$\mathcal{M}L(\theta C)$ -Space in Topological Spaces

Nadia A. Nadhim^{1*}, Haider J. Ali², Rasha N. Majeed³

¹ Department of Mathematics, Faculty of Education for pure sciences, University of AL-Anbar, IRAQ ² Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, IRAQ. ³ Department of Mathematics, Faculty of Education for pure sciences Abn AL-Haitham, University of Baghdad, IRAQ. *Correspondent author email: <u>na8496292@gmail.com</u>

ArticleInfo

ABSTRACT

Received 20/08/2019

Accepted 03/11/2019

Published 01/03/2020

The purpose of this paper is to introduced a new concept of spaces which is called minimal $L(\theta C)$ -space, namely $\mathcal{M}inL(\theta C)$ -space or $\mathcal{M}L(\theta C)$ -space, also given some properties, examples, theorems and the topological property of $\mathcal{M}inL(\theta C)$ -space are discussed.

KEYWORDS: θ -closed set, Lindelof, , $L(\theta C)$ -space, $\mathcal{M}in\theta T_2$ -space, $\mathcal{M}in\mathcal{K}(\theta C)$ -space

الخلاصة

الهدف من هذا البحث هو تقديم مفهوم جديد وهو فضاء space-space ونرمز له inL(θC) – space ونرمز له inL(θC) – space و ML(θC)-space وكدلك اعطينا بعض الامثلة, النظريات و الخاصية التوبولوجية نوقشت.

INTRODUCTION

The concept of Lindelof space was introduced in 1929 by Alexandrof and Urysohn [2], this space is an important in a topological space. Later, in 1979 Mukherji and Sarkar [10], provide the concept of *LC*-space. (A topological space \mathcal{X} is called *LC*-space, if every Lindelof subset of a space \mathcal{X} is a closed set). *LC*-space studied by many researchers such as [3].

Notices that LC-space is also know under the name L-closed such as [6, 9, 13].

The concept of θ -closed and θ -open set were first introduced by Velicko [16] in 1969. (Let $(\mathcal{X}, \mathcal{T})$ be a topological space, \mathcal{F} be a subset of \mathcal{X} and $x \in \mathcal{X}$. A point x is called θ -interior point of \mathcal{F} , if there is $C \in T$, such that $x \in C$ and $x \in \overline{C} \subseteq F$. θ -interior set which denoted by $Int_{\theta}(\mathcal{F})$ is the set of all θ interior points. A subset \mathcal{F} of \mathcal{X} is called θ -open set iff $Int_{\theta}(\mathcal{F}) = \mathcal{F}$. And (Let $(\mathcal{X}, \mathcal{T})$ be topological space, $H \subseteq X$, a point $b \in X$ is said to be θ -adherent point for a subset H of \mathcal{X} , if $H \cap \overline{G} \neq \emptyset$ for any open set G of X and $b \in G$. The set of θ -adherent points is said to be θ -closure of *H* which denoted by $Cl_{\theta}(H)$. A subset *H* of \mathcal{X} is called θ -closed set iff $H = Cl_{\theta}(H)$). These concepts have been studied by many authors such as [8, 12]. In 2011, Al-Taai and Haider [4], study

the new term called $L(\theta C)$ -space. (A topological space \mathcal{X} is called $L(\theta C)$ -space, if every Lindelof subset of a space \mathcal{X} is θ -closed set), which is a strong than *LC*-space. And since the union of θ -closed set may be not θ -closed set. Encourage the author to define \mathcal{F}_{σ} - θ -closed set which is a countable union many θ -closed sets.

In 2005, H. J. Ali [3], introduce Minimal *LC*-space, any *LC*-space $(\mathcal{X},\mathcal{T})$ is *MinLC*-space, if $\mathcal{T}^* \subset \mathcal{T}$ on \mathcal{X} , then $(\mathcal{X},\mathcal{T}^*)$ is not *LC*-space studied by [14, 15].

The aim of this paper is to introduce a minimal $L(\theta C)$ -space (denoted by $\mathcal{M}inL(\theta C)$ -space), that is a space \mathcal{X} which is $L(\theta C)$ -space is called $\mathcal{M}inL(\theta C)$ -space, if $\mathcal{T}^* \subset \mathcal{T}$ on \mathcal{X} , then $(\mathcal{X}, \mathcal{T}^*)$ is not $L(\theta C)$ -space. Note that every $\mathcal{M}inL(\theta C)$ space is $L(\theta C)$ -space, and study some properties of this space, also study the relation between this concept with $\mathcal{M}in\mathcal{K}(\theta C)$ -space and $\mathcal{M}in\theta \mathcal{T}_2$ space. Also study some important property such as, a topological property of $\mathcal{M}inL(\theta C)$ -space.

PRELIMINARIES

Definition (2.1) [5]: A space \mathcal{X} is called \mathcal{R}_1 -space, if e and d have a disjoint neighborhoods, whenever $Cl(e) \neq Cl(d)$.

Remark (2.2) [5]: A space \mathcal{X} is \mathcal{T}_2 -space iff \mathcal{X} is \mathcal{R}_1 and \mathcal{T}_1 -space.

