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 الخلاصة
من النقاط الصامدة لتطبيقات أحادية القيمة من خلال تحديد شروط انكماشية تعرف على تلك  لقد قدم الباحثون بعض مبرهنات

النقاط في نفس المسار من رسم بياني معين. هنا، سوف يتم تعديل هذا الإجراء واستخدامها لإيجاد نقاط صامدة لتطبيقات 

 الكامل المرتب جزئيا. g-ء تحافظ على الترتيب في الفضا

 

INTRODUCTION  
For set-valued mappings, Nadler [1] presented one 

of the most important research on fixed points in 

complete metric space. Then, fixed point theorems 

for set-valued mappings were established in 

different directions due to Reich[2 ], Many other 

results can see in [3-8] In 2005, Mustafa [9] 

introduced 𝑔- metric spaces, as, a generalization 

of a metric space (X, d). Subsequently, many 

fixed point results on such spaces appeared in [10-

12]. Recently Jachymski [13] established a result 

of single-valued mapping in metric spaces with a 

graph instead of partial ordering. Beg and Butt [4-

5] obtained sufficient conditions about the 

existence of fixed points by a graph. This article 

aims to employ previous ideas to present fixed 

points and common fixed points for set-valued in 

𝑔 − metric spaces. These results relate to the 

content of the references [4-5, 13]. We begin with 

the following definition  

 

Definition (1.1) [8]:  
Let ℳ be a nonempty set and 𝜔: ℳ3→[0, ∞)be a 

satisfying the following condition: 

 1-𝜔(𝑝, 𝑞, 𝑒)=0 if and only if 𝑝 = 𝑞 = 𝑒. 

2-0< 𝜔(𝑝, 𝑝, 𝑞), ∀𝑝, 𝑞 ∈ ℳ with 𝑝 ≠ 𝑞. 

3- 𝜔(𝑝, 𝑝, 𝑞) ≤ 𝜔(𝑝, 𝑞, 𝑒) for all 𝑝, 𝑞, 𝑒 ∈
ℳ with q ≠ 𝑒. 
4- 𝜔(𝑝, 𝑞, 𝑒) = 𝜔(𝑝, 𝑒, 𝑞) = ⋯,(symmetryin all 

three variables). 

5- 𝜔(𝑝, 𝑞, 𝑒) ≤ 𝜔(𝑝, 𝑎, 𝑎) + 𝜔(𝑎, 𝑞, 𝑒)for 

all, 𝑞, 𝑒, 𝑎 ∈ ℳ. 

then the function 𝜔 is called generalized metric on 

ℳ and the pair (ℳ, 𝜔) is called a 𝑔 −metric 

space. 

 

Example (1.2) [9]:  
ℳ =𝑅+, with usual distance 𝑑(𝑝, 𝑞) =∣ 𝑝 − 𝑞∣, 
for all 𝑝, 𝑞 in ℳ. Define 𝜔:ℳ3 →𝑅+ 

𝜔 (𝑝, 𝑞, 𝑒) = |𝑝 − 𝑞| + |𝑞 − 𝑒| + |𝑒 −
𝑝| , for all 𝑝, 𝑞, 𝑒 ∈ ℳ. Then 𝜔is a 𝑔 −metric on 

ℳ.  

 

Definition (1.3) [11]:  
Let (ℳ,𝜔 ) be a 𝑔-metric space, then 𝜔 is called 

symmetric if 𝜔(𝑝, 𝑞, 𝑞) = 𝜔(𝑝, 𝑝, 𝑞) for all , 𝑞, 
∈  ℳ. 

http://creativecommons.org/licenses/by-nc/4.0/
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Example (1.4) [9]: 
Let ℳ = {𝑝, 𝑞}and𝜔(𝑝, 𝑝, 𝑝) = 𝜔(𝑞, 𝑞, 𝑞) =
0, 𝜔(𝑝, 𝑝, 𝑞) = 1, 𝜔(𝑝, 𝑞, 𝑞) = 2 and by symmetry 

expand 𝜔 to all of ℳ 𝑥 ℳ 𝑥 ℳ. Then 𝜔 is a 

𝑔 −metric, but 𝜔(𝑝, 𝑞, 𝑞) ≠ 𝜔(𝑝, 𝑝, 𝑞). 

 

Proposition (1.5) [12]:  
Let (ℳ, 𝜔 ) be a 𝑔 −metric space, then the 

following are equivalent:  

1- (ℳ,𝜔 ) is symmetric.  

2-𝜔(𝑝, 𝑞, 𝑞) ≤ 𝜔(𝑝, 𝑞, 𝑎), ∀𝑝, 𝑞, 𝑎 ∈ ℳ.  

3-

 𝜔(𝑝, 𝑞, 𝑒) ≤
𝜔(𝑝, 𝑞, 𝑎) + 𝜔(𝑒, 𝑝, 𝑏), ∀𝑝, 𝑞, 𝑒, 𝑎, 𝑏 ∈ ℳ. 

 

Definition (1.6) [11-8]:   

Let (ℳ, 𝜔)be a 𝑔 –metric space and {𝑟𝑗} be a 

sequence of points of ℳ, if there exist 𝐿 ∊  ℕ ∊>
0 𝑓𝑜𝑟 𝑗, 𝑖, 𝑙 ≥ 𝐿 then the sequence {𝑟𝑗} is said to 

be 

i) 𝜔 - convergent to 𝑟 if 𝜔 (𝑟, 𝑟𝑗 , 𝑟𝑖) <∊ for all 

𝑖 , 𝑗 ≥ 𝐿 That is lim𝑖,𝑗→∞ 𝜔 (𝑟, 𝑟𝑗, 𝑟𝑖) =0 as 𝑖 , 𝑗 

→ ∞.  
   ii)𝜔 – Cauchy if 𝜔(𝑟𝑗 , 𝑟𝑖, 𝑟𝑙) <∊ for all 𝑖 , 𝑗 , 𝑙 

≥ 𝐿.That is 𝜔(𝑟𝑗 , 𝑟𝑖, 𝑟𝑙) → 0 as 𝑖 , 𝑗 , 𝑙 → ∞. 

iii) A𝑔–metric space ( ℳ, 𝜔) is complete if every 

𝜔-Cauchy sequence is 𝜔-convergent in (ℳ, 𝜔). 

