mathcal{M}.

Definition (1.3) [11]:

Let (\mathcal{M}, ω) be a g-metric space, then ω is called symmetric if $\omega(p, q, q)=\omega(p, p, q)$ for all,q, $\in \mathcal{M}$.

Example (1.4) [9]:

Let $\mathcal{M}=\{p, q\}$ and $\omega(p, p, p)=\omega(q, q, q)=$ $0, \omega(p, p, q)=1, \omega(p, q, q)=2$ and by symmetry expand ω to all of $\mathcal{M} \times \mathcal{M} \times \mathcal{M}$. Then ω is a g-metric, but $\omega(p, q, q) \neq \omega(p, p, q)$.

Proposition (1.5) [12]:

Let (\mathcal{M}, ω) be a g-metric space, then the following are equivalent:
1- (\mathcal{M}, ω) is symmetric.
$2-\omega(p, q, q) \leq \omega(p, q, a), \forall p, q, a \in \mathcal{M}$.
3-

$$
\begin{aligned}
& \omega(p, q, e) \leq \\
& \omega(p, q, a)+\omega(e, p, b), \forall p, q, e, a, b \in \mathcal{M} .
\end{aligned}
$$

Definition (1.6) [11-8]:

Let (\mathcal{M}, ω) be a g-metric space and $\left\{r_{j}\right\}$ be a sequence of points of \mathcal{M}, if there exist $L \in \mathbb{N} \in>$ 0 for $j, i, l \geq L$ then the sequence $\left\{r_{j}\right\}$ is said to be
i) ω - convergent to r if $\omega\left(r, r_{j}, r_{i}\right)<\epsilon$ for all $i, j \geq L$ That is $\lim _{i, j \rightarrow \infty} \omega\left(r, r_{j}, r_{i}\right)=0$ as i, j $\rightarrow \infty$.
ii) ω - Cauchy if $\omega\left(r_{j}, r_{i}, r_{l}\right)<\epsilon$ for all i, j, l $\geq L$.That is $\omega\left(r_{j}, r_{i}, r_{l}\right) \rightarrow 0$ as $i, j, l \rightarrow \infty$.
iii) $\mathrm{A} g$-metric space (\mathcal{M}, ω) is complete if every ω-Cauchy sequence is ω-convergent in (\mathcal{M}, ω).

Proposition (1.7) [11]:

Let (\mathcal{M}, ω) be a g-metric space the following statements are equivalent
i) $\left\{r_{j}\right\}$ is ω-convergent to r , if and only if $\omega\left(r_{j}, r_{j}, r\right) \rightarrow 0, a s j \rightarrow \infty$.
ii) $\omega\left(r_{j}, r, r\right) \rightarrow 0$, as $j \rightarrow \infty$. if and only if $\omega\left(r_{j}, r_{i}, r\right) \rightarrow 0$, as $j, i \rightarrow \infty$.

Remark (1.8) [9]:

Every g-metric (\mathcal{M}, ω) on \mathcal{M} defines a metric d_{ω} on \mathcal{M} given by
$d_{\omega}(p, q)=\omega(p, q, q)+\omega(q, p, p)$ for all $p, q \in$ \mathcal{M} and
$\omega(p, q, e)=\max \{|p-q|,|q-e|,|e-p|\}$.

Proposition (1.9) [9]:

Let (\mathcal{M}, ω) be a g-metric space, then for any p, q, e, and $a \in \mathcal{M}$ is following that

1. If $\omega(p, q, e)=0$ than $p=q=e$.
2. $\omega(p, q, e) \leq \omega(p, p, q)+\omega(q, q, e)$.
3. $\omega(p, q, q) \leq 2 \omega(q, p, p)$.
4. $\omega(p, q, e) \leq \omega(p, a, e)+\omega(a, q, e)$.
5. $\omega(p, q, e) \leq 2 / 3(\omega p, q, a)+$ $\omega(p, a, e)+\omega(a, q, e))$.
6. $\omega(p, q, e) \leq(\omega(p, a, a)+\omega(q, a, a)+$ $\omega(e, a, a))$.

Below, if (\mathcal{M}, ω) is a g-metric space, $2^{\mathcal{M}}=$ $\{A: \emptyset \neq A \subset \mathcal{M}\} \quad$ and $\quad C B(\mathcal{M})=\{A: \emptyset \neq A \subset$ \mathcal{M}, A is closed $\&$ bounded $\}$ and $K(\mathcal{M})=$
$\{A: \emptyset \neq A \subset \mathcal{M}, A$ is compact $\}$,
and $\Omega=\{$ The Hausdorff $\}$.