Definition (2.3) [16]: Let $(\mathcal{X},\mathcal{T})$ be a topological space, \mathcal{F} be a subset of \mathcal{X} and $x \in \mathcal{X}$. A point x is called θ -interior point of \mathcal{F} , if there is $\mathcal{C} \in \mathcal{T}$, such that $x \in \mathcal{C}$ and $x \in \overline{\mathcal{C}} \subseteq \mathcal{F}$. θ -interior set which denoted by $Int_{\theta}(\mathcal{F})$ is the set of all θ -interior points. A subset \mathcal{F} of \mathcal{X} is called θ -open set iff $Int_{\theta}(\mathcal{F}) = \mathcal{F}$.

Definition (2.4) [16]: Let $(\mathcal{X}, \mathcal{T})$ be topological space, $H \subseteq \mathcal{X}$, a point $b \in X$ is said to be θ -adherent point for a subset H of \mathcal{X} , if $H \cap \overline{G} \neq \emptyset$ for any open set G of \mathcal{X} and $b \in G$. The set of θ -adherent points is said to be θ -closure of H which denoted by $Cl_{\theta}(H)$. A subset H of \mathcal{X} is called θ -closed set iff $H = Cl_{\theta}(H)$.

Example (2.5): Any subset of a discrete space (\mathcal{R},D) on a real numbers \mathcal{R} is θ -closed set and θ -open set.

Remark (2.6) [16]: Every θ -closed (resp. θ -open) set is a closed (resp. open) set.

Lemma (2.7) [3]: Let \mathcal{Y} be a subspace of a space \mathcal{X} . If \mathcal{P} is θ -closed in \mathcal{X} then \mathcal{P} is θ -closed in \mathcal{Y} , whenever $\mathcal{P}\subseteq \mathcal{Y}$.

Definition (2.8) [1, 4]: A subset \mathcal{F} of a space \mathcal{X} is said to be \mathcal{F}_{σ} - θ -closed, if it is a countable union of θ -closed sets. The complement of \mathcal{F}_{σ} - θ -closed is said to be G_{δ} - θ -open set.

Remark (2.9) [1]: Every θ -closed set is \mathcal{F}_{σ} - θ -closed set. But the converse need not be true.

Example (2.10): Let $(\mathcal{R}, \mathcal{T}_{\mathcal{U}})$ be a usual topology on a real line \mathcal{R} , and $G_n = [1/n, 1]$, where (n = 2, 3, 4, ...), be a θ -closed sets, then $\bigcup_{n=2}^{\infty} G_n = (0,1]$ is \mathcal{F}_{σ} - θ -closed, but neither closed nor θ -closed.

Definition (2.11) [1, 3, 4]: A space \mathcal{X} is said to be:

- 1. θP -space, if every \mathcal{F}_{σ} - θ -closed is θ -closed.
- *K*(*θC*)-space, if every compact subset of *X* is *θ*-closed set.
- L(θC)-space, if every Lindelof subset of X is θ-closed set.

Example (2.12): Let (Z, T_D) be a topological space where T_D be a discrete topology on an integer numbers Z, (Z, T_D) is $L(\theta C)$ -space.

Definition (2.13) [4]: A subset \mathcal{A} of a space \mathcal{X} is said to be θ -dense, if $Cl_{\theta}(\mathcal{A}) = \mathcal{X}$.

Proposition (2.14) [3]: The property of $L(\theta C)$ -space is a topological property.

Proposition (2.15) [3]: The property of $L(\theta C)$ -space is a hereditary property.

Theorem (2.16) [4]:

- 1. If a space \mathcal{X} is θL_1 -space and θL_3 -space, then \mathcal{X} is $L(\theta C)$ -space.
 - 2. Every θP -space is θL_1 -space.

Definition (2.17) [7]: A space \mathcal{X} is called $\theta \mathcal{T}_1$ (resp. \mathcal{T}_1)-space, if every two distinct points a, b

belong to \mathcal{X} , there is two θ -open (resp. open) sets each one contain one point but not contain the other.

Theorem (2.18) [7]: A space \mathcal{X} is called $\theta \mathcal{T}_1$ -space if and only if every singleton set is θ -closed set.

Definition (2.19) [7]: A space \mathcal{X} is called $\theta \mathcal{T}_2$ (resp. \mathcal{T}_2)-space, if every two points a, b belong to $\mathcal{X}, a \neq b$ there is two disjoint θ -open (resp. open) sets M and N containing a and b respectively.

Remarks (2.20):

- 1. Every $L(\theta C)$ -space is θT_1 -space.
- 2. Every θT_1 -space is T_1 -space.
- 3. Every $L(\theta C)$ -space is \mathcal{T}_1 -space.

Proof:

1. Let $\{x\}$ be a Lindelof subset of a space \mathcal{X} , for each $x \in \mathcal{X}$, which is $L(\theta C)$ -space, so $\{x\}$ is θ -closed set, then from Theorem (2.37), a space \mathcal{X} is θT_1 -space.

2. Let *a*, *b* be two distinct point in a space \mathcal{X} which is $\theta \mathcal{T}_1$ -space, so there exist two θ -open sets *G* and *H* containing *a*, *b* respectively with $a \notin H$ and $b \notin G$, from Remark 2.21, *G* and *H* are open set in \mathcal{X} , containing *a*, *b* respectively with $a \notin H$ and $b \notin G$, that means \mathcal{X} is \mathcal{T}_1 -space.

3. Let a space \mathcal{X} be $L(\theta C)$ -space, from part (1) of this Remark, \mathcal{X} is θT_1 -space and from part (2), \mathcal{X} is \mathcal{T}_1 -space.