 

Proposition (1.7) [11]:  
Let (ℳ, 𝜔) be a 𝑔-metric space the following 

statements are equivalent 

i){𝑟𝑗} is 𝜔-convergent to r, if and only if 

𝜔(𝑟𝑗 , 𝑟𝑗 , 𝑟) → 0, 𝑎𝑠𝑗 → ∞. 

    ii)𝜔(𝑟𝑗 , 𝑟, 𝑟) → 0, 𝑎𝑠 𝑗 → ∞. if and only if 

𝜔(𝑟𝑗 , 𝑟𝑖, 𝑟) → 0, 𝑎𝑠 𝑗, 𝑖 → ∞. 

 

Remark (1.8) [9]:  

Every 𝑔 –metric (ℳ, 𝜔) on ℳ defines a metric 

𝑑𝜔 on ℳ given by  

𝑑𝜔 (𝑝, 𝑞 ) =  𝜔(𝑝, 𝑞, 𝑞) + 𝜔(𝑞, 𝑝, 𝑝) for all 𝑝, 𝑞 ∈ 

ℳ and  

𝜔(𝑝, 𝑞, 𝑒) = 𝑚𝑎𝑥{ ∣ 𝑝 − 𝑞 ∣, ∣ 𝑞 − 𝑒 ∣, ∣ 𝑒 − 𝑝 ∣}. 

 

Proposition (1.9) [9]:  
Let (ℳ,𝜔) be a𝑔 −metric space, then for any 

𝑝, 𝑞, 𝑒, and 𝑎 ∈ ℳ is following that 

1. 𝐼𝑓 𝜔( 𝑝 , 𝑞, 𝑒)  = 0 𝑡ℎ𝑎𝑛 𝑝 = 𝑞 = 𝑒. 

2. 𝜔( 𝑝 , 𝑞, 𝑒) ≤  𝜔( 𝑝 , 𝑝, 𝑞 ) +  𝜔( 𝑞 , 𝑞, 𝑒 ). 

3. 𝜔( 𝑝 , 𝑞, 𝑞) ≤ 2 𝜔( 𝑞 , 𝑝, 𝑝 ). 
4. 𝜔( 𝑝 , 𝑞, 𝑒 ) ≤  𝜔( 𝑝 , 𝑎, 𝑒 ) + 𝜔( 𝑎 , 𝑞, 𝑒 ). 
5. 𝜔( 𝑝 , 𝑞, 𝑒 ) ≤  2/3 ( 𝜔 𝑝 , 𝑞, 𝑎 ) +

𝜔( 𝑝 , 𝑎, 𝑒 ) +  𝜔( 𝑎 , 𝑞, 𝑒 )). 

6. 𝜔( 𝑝 , 𝑞, 𝑒 ) ≤  (𝜔( 𝑝 , 𝑎, 𝑎 ) + 𝜔( 𝑞 , 𝑎, 𝑎 ) +
𝜔( 𝑒 , 𝑎, 𝑎 )). 

 

Below, if (ℳ,𝜔) is a 𝑔-metric space, 2ℳ =
{𝐴: ∅ ≠ 𝐴 ⊂ ℳ} and 𝐶𝐵(ℳ) = {𝐴: ∅ ≠ 𝐴 ⊂
ℳ, 𝐴 is closed & bounded} and 𝐾(ℳ) =
{𝐴: ∅ ≠ 𝐴 ⊂ ℳ, 𝐴 is compact},  
 and 𝛺={The Hausdorff}. 

 

Definition (1.10) [1]:  
The point 𝑝 in ℳ is called a fixed point of the set-

valued mapping 𝑆: ℳ → 2ℳ if 𝑝 ∈ 𝑆𝑝 and 𝑝 is a 

fixed point of a single mapping 𝑆: ℳ → ℳ if 𝑝 

= 𝑆𝑝. 

 

Definition (1.11) [1]:  
The mapping 𝐻: ℳ3 → 𝑅+ is called the 

Hausdorff 𝑔 −distance on CB(ℳ), if 

𝛺(𝐴, 𝐵, 𝐶) = 𝑚𝑎𝑥{𝑠𝑢𝑝𝑝∈𝐴 𝜔(𝑝, 𝐵, 𝐶),𝑠𝑢𝑝𝑝∈𝐵 

𝜔(𝑝, 𝐶, 𝐴), 𝑠𝑢𝑝𝑝∈𝐶  𝜔(𝑝, 𝐴, 𝐵)}, 

where 𝜔(𝑝, 𝐵, 𝐶) = 𝑑𝜔(𝑝, 𝐵) + 𝑑𝜔(𝐵, 𝐶) +
 𝑑𝜔(𝑝, 𝐶), 𝑑𝜔(𝑝, 𝐵) = 𝑖𝑛𝑓{𝑑𝜔(𝑝, 𝑞), 𝑞 ∈ 𝐵}, 
𝑑𝜔(𝐴, 𝐵) = inf {𝑑𝜔(𝑎, 𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈
𝐵𝑎𝑛𝑑 𝐴, 𝐵, 𝐶 ∈ CB(ℳ),}. 