Definition (1.10) [1]:

The point p in \mathcal{M} is called a fixed point of the setvalued mapping $S: \mathcal{M} \rightarrow 2^{\mathcal{M}}$ if $p \in S p$ and p is a fixed point of a single mapping $S: \mathcal{M} \rightarrow \mathcal{M}$ if p $=S p$.

Definition (1.11) [1]:

The mapping $H: \mathcal{M}^{3} \rightarrow R^{+}$is called the Hausdorff g-distance on $\mathrm{CB}(\mathcal{M})$, if
$\Omega(A, B, C)=\max \left\{\sup _{p \in A} \omega(p, B, C), \sup _{p \in B}\right.$
$\left.\omega(p, C, A), \sup _{p \in C} \omega(p, A, B)\right\}$,
where $\omega(p, B, C)=d_{\omega}(p, B)+d_{\omega}(B, C)+$ $d_{\omega}(p, C), \quad d_{\omega}(p, B)=\inf \left\{d_{\omega}(p, q), q \in B\right\}$, $d_{\omega}(A, B)=\inf \left\{d_{\omega}(a, b), a \in A, b \in\right.$
Band $A, B, C \in \operatorname{CB}(\mathcal{M})$, $\}$.
Lemma (1.12) [1]:
i) If $A, B \in C B(\mathcal{M})$ with $\Omega(A, B, B)<\varepsilon$ then $\forall a \in A \exists b \in B$ such that $\omega(a, b, b)<\varepsilon$.
ii) If $A, B \in C B(\mathcal{M})$ and $a \in A$, then $\forall \varepsilon>0, \exists$ $b \in B$ such that $\omega(a, b, b) \leq \Omega(A, B, B)+\varepsilon$.

Lemma (1.13) [11]:
i) If $A \in C B(\mathcal{M})$ and $B \in K(\mathcal{M})$ then $\forall a \in A$, $\exists b \in B$ such that: $\omega(a, b, b) \leq \Omega(A, B, B)$.
ii) Let $\left\{A_{j}\right\}$ be a sequence in $C B(\mathcal{M})$ and $\lim _{j \rightarrow \infty} \Omega\left(A_{j}, A, A\right)=0$ for $A \in C B(\mathcal{M})$.If $p_{j} \in A_{j}$ and $\lim _{j \rightarrow \infty} \omega\left(p_{j}, p, p\right)=0$, then $p \in A$.

Definition (1.14) [4-5]:

Let G_{r} be a graph with finite vertices denoted by $V\left(G_{r}\right)$ and finite edges $E\left(G_{r}\right)$ of different pairs of different elements of $V\left(G_{r}\right)$. Also, $G_{r}{ }^{-1}$ denotes the converse of $G_{r}($, which is obtained by reversing the direction of its edges.

Definition (1.15) [4-5]:

A graph $G_{r}{ }^{\sim}$ is called directed if its edges are symmetric, then $\mathrm{E}\left(G_{r}{ }^{\sim}\right):=E\left(G_{r}\right) \cup E\left(G_{r}{ }^{-1}\right)$.
Definition (1.16) [5-4]:
we say that H is a subgraph of G_{r} if $V(H) \subseteq$ $V\left(G_{r}\right)$ and $E(H) \subseteq E\left(G_{r}\right)$.
Definition (1.17) [4-5]:
If each edge in G_{r} has an associated weight function $W: E\left(G_{r}\right) \rightarrow R$ then G_{r} is called A weighted graph.

Definition (1.18) [4-5]:

Let $p, q \in V\left(G_{r}\right)$. A path in G_{r} from p to q of length $j(j \in N U\{0\})$ is a sequence $\left(p_{i}\right)_{i=0}^{j} \subseteq$ $V\left(G_{r}\right) \ni p_{0}=p, p_{j}=q$ and $\left(p_{i-1}, p_{i}\right) \in E\left(G_{r}\right)$, $i=1,2, \ldots, j$.

Definition (1.19) [4-5]:

The length of the path is the number of elements in $E\left(G_{r}\right)$.