Definition (2.21) [11]: A space \mathcal{X} is called $\theta \mathcal{R}_1$ -space, if *e* and *d* have a disjoint θ -neighbourhood, whenever $Cl_{\theta}(e) \neq Cl_{\theta}(d)$.

Remark (2.22) [11]: A space \mathcal{X} is $\theta \mathcal{T}_2$ -space iff \mathcal{X} is $\theta \mathcal{R}_1$ and $\theta \mathcal{T}_1$ -space.

Definition (2.23) [8]: Let $(\mathcal{X}, \mathcal{T})$ and $(\mathcal{Y}, \mathcal{T}')$ be two topological space and $f: (\mathcal{X}, \mathcal{T}) \to (\mathcal{Y}, \mathcal{T}')$ be a function. Then *f* is called:

- 1. θ -closed function [1], if f(F) is θ -closed set in \mathcal{Y} for each closed subset F of \mathcal{X} .
- Closed function [10], if f(F) is closed set in *Y* for each closed subset F of *X*.

Remark (2.24) [1]: Every θ -closed function is closed function.

Definition (2.25) [11]: Let $(\mathcal{X}, \mathcal{T})$ be $\mathcal{K}(\theta C)$ -space, a space \mathcal{X} is said to be $\mathcal{M}in\mathcal{K}(\theta C)$ -space, if $\mathcal{T}^* \subset \mathcal{T}$ on \mathcal{X} , then $(\mathcal{X}, \mathcal{T}^*)$ is not $\mathcal{K}(\theta C)$ -space.

Example (2.26): Let $(\mathcal{R}, \mathcal{T}_{\mathcal{U}})$ be a usual topology defined on the real numbers, $(\mathcal{R}, \mathcal{T}_{\mathcal{U}})$ is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Theorem (2.27) [11]: If a space \mathcal{X} is compact $\mathcal{K}(\theta C)$ -space, then it is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proposition (2.28) [11]: If a space \mathcal{X} is Locally compact, $\mathcal{K}(\theta C)$ -space then \mathcal{X} is θT_2 -space.

Definition (2.29) [11]: A space \mathcal{X} is $\theta \mathcal{T}_2$ -space, we say that \mathcal{X} is $\mathcal{M}in\theta \mathcal{T}_2$ -space, if there is $\mathcal{T}^* \subset \mathcal{T}$ on \mathcal{X} , then $(\mathcal{X}, \mathcal{T}^*)$ is not $\theta \mathcal{T}_2$ -space.

Theorem (2.30) [11]: If a space \mathcal{X} is $\theta \mathcal{T}_2$ and $\mathcal{M}in\mathcal{K}(\theta C)$ -space then \mathcal{X} is $\mathcal{M}in\theta \mathcal{T}_2$ -space.

$\mathcal{M}inL(\theta C)$ -Spaces

Definition (3.1): Let $(\mathcal{X}, \mathcal{T})$ be $L(\theta C)$ -space, a space \mathcal{X} is said to be $\mathcal{M}inL(\theta C)$ -space, if $\mathcal{T}^* \subset \mathcal{T}$ on \mathcal{X} , then $(\mathcal{X}, \mathcal{T}^*)$ is not $L(\theta C)$ -space.

Example (3.2): Let $(\mathcal{X}, \mathcal{T}_D)$ be a discrete topology defined on countable set \mathcal{X} , $(\mathcal{X}, \mathcal{T}_D)$ is $\mathcal{M}inL(\theta C)$ -space, since, if we take any subset \mathcal{H} of a space \mathcal{X} , which is countable then \mathcal{H} is countable, so \mathcal{H} is Lindelof, let $x \notin \mathcal{H}$, also $\{x\}$ is open set containing x, also $\overline{\{x\}} \cap \mathcal{H} = \emptyset$, so \mathcal{H} is θ -closed set and then \mathcal{X} is $L(\theta C)$ -space, also since $\mathcal{T}_{ind} \subset \mathcal{T}_D$, but \mathcal{T}_{ind} is not $L(\theta C)$ -space. Therefore \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Theorem (3.3): If a space \mathcal{X} is Lindelof $L(\theta C)$ -space, then it is $\mathcal{M}inL(\theta C)$ -space.

Proof: Let $(\mathcal{X}, \mathcal{T})$ be $L(\theta \mathcal{C})$ -space and suppose \mathcal{X} is not $\mathcal{M}inL(\theta \mathcal{C})$ -spac, that is there is a topology $\mathcal{T}^* \subset \mathcal{T}$ on \mathcal{X} and $(\mathcal{X}, \mathcal{T}^*)$ is $L(\theta \mathcal{C})$ -space. Let $I_x: (\mathcal{X}, \mathcal{T}) \to (\mathcal{X}, \mathcal{T}^*)$ be the identity function on \mathcal{X} . Now I_x is continuous, bijective and θ -closed function since (if \mathcal{N} is a closed subset of \mathcal{X} , and \mathcal{X} is Lindelof, so \mathcal{N} is Lindelof), also I_x is continuous, then $I_x(\mathcal{N})$ is Lindelof subset of $(\mathcal{X}, \mathcal{T}^*)$ which is $L(\theta \mathcal{C})$ -space, hence $I_x(\mathcal{N})$ is θ closed and then I_x is θ -closed function, by Remark 2.24, I_x is a closed function that is I_x is homeomorphism function, so $\mathcal{T}^* \cong \mathcal{T}$ and this is contradiction, so \mathcal{X} is $\mathcal{M}inL(\theta \mathcal{C})$ -space.