 

Lemma (1.12) [1]: 
i) If𝐴, 𝐵 ∈  𝐶𝐵(ℳ) with 𝛺(𝐴, 𝐵, 𝐵)< ɛ then 

∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 such that 𝜔(𝑎, 𝑏, 𝑏) < ɛ. 

ii) If𝐴, 𝐵 ∈  𝐶𝐵(ℳ) and 𝑎 ∈ 𝐴, then ∀ɛ > 0, ∃ 

𝑏 ∈ 𝐵 such that 𝜔(𝑎, 𝑏, 𝑏) ≤ 𝛺(𝐴, 𝐵, 𝐵) + ɛ.  

 

Lemma (1.13) [11]:  

i) If𝐴 ∈  𝐶𝐵(ℳ) and 𝐵 ∈  𝐾(ℳ) then ∀ 𝑎 ∈ 𝐴, 

∃ 𝑏 ∈ 𝐵 such that:𝜔(𝑎, 𝑏, 𝑏) ≤ 𝛺(𝐴, 𝐵, 𝐵). 
ii) Let {𝐴𝑗} be a sequence in 𝐶𝐵(ℳ) and 

lim𝑗→∞ 𝛺(𝐴𝑗, 𝐴, 𝐴) = 0 for 𝐴 ∈ 𝐶𝐵(ℳ).If𝑝𝑗 ∈ 𝐴𝑗  

and lim𝑗→∞ 𝜔(𝑝𝑗 , 𝑝, 𝑝) = 0, then 𝑝 ∈ 𝐴.  

 

Definition (1.14) [4-5]:  
Let 𝐺𝑟 be a graph with finite vertices denoted by 

𝑉(𝐺𝑟) and finite edges 𝐸(𝐺𝑟) of different pairs of 

different elements of 𝑉(𝐺𝑟). Also, 𝐺𝑟
−1

 denotes 

the converse of 𝐺𝑟) , which is obtained by 

reversing the direction of its edges. 
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Definition (1.15) [4-5]:  
A graph 𝐺𝑟

~
 is called directed if its edges are 

symmetric, then E(𝐺𝑟
~) ≔ 𝐸(𝐺𝑟) ∪ 𝐸(𝐺𝑟

−1). 

Definition (1.16) [5-4]:  
we say that 𝐻 is a subgraph of 𝐺𝑟if 𝑉(𝐻) ⊆
 𝑉 (𝐺𝑟) and 𝐸(𝐻)  ⊆  𝐸(𝐺𝑟). 

Definition (1.17) [4-5]:  
If each edge in 𝐺𝑟 has an associated weight 

function 𝑊: 𝐸(𝐺𝑟) → 𝑅 then 𝐺𝑟is called A 

weighted graph.  

Definition (1.18) [4-5]:  
Let 𝑝, 𝑞 ∈ 𝑉(𝐺𝑟). A path in 𝐺𝑟 from 𝑝 to 𝑞 of 

length 𝑗 (𝑗 ∈ 𝑁𝑈{0})is a sequence (𝑝𝑖)𝑖=0
𝑗

⊆

𝑉(𝐺𝑟) ∋ 𝑝0 =  𝑝, 𝑝𝑗 = 𝑞 and (𝑝𝑖−1, 𝑝𝑖) ∈  𝐸(𝐺𝑟), 

𝑖 =  1,2, . . . , 𝑗. 

Definition (1.19) [4-5]:  
The length of the path is the number of elements 

in 𝐸(𝐺𝑟). 

Definition (1.20) [4-5]:  
If there is a path between any two vertices of 𝐺𝑟 

then 𝐺𝑟 is called connected otherwise it is 

disconnected. Moreover, 𝐺𝑟is weakly connected if 

𝐺𝑟
~

 is connected. 

   Let 𝐺𝑟𝑝
 be the component of 𝐺𝑟, consisting of 

all edges and vertices which are contained in some 

path in𝐺𝑟beginning at 𝑝. Assume that𝐺 is such 

that 𝐸(𝐺𝑟) is symmetric, then The equivalence 

class [𝑝]𝐺𝑟
 defined on 𝑉(𝐺𝑟) by the rule 𝑅 (𝑢𝑅𝑣 if 

there is a path from 𝑢 to 𝑣) is 𝑉(𝐺𝑟𝑝
)=  [𝑝]𝐺𝑟

. 

See[13]. 

Jachymski [13] proved some fixed point results 

for the 𝐺𝑟-contraction mapping in a metric space 

endowed with a graph, and he stated the following 

results,  

 

Definition (1.21) [13]:  
Let ℳ be a complete metric space. A single-

valued mapping 𝑆: ℳ → ℳ is a Banach 𝐺𝑟-

contraction if (𝑝, 𝑞)  ∈  𝐸(𝐺𝑟) implies (𝑆𝑝, 𝑆𝑞)  ∈
 𝐸(𝐺𝑟), and ∀(𝑝, 𝑞)  ∈  𝐸(𝐺𝑟) ∃𝐾 ∈  (0, 1) ∋
 𝜔(𝑆𝑝, 𝑆𝑞)  < 𝑘𝜔(𝑝, 𝑞). 

 

property A: for any sequence (𝑝𝑗)𝑗∈𝑁 in ℳ, 

if𝑝𝑗  → 𝑝 and (𝑝𝑗, 𝑝𝑗+1) ∈ 𝐸(𝐺𝑟) for 𝑗 ∈  𝑁, then 

(𝑝𝑗 , 𝑝) ∈ 𝐸(𝐺𝑟).  