Definition (1.20) [4-5]:

If there is a path between any two vertices of G_{r} then G_{r} is called connected otherwise it is disconnected. Moreover, G_{r} is weakly connected if $G_{r}{ }^{\sim}$ is connected.
Let $G_{r_{p}}$ be the component of G_{r}, consisting of all edges and vertices which are contained in some path in G_{r} beginning at p. Assume that G is such that $E\left(G_{r}\right)$ is symmetric, then The equivalence class $[p]_{G_{r}}$ defined on $V\left(G_{r}\right)$ by the rule $R(u R v$ if there is a path from u to v) is $V\left(G_{r_{p}}\right)=[p]_{G_{r}}$. See[13].
Jachymski [13] proved some fixed point results for the G_{r}-contraction mapping in a metric space endowed with a graph, and he stated the following results,

Definition (1.21) [13]:

Let \mathcal{M} be a complete metric space. A singlevalued mapping $S: \mathcal{M} \rightarrow \mathcal{M}$ is a Banach $G_{r^{-}}$ contraction if $(p, q) \in E\left(G_{r}\right)$ implies $(S p, S q) \in$ $E\left(G_{r}\right)$, and $\quad \forall(p, q) \in E\left(G_{r}\right) \quad \exists K \in(0,1) \ni$ $\omega(S p, S q)<k \omega(p, q)$.
property A: for any sequence $\left(p_{j}\right)_{j \in N}$ in \mathcal{M}, if $p_{j} \rightarrow p$ and $\left(p_{j}, p_{j+1}\right) \in E\left(G_{r}\right)$ for $j \in N$, then $\left(p_{j}, p\right) \in E\left(G_{r}\right)$.

By using Banach G_{r}-contraction, Jachymski proved that:

Theorem (1.22) [13]:

Let \mathcal{M} be a complete metric space with property A: for any sequence $\left(p_{j}\right)_{j \in N}$ in \mathcal{M}, if $p_{j} \rightarrow p$ and $\left(p_{j}, p_{j+1}\right) \in E\left(G_{r}\right)$ for $j \in N$, then there is a subsequence $\left(p_{k j}\right)_{j \in N}$ with $\left(p_{k j}, p\right) \in E\left(G_{r}\right)$ for $j \in N$. Let $S: \mathcal{M} \rightarrow \mathcal{M}$ be a $G_{r^{-}}$ contraction and $\mathcal{M}_{S}:=\{p \in \mathcal{M}:(p, S p) \in$ $\left.E\left(G_{r}\right)\right\}$.
Then the following hold:

1. card Fix $S=\operatorname{card}\left\{[p]_{G_{r}} \sim: p \in \mathcal{M}_{p}\right\}$.
2. Fix $S \neq \varnothing$ if and only if $\mathcal{M}_{S} \neq \varnothing$.
3. S has a unique fixed point iff there exists $p_{0} \in$ \mathcal{M}_{p} such that $\mathcal{M}_{S} \subseteq\left[p_{0}\right]_{G_{r}} \sim$.
4. For any $p \in \mathcal{M}_{S}, S \mid\left[p_{0}\right]_{G_{r} \sim}$ is a Picard operator.
5. If $\mathcal{M}_{S} \neq \emptyset$ and G_{r} is a weakly connected, then S is a Picard operator.

Beg and Butt [10] presented a version of Jachymski's Theorem for set-valued mappings as the following:

Definition (1.23) [13]:

Let \mathcal{M} be a complete metric space. The mapping: $\mathcal{M} \rightarrow C B(\mathcal{M})$ is said to be a G_{r}-contraction if $\exists k \in(0,1) \ni \Omega(S p S q)<k(p, q) \quad \forall(p, q) \in$ $E\left(G_{r}\right)$ and if $u \in S p$ and $\in S q \ni \omega(u, v)<$ $k \omega(p, q)+\alpha, \forall \alpha>0$ then $(u, v) \in E\left(G_{r}\right)$.

Theorem (1.24) [13]:

Let \mathcal{M} be a complete metric space with property (A). LetS: $\mathcal{M} \rightarrow C B(\mathcal{M})$ be a $G_{r^{-}}$ contraction and $\mathcal{M}_{S}:=\left\{p \in \mathcal{M}:(p, u) \in E\left(G_{r}\right)\right.$ for some $u \in S p\}$, then the following hold:

1. For any $p \in \mathcal{M}_{S}, S \mid[p]_{G_{r}} \sim$ has a fixed point.
2. If $\mathcal{M} s \neq \varnothing$ and G_{r} is weakly connected, then S has a fixed point in \mathcal{M}.
3. If $S^{\prime}:=U\left\{[p]_{G_{r}} \sim: p \in \mathcal{M}_{S}\right\}$, then $\left.S\right|_{\mathrm{p}}{ }^{\prime}$ has a fixed point.
4. If $S \subseteq E\left(G_{r}\right)$ then S has a fixed point.
5. Fix $S \neq \emptyset \Leftrightarrow \mathcal{M}_{S} \neq \emptyset$.