Example (3.4): Let $\mathcal{X} = \mathcal{R}$ be a real numbers, and $\mathcal{T}_{Exc} = \{ \mathcal{U} \subseteq \mathcal{R} : x \notin \mathcal{U}, \text{ for some } x \in \mathcal{R} \} \cup \{\mathcal{R}\}, \text{ be excluded point topology, } (\mathcal{R}, \mathcal{T}_{Exc}) \text{ is } \}$

not $\mathcal{M}in\mathcal{K}(\theta C)$ -space, since $(\mathcal{R}, \mathcal{T}_{Exc})$ is compact, so $(\mathcal{R}, \mathcal{T}_{Exc})$ is Lindelof, but not $L(\theta C)$ -space because, if we take x = 5 and $C = \{\{x\}\}_{x\neq 5} \cup \mathcal{R}$ is an open cover to \mathcal{R} , then we can reduce to just \mathcal{R} that is $(\mathcal{R}, \mathcal{T}_{Exc})$ is Lindelof, also $\{1, 5\}$ is finite set, then it is countable, so it is Lindelof set and $2 \notin \{1, 5\}$, so there is open set $\{2\}$ in \mathcal{R} and $\overline{\{2\}} = \{2,5\} \cap \{1,5\} \neq \emptyset$, then $2 \in \theta$ -adherent point, that is $\{1,5\}$ is not θ -closed set, hence $(\mathcal{R}, \mathcal{T}_{Exc})$ is not $L(\theta C)$ -space and from Theorem

space. **Corollary (3.5):** Every compact and $L(\theta C)$ -space is $\mathcal{M}inL(\theta C)$ -space.

3.3, this topological space is not $MinL(\theta C)$ -

Proof: From Theorem 3.3. And every compact space is Lindelof space.

Remark (3.6): The continuous image of $\mathcal{M}inL(\theta C)$ is not necessarily $\mathcal{M}inL(\theta C)$, the following example explain this Remark:

Example (3.7): Let $f: (\mathcal{R}, \mathcal{T}_D) \to (\mathcal{R}, \mathcal{T}_{ind})$ be a function from a discrete topology \mathcal{T}_D into indiscrete topology \mathcal{T}_{ind} , defined by $f(x) = x, \forall x \in \mathcal{R}$, so f is continuous and $(\mathcal{R}, \mathcal{T}_D)$ is $\mathcal{M}inL(\theta \mathcal{C})$, also $\mathcal{T}_{ind} \subset \mathcal{T}_D$, but $(\mathcal{R}, \mathcal{T}_{ind})$ is not $L\mathcal{C}$, implies that, it is not $L(\theta \mathcal{C})$. Therefore $(\mathcal{R}, \mathcal{T}_{ind})$ is not $\mathcal{M}inL(\theta \mathcal{C})$ -space.

Proposition (3.8): The property of being $\mathcal{M}inL(\theta C)$ -space is a topological property.

Proof: Let (X,\mathcal{T}) be $\mathcal{M}inL(\theta\mathcal{C})$ -space, $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ is a homeomorphism function, to prove (Y,\mathcal{T}') is $\mathcal{M}inL(\theta\mathcal{C})$ -space. Now from Proposition 2.14, (Y,\mathcal{T}') is $L(\theta\mathcal{C})$ space, suppose (Y,\mathcal{T}') is not $\mathcal{M}inL(\theta\mathcal{C})$ -space, then there is a topology $\mathcal{T}^* \subset \mathcal{T}'$ on Y, implies (Y,\mathcal{T}^*) is $L(\theta\mathcal{C})$ -space.

Define $\mathcal{T}_1 = \{ f^{-1}(\mathcal{U}) : \mathcal{U} \in \mathcal{T}^* \}$, so $(\mathcal{X}, \mathcal{T}_1)$ is a topology on $(\mathcal{X}, \mathcal{T})$ and $\mathcal{T}_1 \subset \mathcal{T}$ and $(\mathcal{X}, \mathcal{T}_1)$ is $L(\theta C)$ -space, (let S be a Lindelof subset of X, to prove S is θ -closed in X, since f is continuous and then we have f(S) is Lindelof set in \mathcal{Y} which is $L(\theta C)$ -space, then f(S) is θ -closed in $(\mathcal{Y}, \mathcal{T}^*)$, to show S is θ -closed set, that is to show S = $Cl_{\theta}(S)$, since $S \subseteq Cl_{\theta}(S)$, let $s \in Cl_{\theta}(S)$ and $s \notin S$, since f is injective, then $f(s) \notin f(S)$ and f is surjective, so $w \notin f(S)$ where w = f(s), but f(S)is θ -closed in \mathcal{Y} , then there is open set \mathcal{W} in \mathcal{Y} with $w \in \mathcal{W}$ and $\overline{\mathcal{W}} \cap f(\mathcal{S}) = \phi$, so $f^{-1}(\overline{\mathcal{W}} \cap$ $f(\mathcal{S})) = f^{-1}(\phi) = \phi,$ $f^{-1}(\overline{\mathcal{W}}) \cap$ and $f^{-1}(f(\mathcal{S})) = \phi$, then $f^{-1}(\overline{\mathcal{W}}) \cap \mathcal{S} = \phi$, since f is

homeomorphism, then $\overline{f^{-1}(W)} \cap S = \phi$, we have s is not θ -adherent point to S. Therefore S is θ closed in X), which is contradiction, since X is $\mathcal{M}inL(\theta C)$ -space. Hence $(\mathcal{Y}, \mathcal{T}')$ is $\mathcal{M}inL(\theta C)$ -space.