 

  By using Banach 𝐺𝑟-contraction, Jachymski 

proved that: 

 

Theorem (1.22) [13]: 
Let ℳ be a complete metric space with property 

A: for any sequence (𝑝𝑗)𝑗∈𝑁 in ℳ, if𝑝𝑗  → 𝑝 and 

(𝑝𝑗 , 𝑝𝑗+1) ∈ 𝐸(𝐺𝑟) for 𝑗 ∈  𝑁, then there is a 

subsequence (𝑝𝑘𝑗)𝑗∈𝑁 with (𝑝𝑘𝑗, 𝑝) ∈ 𝐸(𝐺𝑟) for 

𝑗 ∈  𝑁. Let 𝑆: ℳ →  ℳ be a 𝐺𝑟-

contraction and ℳ𝑆 ∶=  {𝑝 ∈ ℳ: (𝑝, 𝑆𝑝)  ∈
 𝐸(𝐺𝑟)}.  
 Then the following hold:  

1. card Fix 𝑆 = card{[𝑝]𝐺𝑟
~: 𝑝 ∈ ℳ𝑝 }. 

 2. Fix 𝑆 ≠ ∅ if and only if ℳ𝑆 ≠ ∅ . 
 3. 𝑆 has a unique fixed point iff there exists 𝑝0 ∈

ℳ𝑝 such thatℳ𝑆 ⊆  [𝑝0]𝐺𝑟
~. 

 4. For any 𝑝 ∈ ℳ𝑆, 𝑆|[𝑝0]𝐺𝑟
~  is a Picard operator. 

 5. If ℳ𝑆 ≠ ∅  and 𝐺𝑟 is a weakly connected, then 

𝑆 is a Picard operator. 

    

Beg and Butt [10] presented a version of 

Jachymski's Theorem for set-valued mappings as 

the following:  

 

Definition (1.23) [13]:  
Let ℳ be a complete metric space. The mapping: 

ℳ → 𝐶𝐵(ℳ) is said to be a 𝐺𝑟-contraction if 

∃𝑘 ∈  (0,1)  ∋ 𝛺 (𝑆𝑝 𝑆𝑞)  < 𝑘(𝑝, 𝑞) ∀(𝑝, 𝑞)  ∈
𝐸(𝐺𝑟) and if 𝑢 ∈  𝑆𝑝 and ∈  𝑆𝑞 ∋ 𝜔 (𝑢, 𝑣)  <
 𝑘𝜔 (𝑝, 𝑞)  +  𝛼, ∀ 𝛼 > 0 then (𝑢, 𝑣)  ∈  𝐸(𝐺𝑟). 

 

Theorem (1.24) [13]: 
Let ℳbe a complete metric space with property 

(A). Let𝑆: ℳ →  𝐶𝐵(ℳ) be a 𝐺𝑟-

contraction and ℳ𝑆 ∶=  {𝑝 ∈ ℳ: (𝑝, 𝑢)  ∈  𝐸(𝐺𝑟) 

for some 𝑢 ∈  𝑆𝑝}, then the following hold:  

1. For any 𝑝 ∈ ℳ𝑆, 𝑆|[𝑝]𝐺𝑟
~has a fixed point. 

 2. If ℳ𝑠 ≠ ∅ 𝑎𝑛𝑑 𝐺𝑟 is weakly connected, then 𝑆 

has a fixed point in ℳ. 

 3. If 𝑆′: =  𝑈{[𝑝]𝐺𝑟
~: 𝑝 ∈  ℳ𝑆}, then 𝑆 ∣p′ has a 

fixed point. 

4. If 𝑆 ⊆  𝐸(𝐺𝑟) then 𝑆 has a fixed point. 

 5. Fix𝑆 ≠ ∅ ⇔ℳ𝑆 ≠ ∅. 

MAIN RESULTS 
Let (ℳ, 𝜔) is a complete𝑔 − metric space and 𝐺𝑟 

is a directed and weighted graph with 𝐸(𝐺𝑟) is 

http://creativecommons.org/licenses/by-nc/4.0/
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symmetric such that 𝐸(𝐺𝑟) contains all loops, i.e., 

∆ ⊆ 𝐸(𝐺𝑟), where ∆ denote the diagonal of the 

Cartesian product ℳ × ℳ. 

 

Definition (2.1): 
 Let 𝑆: ℳ → 𝐶𝐵(ℳ) be a set-valued mapping. 𝑆 

is called a 𝐺𝑟-contraction if 𝑆 preserves edges of 

𝐺𝑟, i.e.,  

           ∀𝑝, 𝑞 ∈ ℳ, (𝑝, 𝑞) ∈  𝐸(𝐺𝑟) ⇒(𝑆𝑝, 𝑆𝑞) ∈
 𝐸(𝐺𝑟)  

And ∃𝑘 ∈  (0, 1)  ∋ 𝛺(𝑆𝑝, 𝑆𝑞, 𝑆𝑒) ≤
𝑘𝜔(𝑝, 𝑞, 𝑒), ∀𝑝, 𝑞 and 𝑒 belong to the same path. 

Metaphorically, it can be the expression like the 

following: 𝑝, 𝑞 and 𝑒 belong to (𝐺𝑟) .   

 

Definition (2.2): 
The mapping 𝑆: ℳ → 𝐶𝐵(ℳ) is said to be a 𝐺𝑟-

contraction if there exists a 𝑘 ∈  (0,1) such that 

𝛺 (𝑆𝑝 𝑆𝑞, 𝑆𝑒)  ≤ 𝑘(𝑝, 𝑞, 𝑒) for all (𝑝, 𝑞, 𝑒)  ∈
𝐸(𝐺𝑟).  