MAIN RESULTS

Let (\mathcal{M}, ω) is a complete g - metric space and G_{r} is a directed and weighted graph with $E\left(G_{r}\right)$ is
symmetric such that $E\left(G_{r}\right)$ contains all loops, i.e., $\Delta \subseteq E\left(G_{r}\right)$, where Δ denote the diagonal of the Cartesian product $\mathcal{M} \times \mathcal{M}$.

Definition (2.1):

Let $S: \mathcal{M} \rightarrow C B(\mathcal{M})$ be a set-valued mapping. S is called a G_{r}-contraction if S preserves edges of G_{r}, i.e.,

$$
\forall p, q \in \mathcal{M},(p, q) \in E\left(G_{r}\right) \quad \Rightarrow(S p, S q) \in
$$ $E\left(G_{r}\right)$

And $\quad \exists k \in(0,1) \ni \Omega(S p, S q, S e) \leq$ $k \omega(p, q, e), \forall p, q$ and e belong to the same path.
Metaphorically, it can be the expression like the following: p, q and e belong to $\left(G_{r}\right)$.

Definition (2.2):

The mapping $S: \mathcal{M} \rightarrow C B(\mathcal{M})$ is said to be a $G_{r^{-}}$ contraction if there exists a $k \in(0,1)$ such that $\Omega(S p S q, S e) \leq k(p, q, e)$ for all $(p, q, e) \in$ $E\left(G_{r}\right)$.

Definition (2.3):

Let (\mathcal{M}, ω) be a $g-$ metric space and $S, H, T: \mathcal{M} \rightarrow C B(\mathcal{M})$. The mappings S, H, T are said to be G_{r}-contractive if there exists $k \in$ $(0,1)$ such that $(p \neq q \neq e),(p, q, e) \in \mathcal{M}$ then $\Omega(S p, H q, T e)<k \omega(p, q, e)$, and $u \in S p$ and $v \in H q, w \in T e \quad$ with $\quad \omega(u, \quad v, w) \leq$ $k \omega(p, q, e)$ then $(u, v, w) \in E\left(G_{r}\right)$.
The symmetry of Ω and ω implies the following:

Proposition (2.4):

If $S: \mathcal{M} \rightarrow C B(\mathcal{M})$ is a G_{r}-contraction then S is also a $G_{r}{ }^{-1}$ - contraction.
The following property is needed

Property (B):

If $u \in S p, v \in S q$ and $w \in S e \ni \omega(u, v, e)<$ $k \omega(p, q, e)+\alpha, \forall \alpha>0$ then u, v and w belong to the path of length 2 .

Theorem (2.5):

Suppose that the triple $\left(\mathcal{M}, \omega, G_{r}\right)$ has the properties (A-B). Let $S: \mathcal{M} \rightarrow C B(\mathcal{M})$ be a $G_{r^{-}}$ contraction and $\mathcal{M}_{S}:=\{p \in \mathcal{M}:(p, u, v) \in$ $E\left(G_{r}\right)$ for some $\left.u \in S p, v \in S u\right\}$.
Then the following hold:

1. For any $p \in \mathcal{M}_{S}, S \mid[p]_{G_{r}} \sim$ has a fixed point.
2. If $\mathcal{M} s \neq \emptyset$ and G_{r} is weakly connected, then S Fix $S \neq \emptyset \square \mathcal{M}$.
3. If $S^{\prime}:=U\left\{[p]_{G_{r} \sim}: p \in \mathcal{M}_{S}\right\}$, then Fix $\left.S\right|_{\mathrm{p}} \neq . \emptyset$
4. If $S \subseteq E\left(G_{r}\right)$ then Fix $S \neq \emptyset$.
5. Fix $S \neq \emptyset \Leftrightarrow \mathcal{M}_{S} \neq \emptyset$.