Lemma (3.9): In Lindelof space, any θ -closed set is Lindelof set.

Proof: Let \mathcal{X} be a Lindelof space and \mathcal{A} be θ -closed subset of \mathcal{X} . From Remark 2.6, \mathcal{A} is a closed subset of \mathcal{X} . Then \mathcal{A} is Lindelof set.

Proposition (3.10): Let $(\mathcal{Y}, \mathcal{T})$ be a subspace of a Lindelof $L(\theta \mathcal{C})$ -space $(\mathcal{X}, \mathcal{T})$, \mathcal{Y} is Lindelof iff \mathcal{Y} is θ -closed.

Proof: Suppose \mathcal{Y} is Lindelof subspace of \mathcal{X} , since \mathcal{X} is $L(\theta C)$ -space, then \mathcal{Y} is θ -closed. Conversely, suppose \mathcal{Y} is θ -closed in \mathcal{X} , which is Lindelof, then by Lemma 3.9, \mathcal{Y} is Lindelof.

Example (3.11): The discrete topology \mathcal{T}_D on an integer numbers \mathcal{Z} , $(\mathcal{Z}, \mathcal{T}_D)$ is Lindelof $L(\theta C)$ -space, also subspace $(\mathcal{N}, \mathcal{T}_D)$ is Lindelof and θ -closed, where \mathcal{N} is a natural number.

Proposition (3.12): If $(\mathcal{X},\mathcal{T})$ is a Lindelof $L(\theta C)$ -space, then every θ -closed subspace of \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Proof: Let \mathcal{Y} be θ -closed in \mathcal{X} , but \mathcal{X} is Lindelof, then by Proposition 3.10, \mathcal{Y} is Lindelof. Now let \mathcal{N} be a Lindelof subset of \mathcal{Y} , then \mathcal{N} is Lindelof in \mathcal{X} , but \mathcal{X} is $L(\theta C)$ -space, so \mathcal{N} is θ -closed in \mathcal{X} . Now $\mathcal{N} = \mathcal{N} \cap \mathcal{Y}$, since $\mathcal{N} \subseteq \mathcal{Y}$, by Lemma 2.7, \mathcal{N} is θ -closed in \mathcal{Y} , hence \mathcal{Y} is $L(\theta C)$ -space and by Theorem 3.3, \mathcal{Y} is $\mathcal{M}inL(\theta C)$ -space.

Lemma (3.13): A subset \mathcal{H} of a space \mathcal{X} is G_{δ} - θ open set if and only if every point in \mathcal{H} is G_{δ} - θ interior point to \mathcal{H} .

Proof: Suppose \mathcal{H} is G_{δ} - θ -open set and $x \in \mathcal{H}$, then there exists $\mathcal{A} = \mathcal{H}$ which is G_{δ} - θ -open set and $x \in \mathcal{A} = \mathcal{H} \subseteq \mathcal{H}$, so x is G_{δ} - θ -interior point to \mathcal{H} , but x is an arbitrary point, so any point in \mathcal{A} is G_{δ} - θ -interior point to \mathcal{A} . Conversely, suppose any point in \mathcal{H} is G_{δ} - θ -interior point to \mathcal{H} , that is, for each $x_i \in \mathcal{H}$, there is \mathcal{A}_{x_i} is G_{δ} - θ -open subset of \mathcal{H} , we get $\mathcal{H} = \bigcup_{x_i \in \mathcal{H}} \mathcal{A}_{x_i}$, then \mathcal{H} is G_{δ} - θ -open set.

Proposition (3.14): Every Lindelof set in θT_2 -space is \mathcal{F}_{σ} - θ -closed set.

Proof: Let \mathcal{A} be a Lindelof subset of a space \mathcal{X} , and $p \notin \mathcal{A}$, then for each $q \in \mathcal{A}$, $p \neq q$ and $p,q \in \mathcal{X}$, since \mathcal{X} is $\theta \mathcal{T}_2$ -space, then there exist two θ -open sets \mathcal{U} and \mathcal{V} , with $q \in \mathcal{U}$, $p \in \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \emptyset$. Let $\bigcup_{q \in \mathcal{A}} \mathcal{U}_q$ is θ -open cover to \mathcal{A} , then it is open cover to \mathcal{A} which is Lindelof, so $\mathcal{A}_{\subseteq} \bigcup_{i \in N} \mathcal{U}_{qi}$, then $\mathcal{U}^* = \bigcup_{i \in N} \mathcal{U}_{qi}$ is open and $\mathcal{V}^* = \bigcap_{i \in N} \mathcal{V}_{qi}(p)$, since \mathcal{V}^* is the intersection of countable many θ -open set, then \mathcal{V}^* is G_{δ} - θ -open set and $\mathcal{V}^* \cap \mathcal{U}^* = \emptyset$, so $p \in \mathcal{V}^* \subseteq \mathcal{A}^c$, then p is G_{δ} - θ -interior point to \mathcal{A}^c , from Lemma 3.13, \mathcal{A}^c is G_{δ} - θ -open set. Therefore \mathcal{A} is \mathcal{F}_{σ} - θ -closed set.

Proposition (3.15): Every \mathcal{F}_{σ} - θ -closed set in Lindelof space is Lindelof.