 

Definition (2.3): 
 Let (ℳ, 𝜔) be a 𝑔 − metric space and 

𝑆, 𝐻, 𝑇: ℳ →  𝐶𝐵(ℳ). The mappings 𝑆, 𝐻, 𝑇 are 

said to be 𝐺𝑟 -contractive if there exists 𝑘 ∈
(0, 1) such that (𝑝 ≠ 𝑞 ≠ 𝑒), (𝑝, 𝑞, 𝑒) ∈ ℳ then 

𝛺(𝑆𝑝, 𝐻𝑞, 𝑇𝑒) <  𝑘𝜔(𝑝, 𝑞, 𝑒), and 𝑢 ∈  𝑆𝑝 and 

𝑣 ∈ 𝐻𝑞,𝑤 ∈ 𝑇𝑒 with 𝜔 (𝑢, 𝑣, 𝑤) ≤
𝑘𝜔(𝑝, 𝑞, 𝑒) the𝑛(𝑢, 𝑣, 𝑤) ∈  𝐸(𝐺𝑟). 
The symmetry of 𝛺 and 𝜔 implies the following: 

 

Proposition (2.4): 
 If 𝑆 ∶  ℳ →  𝐶𝐵(ℳ) is a 𝐺𝑟-contraction then 𝑆 

is also a 𝐺𝑟
−1 − contraction. 

The following property is needed 

 

Property (B): 
 If 𝑢 ∈  𝑆𝑝, 𝑣 ∈  𝑆𝑞 and 𝑤 ∈ 𝑆𝑒 ∋ 𝜔 (𝑢, 𝑣, 𝑒)  <
 𝑘𝜔 (𝑝, 𝑞, 𝑒)  +  𝛼, ∀𝛼 > 0 then 𝑢, 𝑣 and 𝑤 belong 

to the path of length 2. 

 

Theorem (2.5):  
Suppose that the triple (ℳ, 𝜔, 𝐺𝑟) has the 

properties (A-B). Let 𝑆: ℳ →  𝐶𝐵(ℳ) be a 𝐺𝑟-

contraction and ℳ𝑆 ∶=  {𝑝 ∈ ℳ: (𝑝, 𝑢, 𝑣)  ∈
 𝐸(𝐺𝑟) for some 𝑢 ∈  𝑆𝑝, 𝑣 ∈ 𝑆𝑢 }. 

 Then the following hold:  

1. For any 𝑝 ∈ ℳ𝑆, 𝑆|[𝑝]𝐺𝑟
~has a fixed point. 

 2. If ℳ𝑠 ≠ ∅ 𝑎𝑛𝑑 𝐺𝑟 is weakly connected, then 𝑆 

Fix𝑆 ≠ ∅⸦ ℳ. 

 3. If 𝑆′: =  𝑈{[𝑝]𝐺𝑟
~: 𝑝 ∈  ℳ𝑆}, then Fix 𝑆 ∣p

'
 ≠. ∅ 

4. If 𝑆 ⊆  𝐸(𝐺𝑟) then Fix 𝑆 ≠ ∅. 
 5. Fix𝑆 ≠ ∅ ⇔ ℳ𝑆 ≠ ∅. 

 Proof: 1. Let𝑝0  ∈ ℳ𝑆then there exists 𝑝1 

∈ 𝑆𝑝0, 𝑝2 ∈ 𝑆𝑝1 such that 𝑝0, 𝑝1, 𝑝2 belong 

 to the same path, metaphorically, 𝑝0, 𝑝1, 𝑝2 ∈
 𝐸(𝐺𝑟). Since 𝑆 is 𝐺𝑟-contraction, we have        

𝛺 (𝑆𝑝0, 𝑆𝑝1, 𝑆𝑝2) ≤ 𝑘𝜔(𝑝0, 𝑝1, 𝑝2). 
Using Lemma1.12,and property (B), we have the 

existence of an 𝑝3 ∈  𝐸(𝐺𝑟)  such that 

 𝜔(𝑝1, 𝑝2, 𝑝3) ≤  𝛺(𝑆𝑝0, 𝑆𝑝1, 𝑆𝑝2) +𝑘 ≤
𝑘 𝜔(𝑝0, 𝑝1, 𝑝2) +𝑘 . (1) 

 Again let 𝑝1 ∈ 𝑆𝑝0, 𝑝2 ∈ 𝑆𝑝1, 𝑝3  ∈  𝑆𝑝2, such 

that 𝑝1, 𝑝2, 𝑝3 belong to the same path, 𝑝1, 𝑝2, 𝑝3 

∈ 𝐸(𝐺𝑟). Since 𝑆 is 𝐺𝑟-contraction, we have 

𝛺(𝑆𝑝1, 𝑆𝑝2, 𝑆𝑝3) ≤  𝑘𝜔(𝑝0, 𝑝1, 𝑝2) 

Also, by property (B), we have the existence of an 

𝑝4 ∈  𝐸(𝐺𝑟)  such that  

𝜔(𝑝2, 𝑝3, 𝑝4) ≤  𝛺(𝑆𝑝1, 𝑆𝑝2, 𝑆𝑝3)+ 𝑘² (2)  

Using (1) in (2), we obtain 

𝜔(𝑝2, 𝑝3, 𝑝4) ≤  𝑘² 𝜔(𝑝0, 𝑝1, 𝑝2) + 2𝑘²  (3)    

Continuing in this way we have 𝑝𝑗+1 ∈ 𝐸(𝐺𝑟) and 

𝜔(𝑝𝑗, 𝑝𝑗+1, 𝑝𝑗+1) ≤ 𝑘𝑗  𝜔(𝑝0, 𝑝1, 𝑝2) +  𝑗𝑘𝑗  (4)   

Now, we prove that {𝑝𝑗} is 𝑔 − Cauchy sequence 

in ℳ. 