Proof: 1. Let $p_{0} \in \mathcal{M}_{S}$ then there exists p_{1} $\in S p_{0}, p_{2} \in S p_{1}$ such that p_{0}, p_{1}, p_{2} belong to the same path, metaphorically, $p_{0}, p_{1}, p_{2} \in$ $E\left(G_{r}\right)$. Since S is G_{r}-contraction, we have $\Omega\left(S p_{0}, S p_{1}, S p_{2}\right) \leq k \omega\left(p_{0}, p_{1}, p_{2}\right)$.
Using Lemma1.12, and property (B), we have the existence of an $p_{3} \in E\left(G_{r}\right)$ such that
$\omega\left(p_{1}, p_{2}, p_{3}\right) \leq \Omega\left(S p_{0}, \quad S p_{1}, S p_{2}\right) \quad+k \leq$ $k \omega\left(p_{0}, p_{1}, p_{2}\right)+k$. (1)
Again let $p_{1} \in S p_{0}, p_{2} \in S p_{1}, p_{3} \in S p_{2}$, such that p_{1}, p_{2}, p_{3} belong to the same path, p_{1}, p_{2}, p_{3} $\in E\left(G_{r}\right)$. Since S is G_{r}-contraction, we have
$\Omega\left(S p_{1}, S p_{2}, S p_{3}\right) \leq k \omega\left(p_{0}, p_{1}, p_{2}\right)$
Also, by property (B), we have the existence of an $p_{4} \in E\left(G_{r}\right)$ such that
$\omega\left(p_{2}, p_{3}, p_{4}\right) \leq \Omega\left(S p_{1}, S p_{2}, S p_{3}\right)+k^{2}$
Using (1) in (2), we obtain
$\omega\left(p_{2}, p_{3}, p_{4}\right) \leq k^{2} \omega\left(p_{0}, p_{1}, p_{2}\right)+2 k^{2}$
Continuing in this way we have $p_{j+1} \in E\left(G_{r}\right)$ and $\omega\left(p_{j}, p_{j+1}, p_{j+1}\right) \leq k^{j} \omega\left(p_{0}, p_{1}, p_{2}\right)+j k^{j}$
Now, we prove that $\left\{p_{j}\right\}$ is g - Cauchy sequence in \mathcal{M}.
$\sum_{j=0}^{\infty} \omega\left(p_{j}, p_{j+1}, p_{j+2}\right) \leq \omega\left(p_{0}, p_{1}, p_{2}\right) \sum_{j=0}^{\infty} k_{j}+$ $\sum_{j=0}^{\infty} k_{j}<\infty$.
Thus $\left\{p_{j}\right\}$ is a $g-$ Cauchy sequence. By completeness, it converges to p in \mathcal{M}.
The next step is devoted to showing that p is a fixed point of S. By applying property (A) and $G_{r^{-}}$ contractivaty of S, we have $\Omega\left(S p_{j}, S p, S p\right) \leq$ $k \omega\left(p_{j}, p, p\right)$. Since $p_{j+1} \in S p_{j}$ and $p_{j} \rightarrow p$, therefore by Lemma 1.13, $p \in S p$. So, $\left(p_{j}, p\right)$ $\in E\left(G_{r}\right)$ for $j \in N$, we infer that $\left(p_{0}, p_{1}, \ldots . p_{j}\right.$, $p)$ is a path in G_{r} and so $p \in\left[p_{0}\right]_{G_{r}}$.
2. Since $\mathcal{M}_{S} \neq \varnothing, \exists p_{0} \in \mathcal{M}_{S}$. And G_{r} is weakly connected, thus $\left[p_{0}\right]_{G_{r} \sim}=\mathcal{M}$ and by part $1, S$ has a fixed point.
3. From 1 and 2, it holds.
4. $S \subseteq E\left(G_{r}\right) \quad \Rightarrow$ for all $\quad \in \mathcal{M}$ $u \in$
$S p$ and p,
u, belong to the same path, metaphorically,
$p, u, \in E\left(G_{r}\right) \operatorname{so} \mathcal{M}_{S}=\mathcal{M}$ and by 2 and $3, S$ has a fixed point
5. Let Fix $S \neq \emptyset \Rightarrow \exists p \in \operatorname{Fix} S \quad \ni p \in S p$.As $\Delta \subseteq$ $E\left(G_{r}\right)$; so, $(p, p, p) \in E\left(G_{r}\right) \Rightarrow p \in \mathcal{M}_{S}$. So \mathcal{M}_{S}
$\neq \emptyset$. Conversely, if $\mathcal{M}_{S} \neq \emptyset$ then Fix $S \neq \emptyset$ follows from 2 and 3.
Corollary (2.6):
Let (\mathcal{M}, ω, g) have the property A and G_{r} is weakly connected then every G_{r}-contraction $S: \mathcal{M} \rightarrow C B(\mathcal{M}) \ni p_{0}, p_{1}$, belong
to the same path, metaphorically, p_{0}, p_{1}, \in $E\left(G_{r}\right)$. For some $p_{1} \in S p_{0}$ has a fixed point.