Proof: Let \mathcal{H} be \mathcal{F}_{σ} - θ -closed subset of a space \mathcal{X} , that is $\mathcal{H} = \bigcup_{i \in N} \mathcal{F}_i$, where \mathcal{F}_i is θ -closed set in \mathcal{X} , but \mathcal{X} is Lindelof space, so by Lemma 3.9, \mathcal{F}_i , $i \in N$, is Lindelof. Now, $\bigcup_{i \in N} \mathcal{F}_i$ is Lindelof and $\mathcal{H} = \bigcup_{i \in N} \mathcal{F}_i$, so \mathcal{H} is Lindelof.

Remark (3.16): Let $(\mathcal{R}, \mathcal{T}_D)$ be a discrete topology on a real numbers \mathcal{R} . Every singleton set is θ -closed, then it is \mathcal{F}_{σ} - θ -closed set and Lindelof, but $(\mathcal{R}, \mathcal{T}_D)$ is not Lindelof.

Theorem (3.17): Let a space \mathcal{X} is $\theta \mathcal{T}_2$, Lindelof space, then \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space iff \mathcal{X} is θP -space.

Proof: Let \mathcal{X} be $\mathcal{M}inL(\theta C)$ -space, to prove \mathcal{X} is θP -space. Let \mathcal{A} be \mathcal{F}_{σ} - θ -closed subset in \mathcal{X} , which is Lindelof, by Proposition 3.15, \mathcal{A} is Lindelof subset of \mathcal{X} , which is $L(\theta C)$ -space, then \mathcal{A} is θ -closed set in \mathcal{X} , Therefore \mathcal{X} is θP -space. Conversely, suppose \mathcal{X} is θP -space, to prove \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space, let \mathcal{H} be a Lindelof subset of \mathcal{X} , but \mathcal{X} is θT_2 -space, then by Proposition 3.14, \mathcal{H} is \mathcal{F}_{σ} - θ -closed set, also \mathcal{X} is θP -space, then \mathcal{H} is θ -closed subset of \mathcal{X} , that means \mathcal{X} is $L(\theta C)$ space and it is Lindelof, so from Theorem 3.3, \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Proposition (3.18): Every θT_2 -space and θP -space is $L(\theta C)$ -space.

Proof: Let \mathcal{M} be a Lindelof subset of \mathcal{X} , but \mathcal{X} is $\theta \mathcal{T}_2$ -space, so by Proposition 3.14, \mathcal{M} is \mathcal{F}_{σ} - θ -closed set in \mathcal{X} , which is θP -space, hence \mathcal{M} is θ -closed set in \mathcal{X} , therefore \mathcal{X} is $L(\theta C)$ -space.

Theorem (3.19): Every Lindelof θT_2 and θP -space is $\mathcal{M}inL(\theta C)$ -space.

Proof: Let a space \mathcal{X} be $\theta \mathcal{T}_2$ and θP -space, by Proposition 3.18, \mathcal{X} is $L(\theta C)$ -space and it is Lindelof, so by Theorem 3.3, \mathcal{X} is $MinL(\theta C)$ -space.

Proposition (3.20): Every $L(\theta C)$ -space is $\mathcal{K}(\theta C)$ -space.

Proof: Let \mathcal{B} be a compact subset of a space \mathcal{X} , then \mathcal{B} is Lindelof in \mathcal{X} , but \mathcal{X} is $L(\theta C)$ -space, so \mathcal{B} is θ -closed. Hence \mathcal{X} is $\mathcal{K}(\theta C)$ -space.

The convers of Proposition 3.20, is not true as shown by the following example.

Example (3.21): Let $(\mathcal{R}, \mathcal{T}_{\mathcal{U}})$ be a usual topology on a real numbers \mathcal{R} . The compact subset of this space is only finite sets or closed interval, also they are θ -closed. Therefore, $(\mathcal{R}, \mathcal{T}_{\mathcal{U}})$ is $\mathcal{K}(\theta C)$ space. Also, the rational numbers \mathbb{Q} is Lindelof but not θ -closed. Hence $(\mathcal{R}, \mathcal{T}_{\mathcal{U}})$ is not $L(\theta C)$ space.

Theorem (3.22): If a space \mathcal{X} is compact and θP -space, then \mathcal{X} is $\mathcal{M}in\theta T_2$ -space iff \mathcal{X} is θT_2 -space and $\mathcal{M}inL(\theta C)$ -space.

Proof: Suppose a space X is $Min\theta T_2$ -space, then X is θT_2 -space, by Proposition 3.18, X is $L(\theta C)$ -space. Also X is compact, then X is Lindelof, hence by Theorem 3.3, X is $MinL(\theta C)$ -space. Conversely, suppose X is θT_2 -space and $MinL(\theta C)$ -space, so X is θT_2 -space and $L(\theta C)$ -space, by Proposition 3.20, X is θT_2 -space and $L(\theta C)$ -space, so from Theorem 2.27, X is $Min\mathcal{K}(\theta C)$ -space, and by Theorem 2.30, X is $Min\theta T_2$ -space.

Corollary (3.23): If a space X is compact and $MinL(\theta C)$ -space, then X is $Min\mathcal{K}(\theta C)$ space.

Proof: Suppose \mathcal{X} is compact and $\mathcal{M}inL(\theta C)$ -space, so \mathcal{X} is compact and $L(\theta C)$ -space, by Proposition 3.20, \mathcal{X} is compact and $\mathcal{K}(\theta C)$ -space, so from Theorem 2.27, we have \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Corollary (3.24): If a space \mathcal{X} is compact and $L(\theta C)$ -space, then \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ - space.