∑ 𝜔 (𝑝𝑗 , 𝑝𝑗+1, 𝑝𝑗+2) ≤ 𝜔(𝑝0, 𝑝1, 𝑝2) ∑ 𝑘𝑗 +∞
𝑗=0

∞
𝑗=0

∑ 𝑘𝑗 < ∞∞
𝑗=0 .  

 Thus {𝑝𝑗} is a 𝑔 − Cauchy sequence. By 

completeness, it converges to 𝑝 in ℳ. 

 The next step is devoted to showing that 𝑝 is a 

fixed point of 𝑆. By applying property (A) and 𝐺𝑟-

contractivaty of S, we have Ω (𝑆𝑝𝑗, 𝑆𝑝, 𝑆𝑝)≤

 𝑘ω(𝑝𝑗, 𝑝, 𝑝). Since 𝑝𝑗+1 ∈  𝑆𝑝𝑗and𝑝𝑗 →  𝑝, 

therefore by Lemma 1.13, 𝑝 ∈ 𝑆𝑝. So,  ( 𝑝𝑗 , 𝑝) 

∈  𝐸(𝐺𝑟)for 𝑗 ∈  𝑁, we infer that (𝑝0, 𝑝1, .... 𝑝𝑗, 

𝑝) is a path in 𝐺𝑟 and so 𝑝 ∈ [𝑝0]𝐺𝑟
~ . 

2. Sinceℳ𝑆 ≠ ∅, ∃𝑝0 ∈ ℳ𝑆. And 𝐺𝑟 is weakly 

connected, thus [𝑝0]𝐺𝑟
~ = ℳ and by part 1, 𝑆 has 

a fixed point. 

 3. From 1 and 2, it holds. 

4. 𝑆 ⊆  𝐸(𝐺𝑟) ⇒ for all ∈ ℳ 

𝑢 ∈
𝑆𝑝 and 𝑝 ,
𝑢, belong to the same path, metaphorically,

𝑝, 𝑢, ∈ 𝐸(𝐺𝑟) soℳ𝑆 = ℳand by 2 and 3, 𝑆 has a 

fixed point 

5. Let Fix𝑆 ≠ ∅⇒∃𝑝 ∈Fix𝑆 ∋ 𝑝 ∈ 𝑆𝑝.As ∆⊆
 𝐸(𝐺𝑟); so, (𝑝, 𝑝, 𝑝)  ∈  𝐸(𝐺𝑟) ⇒ 𝑝 ∈  ℳ𝑆. So ℳ𝑆 
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≠ ∅. Conversely, ifℳ𝑆 ≠ ∅then Fix𝑆 ≠ ∅ follows 

from 2 and 3. 

Corollary (2.6): 
 Let (ℳ, 𝜔, 𝑔) have the property A and 𝐺𝑟 is 

weakly connected then every 𝐺𝑟-contraction 

𝑆 ∶  ℳ →  𝐶𝐵(ℳ)  ∋ 𝑝0, 𝑝1, belong 

to the same path, metaphorically, 𝑝0, 𝑝1, ∈
 𝐸(𝐺𝑟). For some𝑝1 ∈ 𝑆𝑝0 has a fixed point. 

 

Theorem (2.7): 
 Let 𝑆, 𝐻, 𝑇: ℳ →  𝐶𝐵(ℳ)be 𝐺𝑟 -contractive 

with properties A, B. Set  ℳ𝑆 ∶=  {𝑝 ∈
ℳ: (𝑝, 𝑢, 𝑣)  ∈  𝐸(𝐺𝑟) for some 𝑢 ∈  𝑆𝑝, 𝑣 ∈ 𝑆𝑢}. 

Then the following hold:  

1. For any 𝑝 ∈ 𝑆𝑝, 𝑆, 𝐻, 𝑇│[𝑝]𝐺𝑟
have a common 

fixed point.  

2. If ℳ𝑆 ≠ ∅ and 𝐺𝑟 is weakly connected, 

then 𝐹, 𝐻, 𝑇 have a common fixed point in ℳ. 

 3. If ℳ′: =  𝑈{[𝑝]𝐺𝑟
: 𝑝 ∈  ℳ𝑆}, then𝐹𝑖𝑥 𝐹 ∩

𝐹𝑖𝑥 𝐻 ∩ 𝐹𝑖𝑥𝑇 ∣p'≠ ∅. 
 4. If 𝑆 ⊆  𝐸(𝐺𝑟) then 𝐹𝑖𝑥 𝐹 ∩ 𝐹𝑖𝑥 𝐻 ∩ 𝐹𝑖𝑥𝑇 ≠ ∅ 

Proof.  

1. Let𝑝0 ∈ ℳ𝑆then there exists 𝑝1  ∈ 𝑆𝑝0 and 𝑝2 ∈
𝐻𝑝1, such that 𝑝0, 𝑝1, , 𝑝2belong to the same path 

of length 2, metaphorically, 𝑝0, 𝑝1, , 𝑝2 ∈  𝐸(𝐺𝑟). 

Since 𝑆, 𝐻, 𝑇 are 𝐺𝑟-contractive, we have 

𝛺 (𝑆𝑝0, 𝐻𝑝1, 𝑇𝑝2) ≤ 𝑘ω(𝑝0, 𝑝1, 𝑝2). 
Using Lemma 1.12, and property (B), we have the 

existence of 𝑝3 ∈ 𝑇𝑝2such that  

𝛺 (𝑝1, 𝑝2, 𝑝3) < 𝑘𝜔 (𝑝0, 𝑝1, 𝑝2)                           
(5)                                             

Again let 𝑝1 ∈ 𝑆𝑝0, 𝑝2 ∈ 𝑆𝑝1, 𝑝3  ∈  𝑆𝑝2, such that 

𝑝1, 𝑝2, 𝑝3 belong to the same path, 𝑝1, 𝑝2, 𝑝3 

∈  𝐸(𝐺𝑟). Since𝑆, 𝐻, 𝑇 is 𝐺𝑟-contraction and since 

𝐸(𝐺𝑟) is symmetric, we have 

 𝛺 (𝑆𝑝2, 𝐻𝑝1, 𝑇𝑝0)  <  𝑘𝜔(𝑝1, 𝑝2, 𝑝3)  
<  𝑘²𝜔(𝑝0, 𝑝1, 𝑝2). 