Theorem (2.7):

Let $S, H, T: \mathcal{M} \rightarrow C B(\mathcal{M})$ be $\quad G_{r} \quad$-contractive with properties A, B. Set $\mathcal{M}_{S}:=\{p \in$ $\mathcal{M}:(p, u, v) \in E\left(G_{r}\right)$ for some $\left.u \in S p, v \in S u\right\}$. Then the following hold:

1. For any $p \in S p, S, H,\left.T\right|_{[p]_{G_{r}}}$ have a common fixed point.
2. If $\mathcal{M}_{S} \neq \emptyset$ and G_{r} is weakly connected, then F, H, T have a common fixed point in \mathcal{M}.
3. If $\mathcal{M}^{\prime}:=U\left\{[p]_{G_{r}}: p \in \mathcal{M} S\right\}$, thenFix $F \cap$ Fix $H \cap$ FixT $\left.\right|_{\mathrm{p}} \neq \varnothing$.
4. If $S \subseteq E\left(G_{r}\right)$ then Fix $F \cap$ Fix $H \cap$ FixT $\neq \varnothing$

Proof.

1. Let $p_{0} \in \mathcal{M}_{S}$ then there exists $p_{1} \in S p_{0}$ and $p_{2} \in$ $H p_{1}$, such that $p_{0}, p_{1},, p_{2}$ belong to the same path of length 2 , metaphorically, $p_{0}, p_{1}, p_{2} \in E\left(G_{r}\right)$. Since S, H, T are G_{r}-contractive, we have $\Omega\left(S p_{0}, H p_{1}, T p_{2}\right) \leq k \omega\left(p_{0}, p_{1}, p_{2}\right)$.
Using Lemma 1.12, and property (B), we have the existence of $p_{3} \in T p_{2}$ such that
$\Omega\left(p_{1}, p_{2}, p_{3}\right)<k \omega\left(p_{0}, p_{1}, p_{2}\right)$
(5)

Again let $p_{1} \in S p_{0}, p_{2} \in S p_{1}, p_{3} \in S p_{2}$, such that p_{1}, p_{2}, p_{3} belong to the same path, p_{1}, p_{2}, p_{3}
$\in E\left(G_{r}\right)$. Since S, H, T is G_{r}-contraction and since $E\left(G_{r}\right)$ is symmetric, we have

$$
\begin{gathered}
\Omega\left(S p_{2}, H p_{1}, T p_{0}\right)<k \omega\left(p_{1}, p_{2}, p_{3}\right) \\
<k^{2} \omega\left(p_{0}, p_{1}, p_{2}\right)
\end{gathered}
$$

Lemma 1.12 gives the existence of $p_{4} \in S p_{3}$ such that
$\omega\left(p_{2}, p_{3}, p_{4}\right)<k^{2} \omega\left(p_{0}, p_{1}, p_{2}\right)$
Continuing in this way we have $p_{2 j+1} \in S p_{2 j}$ and $p_{2 j+2} \in H p_{2 j+1}, \quad$ and $\quad p_{2 j+3} \in T p_{2 j+2}, \quad j=$ $0,1,2$.. Also $p_{2 j+1}, p_{2 j+2}, \quad p_{2 j+3}$ belong to the same path of length 2, metaphorically, $p_{2 j+1}, p_{2 j+2}, p_{2 j+3} \in E\left(G_{r}\right)$ such that $\omega\left(p_{j}, p_{j+1}, p_{j+2}\right)<k^{j} \omega\left(p_{0}, p_{1}, p_{2}\right)$

Next, we will show that $\left\{p_{j}\right\}$ is ag-Cauchy sequence in \mathcal{M}. Let $i>j$. Then

$$
\begin{aligned}
\omega\left(p_{j}, p_{i}, p_{i}\right) \leq & \omega\left(p_{j}, p_{j+1}, p_{j+1}\right) \\
& +\omega\left(p_{j+1}, p_{j+2}, p_{i+2}\right) \\
& +\cdots \omega\left(p_{i-1}, p_{i}, p_{i}\right) \\
< & {\left[k^{j}+k^{j+1}+\cdots+k^{i-1}\right] \omega\left(p_{0}, p_{1}, p_{1}\right) } \\
= & k^{j}\left[1+k^{j}+\cdots+k^{i}\right] \omega\left(p_{0}, p_{1}, p_{1}\right) \\
= & k^{j}\left[1-k^{i-j} / 1-k\right] \omega\left(p_{0}, p_{1}, p_{1}\right)
\end{aligned}
$$