Proof: Suppose \mathcal{X} is compact and $L(\theta C)$ -space, by Proposition 3.20, \mathcal{X} is compact and $\mathcal{K}(\theta C)$ -space, so from Theorem 2.27, \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Corollary (3.25): Every countably compact, Lindelof and $L(\theta C)$ -space is $Min \mathcal{K}(\theta C)$ -space.

Proof: Suppose \mathcal{X} is countably compact and Lindelof space, then \mathcal{X} is compact, from Corollary 3.24, \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Theorem (3.26): If a space \mathcal{X} is compact and $L(\theta C)$ -space, then a closed subspace of \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space and $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let \mathcal{Y} be a closed subspace of a compact space \mathcal{X} , so \mathcal{Y} is compact set in \mathcal{X} , then \mathcal{Y} is Lindelof. Also, \mathcal{X} is $L(\theta C)$ -space, so by Proposition 2.15, \mathcal{Y} is $L(\theta C)$ -space. Hence from Theorem 3.3, \mathcal{Y} is $\mathcal{M}inL(\theta C)$ -space. Now, from Proposition 3.20, \mathcal{X} is $\mathcal{K}(\theta C)$ -space, so from Theorem 2.27, \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ -space. **Corollary (3.27):** If a space \mathcal{X} is Lindelof and $L(\theta C)$ -space, then a closed subspace of \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Proof: Let \mathcal{Y} be a closed subset of a Lindelof space \mathcal{X} , then \mathcal{Y} is Lindelof in \mathcal{X} , and then by Proposition 2.15, \mathcal{Y} is $L(\theta C)$ -space, from Theorem 3.3, \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Corollary (3.28): If a space \mathcal{X} is Lindelof and $L(\theta C)$ -space, then a θ -closed subspace of \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Corollary (3.29): If a space \mathcal{X} is hereditarily Lindelof and $L(\theta C)$ -space, then any subspace of \mathcal{X} is $MinL(\theta C)$ -space.

Proof: Let \mathcal{Y} be a subspace of a space \mathcal{X} , since \mathcal{X} is hereditarily Lindelof, so \mathcal{Y} is Lindelof, also by Proposition 2.15, \mathcal{Y} is $L(\theta C)$ -space, from Theorem 3.3, \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Theorem (3.30): If a space \mathcal{X} is compact θP -space, then \mathcal{X} is $\mathcal{Min}\mathcal{K}(\theta C)$ -space if and only if \mathcal{X} is $\mathcal{Min}L(\theta C)$ -space.

Proof: Suppose X is $\mathcal{M}in\mathcal{K}(\theta C)$ -space, that means X is $\mathcal{K}(\theta C)$ -space and by hypothesis X is compact, so X is locally compact space and then from Proposition 2.28, X is θT_2 -space, also X is Lindelof. Therefore, by Theorem 3.19, Xis $\mathcal{M}inL(\theta C)$ -space. Conversely, suppose X is $\mathcal{M}inL(\theta C)$ -space, so X is $L(\theta C)$ -space, by Proposition 3.20, X is $\mathcal{K}(\theta C)$ -space and it is compact, hence from Theorem 2.27, X is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Definition (3.31): A space \mathcal{X} is said to be θQ -set space, if any subset of \mathcal{X} is \mathcal{F}_{σ} - θ -closed set in \mathcal{X} . **Proposition** (3.32):

- 1. Every θQ -set space is θL_3 -space.
- 2. Every θQ -set space and θL_1 -space is $L(\theta C)$ -space.
- 3. Every θQ -set space and θP -space is $L(\theta C)$ -space.
- 4. Every Lindelof θL_1 -space is θP -space.
- 5. Every θP -space and θL_3 -space is $L(\theta C)$ -space.

Proof:

- 1. Let \mathcal{H} be a Lindelof subset of θQ -set space \mathcal{X} , then \mathcal{H} is \mathcal{F}_{σ} - θ -closed set in \mathcal{X} . Therefore, \mathcal{X} is θL_3 -space.
- Let X be a θQ-set space X, by part(1), X is θL₃-space, and from Theorem 2.16 part (1), X is L(θC)-space.

- Let L be a Lindelof subset of θQ-set space X, then L is F_σ-θ-closed set in X which is θP-space, then L is θ-closed set in X. Therefore, X is L(θC)-space.
- 4. Let \mathcal{K} be \mathcal{F}_{σ} - θ -closed set in a Lindelof space \mathcal{X} , then $\mathcal{K} = \bigcup_{i \in N} \mathcal{H}_i$, where \mathcal{H}_i is θ -closed set in a space \mathcal{X} , for each $i \in N$, by Lemma 3.9, \mathcal{H}_i is Lindelof, so \mathcal{K} is Lindelof and \mathcal{F}_{σ} - θ -closed set, since \mathcal{X} is θL_1 -space, then \mathcal{K} is θ -closed set. Therefore, \mathcal{X} is θP -space.
- 5. Suppose \mathcal{X} is θP -space, by Theorem 2.16, part(2), \mathcal{X} is θL_1 -space and it is θL_3 -space, so by Theorem 2.16, part(1), \mathcal{X} is $L(\theta C)$ -space.