 Lemma 1.12gives the existence of 𝑝4∈ 𝑆𝑝3such 

that 

𝜔(𝑝2, 𝑝3, 𝑝4)  <  𝑘² 𝜔(𝑝0, 𝑝1, 𝑝2)   (6) 

Continuing in this way we have𝑝2𝑗+1 ∈  𝑆𝑝2𝑗 and 

𝑝2𝑗+2 ∈ 𝐻𝑝2𝑗+1, and 𝑝2𝑗+3 ∈ 𝑇𝑝2𝑗+2, 𝑗 =

 0, 1, 2.. Also 𝑝2𝑗+1, 𝑝2𝑗+2, 𝑝2𝑗+3 belong to the 

same path of length 2, metaphorically, 

𝑝2𝑗+1, 𝑝2𝑗+2, 𝑝2𝑗+3 ∈  𝐸(𝐺𝑟) such that 

𝜔(𝑝𝑗, 𝑝𝑗+1, 𝑝𝑗+2) <  𝑘𝑗  𝜔(𝑝0, 𝑝1, 𝑝2)  (7)       

 Next, we will show that {𝑝𝑗} is a𝑔-Cauchy 

sequence in ℳ. Let 𝑖 >  𝑗. Then 

𝜔(𝑝𝑗, 𝑝𝑖, 𝑝𝑖) ≤ 𝜔(𝑝𝑗, 𝑝𝑗+1, 𝑝𝑗+1)

+ 𝜔(𝑝𝑗+1, 𝑝𝑗+2, 𝑝𝑖+2)

+ ⋯ 𝜔(𝑝𝑖−1, 𝑝𝑖, 𝑝𝑖)   
                < [𝑘𝑗 + 𝑘𝑗+1 + ⋯ + 𝑘𝑖−1]𝜔(𝑝0, 𝑝1, 𝑝1) 

                = 𝑘𝑗[1 + 𝑘𝑗 + ⋯ + 𝑘𝑖]𝜔(𝑝0, 𝑝1, 𝑝1) 

                = 𝑘𝑗[1 − 𝑘𝑖−𝑗/1 − 𝑘]𝜔(𝑝0, 𝑝1, 𝑝1). 

 Because 𝑘 ∊ (0, 1), 1 – 𝑘𝑖−𝑗 < 1.                                                    

Therefore 𝜔(𝑝𝑗, 𝑝𝑖, 𝑝𝑖) →  0 as 𝑗 → ∞⇒{𝑝𝑗} is 

a 𝑔 − Cauchy sequence, ⇒converges to 𝑝 ∈ ℳ.    

To show that 𝑝 ∈ 𝑆𝑝 ∩ H𝑝 ∩ 𝑇𝑝. For j even: By 

(A-B), 𝑝𝑗, 𝑝 belong to the same path, 𝑝𝑗 , 𝑝 ∈

 𝐸(𝐺𝑟). Therefore using 

𝐺𝑟 − contractivity, we have 

𝛺 (𝑆𝑝𝑗 , 𝐻𝑝, 𝑇𝑝)  <  𝑘𝜔(𝑝𝑗, 𝑝, 𝑝). 

 Since 𝑝𝑗+1  ∈ 𝑆𝑝𝑗 , 𝑎𝑛𝑑 𝑝𝑗 →  𝑝. by Lemma 

1.13 ⇒ 𝐻𝑝, 𝑝 ∈ 𝑇𝑝. For 𝑗 odd: 
 As 𝑝𝑗 , 𝑝, belong to the same path 𝑝𝑗 , 𝑝 ∈

 𝐸(𝐺𝑟),                    𝛺(𝑆𝑝, 𝐻𝑝, 𝑇𝑝)  <
 𝑘𝜔(𝑝, 𝑝𝑗, 𝑝𝑗 ) 

Hence, the same arguments as above 𝑝 ∈ 𝑆𝑝. 

 Next as 𝑝𝑗 , 𝑝𝑗+1 belong to the same path 𝑝𝑗 

, 𝑝𝑗+1  ∈  𝐸(𝐺𝑟) also 𝑝𝑗, 𝑝 

belong to the same path 𝑝𝑗 , 𝑝, ∈  𝐸(𝐺𝑟), for 

𝑗 ∈ 𝑁. We infer that (𝑝0, 𝑝1, . . . . 𝑝𝑗 , 𝑝) is a path in 

𝐺𝑟 and so 𝑝 ∈  [𝑝0]𝐺𝑟
. 

 2. Since ℳ𝑆 ≠ ∅, ⇒∃ 𝑝0 ∈ ℳ𝑆and since 𝐺𝑟 is 

weakly connected then [𝑝0]𝐺𝑟
 =  ℳand by 1, 

mappings 𝑆 and 𝐻, 𝑇 have a common fixed point 

in ℳ. 

 3. It follows from parts 1 and 2. 

 4. 𝑆 ⊆  𝐶 𝐸(𝐺𝑟) ⇒ all 𝑝 ∈ ℳbe such that there 

exists some 𝑢 ∈ 𝑆𝑝 belong to the same path 

𝑝, 𝑢 ∈  𝐸(𝐺𝑟) so ℳ𝑆 = ℳand by 2 and 3.𝑆, 

𝐻, 𝑇 have a fixed point. 