Because $k \in(0,1), 1-k^{i-j}<1$.
Therefore $\omega\left(p_{j}, p_{i}, p_{i}\right) \rightarrow 0$ as $j \rightarrow \infty \Rightarrow\left\{p_{j}\right\}$ is a $g-$ Cauchy sequence, \Rightarrow converges to $p \in \mathcal{M}$.
To show that $p \in S p \cap \mathrm{H} p \cap T p$. For j even: By (A-B), $\quad p_{j}, p$ belong to the same path, $\quad p_{j}, p \in$ $E\left(G_{r}\right)$. Therefore using
G_{r} - contractivity, we have

$$
\Omega\left(S p_{j}, H p, T p\right)<k \omega\left(p_{j}, p, p\right)
$$

Since $p_{j+1} \in S p_{j}$, and $p_{j} \rightarrow p$.by Lemma $1.13 \Rightarrow H p, p \in T p$. For j odd:
As $\quad p_{j}, p$, belong to the same path $\quad p_{j}, p \in$ $E\left(G_{r}\right), \quad \quad \Omega(S p, H p, T p)<$
$k \omega\left(p, p_{j}, p_{j}\right)$
Hence, the same arguments as above $p \in S p$.
Next as p_{j}, p_{j+1} belong to the same path p_{j} ,$p_{j+1} \in E\left(G_{r}\right)$ also $\quad p_{j}, p$ belong to the same path $\quad p_{j}, p, \in E\left(G_{r}\right)$, for $j \in N$. We infer that $\left(p_{0}, p_{1}, \ldots . p_{j}, p\right)$ is a path in G_{r} and so $p \in\left[p_{0}\right]_{G_{r}}$.
2. Since $\mathcal{M}_{S} \neq \emptyset, \Rightarrow \exists p_{0} \in \mathcal{M}_{S}$ and since G_{r} is weakly connected then $\left[p_{0}\right]_{G_{r}}=\mathcal{M}$ and by 1 , mappings S and H, T have a common fixed point in \mathcal{M}.
3. It follows from parts 1 and 2.
4. $S \subseteq C E\left(G_{r}\right) \Rightarrow$ all $p \in \mathcal{M}$ be such that there exists some $u \in S p$ belong to the same path $p, u \in E\left(G_{r}\right)$ so $\mathcal{M}_{S}=\mathcal{M}$ and by 2 and $3 . S$, H, T have a fixed point.

Remark (2.8):

Replace \mathcal{M}_{S} by $\mathcal{M}_{H}:=\{p \in \mathcal{M}:(p, u, v) \in$ $E\left(G_{r}\right)$ for some $\left.u \in H p, v \in H u\right\}$ in conditions 1-3 of Theorem 2.7, the conclusion remains true. That is if $\mathcal{M}_{S} U \mathcal{M}_{H} U \mathcal{M}_{T}$ then getting Fix $S \cap \operatorname{Fix} H \cap \operatorname{Fix} T \neq \emptyset$ which follows easily from 1-3. Similarly, in condition 4 we can replace $S \subseteq E\left(G_{r}\right)$ by $H \subseteq E\left(G_{r}\right)$.

Corollary (2.9):

Let the triple (\mathcal{M}, ω, g) have the property (A). If G_{r} is weakly connected then G_{r}-contractive mappings $S, H, T: \mathcal{M} \rightarrow C B(\mathcal{M})$ such that (p_{0}, p_{1}, p_{2}) for some $p_{1} \in S p_{0}$ has a common fixed point

Corollary (2.10):

Let (\mathcal{M}, ω) be a ε-chainable complete g - metric space for some >0. Let $\mathrm{S}, \quad H, T: \mathcal{M} \rightarrow$ $C B(\mathcal{M})$ be such that there exists $k \in(0,1)$ with $0<\omega(p, q, e)<\epsilon=\Omega(S p, H q, T e)<$ $k \omega(p, q, e)$. Then S and H, T have a common fixed point.

Proof.