 

Remark (2.8):  
Replace ℳ𝑆 by ℳ𝐻: =  {𝑝 ∈ ℳ: (𝑝, 𝑢, 𝑣)  ∈
 𝐸(𝐺𝑟) for some 𝑢 ∈  𝐻𝑝, 𝑣 ∈ 𝐻𝑢}in conditions 

1-3 of Theorem 2.7, the conclusion remains true. 

That is if ℳ𝑆𝑈ℳ𝐻𝑈ℳ𝑇 then getting 

Fix𝑆 ∩Fix𝐻 ∩ Fix𝑇 ≠ ∅ which follows easily 

from 1-3. Similarly, in condition 4 we can replace 

𝑆 ⊆  𝐸(𝐺𝑟) by 𝐻 ⊆  𝐸(𝐺𝑟). 
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Corollary (2.9):  
Let the triple (ℳ, 𝜔, 𝑔) have the property (A). If 

𝐺𝑟  is weakly connected then 𝐺𝑟-contractive 

mappings 𝑆, 𝐻, 𝑇 ∶  ℳ →  𝐶𝐵(ℳ) such that (𝑝0, 

𝑝1, 𝑝2) for some 𝑝1 ∈ 𝑆𝑝0has a common fixed 

point 

 

Corollary (2.10): 
Let (ℳ, 𝜔) be a ɛ-chainable complete 𝑔 − metric 

space for someε >  0. Let S, 𝐻, 𝑇: ℳ →
 𝐶𝐵(ℳ)be such that there exists 𝑘 ∈ (0, 1) with 

0 <  𝜔(𝑝, 𝑞, 𝑒)  < 𝜖 =  𝛺(𝑆𝑝, 𝐻𝑞, 𝑇𝑒) <
 𝑘𝜔(𝑝, 𝑞, 𝑒). Then 𝑆 and 𝐻, 𝑇 have a common 

fixed point. 

 Proof. 

𝐸(𝐺𝑟)  =  {(𝑝, 𝑞) ∈  ℳ × ℳ 0 <  𝜔(𝑝, 𝑞, 𝑒)  <
𝜖}       (8) 

 The 𝜖-chainability of (ℳ, 𝜔) means 𝐺𝑟 is 

connected. 

If 𝑝, 𝑞, 𝑒, belong to the same path, 𝑝, 𝑞, 𝑒 ∈
 𝐸(𝐺𝑟), then 

 𝛺(𝑆𝑝, 𝐻𝑞, 𝑇𝑒) < 𝑘𝜔(𝑝, 𝑞, 𝑒) < 𝑘𝜖 < 𝜖  

and using Lemma 1.12, for each 𝑢 ∈  𝑆𝑝 we have 

the existence of 𝑣 ∈  𝐻𝑞 and 𝑤 ∈ 𝑇𝑒 such 

that 𝜔(𝑢, 𝑣, 𝑤)  <  𝜖 which 

implies 𝑢, 𝑣, 𝑤, belong to the same path𝑢, 𝑣, 𝑤 ∈
 𝐸(𝐺𝑟). Hence 𝑆 and 𝐻 , 𝑇 are 𝐺𝑟-contractive. 

Also (ℳ, 𝜔, 𝑔) has property (A). Indeed if 𝑝𝑗 → 

𝑝, then 𝜔(𝑝𝑗, 𝑝, 𝑝)  <  𝜖 for sufficiently 𝑗. 

therefore𝑝𝑗 , 𝑝, belong to the same path 𝑝𝑗, 𝑝, ∈

 𝐸(𝐺𝑟). So, by Theorem 2.7 (2); 𝑆 and 𝐻, 𝑇 have a 

common fixed point. 

 

Theorem (2.11):  
Let 𝑆, 𝐻, 𝑇 ∶  ℳ →  𝐶𝐵(ℳ)be 𝐺𝑟 -contractive 

mappings and properties A, B hold. Setℳ𝑆: =
 {𝑝 ∈ ℳ: (𝑝, 𝑢, 𝑣)  ∈  𝐸(𝐺𝑟) for some𝑢 ∈
𝑆𝑝, 𝑣 ∈ 𝑆𝑢}. Then the following hold: 

 1. For any 𝑝 ∈ 𝑆𝑝, 𝑆, 𝐻, 𝑇|[𝐺𝑟] has a common 

fixed point.  

2. If ℳ𝑆 ≠ ∅ and𝐺𝑟 is weakly connected, then ∅ ≠
𝐹𝑖𝑥 𝐹 ∩ 𝐹𝑖𝑥 𝐻 ∩ 𝐹𝑖𝑥𝑇⸦ ℳ. 

 3. If ℳ′: =  𝑈{[𝑝]𝐺𝑟
: 𝑝 ∈  ℳ𝑆}, 𝐹𝑖𝑥 𝐹 ∩ 𝐹𝑖𝑥 𝐻 ∩

𝐹𝑖𝑥𝑇 ∣p'≠ ∅. 

 4. If 𝑆 ⊆  𝐸(𝐺𝑟) then 𝐹𝑖𝑥 𝐹 ∩ 𝐹𝑖𝑥 𝐻 ∩ 𝐹𝑖𝑥𝑇 ≠ ∅. 

5.If ℳ𝑆 ≠ ∅then Fix𝑆 ≠ ∅.  

Proof. The parts 1-4 can be proved by putting 

𝑆 =  𝐻 in Theorem 2.7 and 5 obtained from the 

Remark 2.8 We observe that the symmetric of 

𝐸(𝐺𝑟) is not needed in Theorem 2.11. 
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