$E\left(G_{r}\right)=\{(p, q) \in \mathcal{M} \times \mathcal{M} 0<\omega(p, q, e)<$ $\epsilon\}$
The ϵ-chainability of (\mathcal{M}, ω) means G_{r} is connected.
If p, q, e, belong to the same path, $p, q, e \in$ $E\left(G_{r}\right)$, then
$\Omega(S p, H q, T e)<k \omega(p, q, e)<k \epsilon<\epsilon$
and using Lemma 1.12, for each $u \in S p$ we have the existence of $v \in H q \quad$ and $w \in T e$ such that $\omega(u, v, w)<\epsilon$ which implies u, v, w, belong to the same path $u, v, w \in$ $E\left(G_{r}\right)$. Hence S and H, T are G_{r}-contractive.
Also (\mathcal{M}, ω, g) has property (A). Indeed if $p_{j} \rightarrow$ p, then $\omega\left(p_{j}, p, p\right)<\epsilon$ for sufficiently j. therefore ${ }_{j}, p$, belong to the same path p_{j}, p, \in $E\left(G_{r}\right)$. So, by Theorem 2.7 (2); S and H, T have a common fixed point.

Theorem (2.11):

Let $S, H, T: \mathcal{M} \rightarrow C B(\mathcal{M})$ be G_{r}-contractive mappings and properties A, B hold. $\operatorname{Set} \mathcal{M}_{S}:=$ $\left\{p \in \mathcal{M}:(p, u, v) \in E\left(G_{r}\right)\right.$ for \quad some $u \in$ $S p, v \in S u\}$. Then the following hold:

1. For any $p \in S p, S, H,\left.T\right|_{\left[G_{r}\right]}$ has a common fixed point.
2. If $\mathcal{M}_{S} \neq \emptyset$ and G_{r} is weakly connected, then $\emptyset \neq$ Fix $F \cap$ Fix $H \cap$ FixT $\square \mathcal{M}$.
3. If $\mathcal{M}^{\prime}:=U\left\{[p]_{G_{r}}: p \in \mathcal{M}_{s}\right\}$, Fix $F \cap$ Fix $H \cap$ FixT $\left.\right|_{p} \neq \varnothing$.
4. If $S \subseteq E\left(G_{r}\right)$ then Fix $F \cap$ Fix $H \cap F i x T \neq \emptyset$.
5.If $\mathcal{M}_{S} \neq \varnothing$ then Fix $S \neq \emptyset$.

Proof. The parts 1-4 can be proved by putting $S=H$ in Theorem 2.7 and 5 obtained from the

Remark 2.8 We observe that the symmetric of $E\left(G_{r}\right)$ is not needed in Theorem 2.11.

REFERENCES

[1] S. B. Nadler, "Multivalued contraction mappings", Pacific Journal of Mathematics, 30(2), pp.475-488, 1969.
[2] S. Reich, "Some remarks concerning contraction mappings", Canadian Mathematical Bulletin, 14(1), pp.121-124, 1971.
[3] A. Azam, M. Arshad, " Fixed points of a sequence of locally contractive multivalued maps". Computers \& Mathematics with Applications, 57(1), pp.96-100, 2009.
[4] I. Beg, AR. Butt, " Fixed point of set-valued graph contractive mappings ", Journal of Inequalities and Applications, 2013(1), pp.1-7, 2013.
[5] I. Beg A. Butt, S. Radojević, " The contraction principle for set-valued mappings on a metric space with a graph ", Computers \& Mathematics with Applications, 60(5), pp.1214-1219,2010.
[6] D. Klim, D. Wardowski, " Fixed point theorems for set-valued contractions in complete metric spaces ". Journal of Mathematical Analysis and Applications, 334(1), pp.132-139, 2007.
[7] S.S.Abed, " Fixed point principles in general bmetric Spaces and b-Menger probabilistic spaces ", Journal of Al-Qadisiyah for Computer Science and Mathematics, 10(2), pp.42-53,2018.
[8] Z.Mustafa, A new structure for generalized metric spaces-with applications to fixed point theory. Ph.D. thesis, the University of Newcastle, Australia (2005)
[9] S. S. Abed, H.A. Jabbar, " Coupled points for total weakly contraction mappings via ρ distance", Int. J. Basic Appl. Sci, 5(3), pp.164-171,2016.
[10] S. S. Abed, " Approximating fixed points of the general asymptotic set-valued mappings", Journal of Advances in Mathematics, 18, pp.52-59,2020.
[11] A.N.Faraj, S.S.Abed, " Fixed points results in Gmetric spaces", Ibn AL-Haitham Journal For Pure And Applied Science, 32(1), pp.139-146, 2019.
[12] Sh. Q. Latif, S. S. Abed, " Types of fixed points of set-valued contraction conditions for comparable elements" , Iraqi Journal of Science, Special Issue ,190-195, 2020.
[13]J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society, 136(4), pp.1359-1373, 2008.