Proposition (3.33):

- 1. Every Lindelof θL_1 -space and θL_3 -space is $\mathcal{M}inL(\theta C)$ -space.
- 2. Every Lindelof θL_1 -space and θT_2 -space is $\mathcal{M}inL(\theta C)$ -space.
- 3. Every Lindelof θQ -set and θL_1 -space is $\mathcal{M}inL(\theta C)$ -space.

Proof:

- Let a space X is θL₁-space and θL₃-space, the by Theorem 2.16, part(1), X is L(θC)space and it is Lindelof, so from Theorem 3.3, X is MinL(θC)-space.
- 2. Let a space \mathcal{X} is Lindelof θL_1 -space, the by Proposition 3.32 part(4), \mathcal{X} is θP space, and from Proposition 3.18, \mathcal{X} is $L(\theta C)$ -space, also from Theorem 3.3, \mathcal{X} is \mathcal{M} inL(θC)-space.
- Let a space X is Lindelof θL₁-space, the by Proposition 3.32, part (4), X is θP-space, and from Proposition 3.32, part (3), X is L(θC)-space, also from Theorem 3.3, X is MinL(θC)-space.

Theorem (3.34): Every $L(\theta C)$ -space having θ -dense Lindelof subset is $\mathcal{M}inL(\theta C)$ -space.

Proof: Let \mathcal{A} be a θ -dense Lindelof subset of a space \mathcal{X} , but \mathcal{X} is $L(\theta C)$ -space, then \mathcal{A} is θ -closed, then $\mathcal{A} = Cl_{\theta}(\mathcal{A}) = \mathcal{X}$, hence \mathcal{X} is Lindelof and it is $L(\theta C)$ -space, so from Theorem 3.3, \mathcal{X} is $\mathcal{M}inL(\theta C)$ -space.

Proposition (3.35): Every Lindelof θQ -set space and θP -space is $\mathcal{M}inL(\theta C)$ -space.

Proof: From Proposition 3.32, part(3) and Theorem 3.3.

Proposition (3.36): Every compact θQ -set space and θP -space is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let a space \mathcal{X} is $\theta \mathcal{Q}$ -set space and $\theta \mathcal{P}$ space, then from Proposition 3.32, part(3), \mathcal{X} is $L(\theta \mathcal{C})$ -space and by proposition 3.20, \mathcal{X} is $\mathcal{K}(\theta \mathcal{C})$ -space, since \mathcal{X} is compact and $\mathcal{K}(\theta \mathcal{C})$ space so by Theorem 2.27, \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta \mathcal{C})$ space.

Theorem (3.37): Every compact θQ -set space and θL_1 -space is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let a space \mathcal{X} be θQ -set space and θL_1 space, so by Proposition 3.32 part (3), \mathcal{X} is $L(\theta C)$ -space, and from Proposition 3.20, \mathcal{X} is $\mathcal{K}(\theta C)$ -space, so we have a space \mathcal{X} is compact $\mathcal{K}(\theta C)$ -space, hence by Theorem 2.27, \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Corollary (3.38): Every compact θL_1 -space and θL_3 -space is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let \mathcal{X} be θL_1 and θL_3 -space, from Proposition 2.16, part(1), \mathcal{X} is $L(\theta C)$ -space, also by Proposition 3.20, \mathcal{X} is $\mathcal{K}(\theta C)$ -space and from Theorem 2.27, \mathcal{X} is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Corollary (3.39): Every compact θP -space and θL_3 -space is $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let \mathcal{X} be θP -space, from Theorem 2.16, part(2), \mathcal{X} is θL_1 -space and from Corollary 3.38, \mathcal{X} is $\mathcal{Min}\mathcal{K}(\theta C)$ -space.

Theorem (3.40): If \mathcal{X} and \mathcal{Y} are \mathcal{T}_2 -spaces, $L(\theta C)$ -spaces, then $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space.

Proof: Let *L* be a Lindelof subset of $\mathcal{X} \times \mathcal{Y}$, and let $(x_o, y_o) \notin L$, for each $(x, y) \in L$, then there exists open neighbourhoods \mathcal{U}_x and \mathcal{V}_y of x and y respectively, such that $(x_o, y_o) \notin \overline{\mathcal{U}_x} \times \overline{\mathcal{V}_v}$, since $L \subseteq \bigcup \{ \mathcal{U}_x \times \mathcal{V}_y : (x, y) \in L \}, \text{ we have } L \subseteq \bigcup \}$ $\{\mathcal{U}_{x_n} \times \mathcal{V}_{y_n}: n \in \mathbb{Z}^+, \text{ for } \}$ $(x_n, y_n) \in L$, some $n \in \mathbb{Z}^+$. Now, let $E_1 = \{n \in \mathbb{Z}^+: x_o \notin \overline{\mathcal{U}_{x_n}}\}$ and $E_2 = \{n \in \mathbb{Z}^+: y_o \notin \overline{\mathcal{U}_{y_n}}\}$, then $E_1 \cup E_2 =$ \mathbb{Z}^+ . And, if $L_1 = \cup \{L \cap (\overline{\mathcal{U}_{x_n}} \times \overline{\mathcal{U}_{y_n}} : n \in E_1\}$ and $L_2 = \bigcup \{L \cap (\overline{\mathcal{U}_{x_n}} \times \overline{\mathcal{V}_{y_n}} : n \in E_2\}$, then L_1 and L_2 are Lindelof subset of $\mathcal{X} \times \mathcal{Y}$, such that $L_1 \cup L_2 = L$. Clearly $x_o \notin \pi_1(L_1)$ and since L_1 is Lindelof and π_1 is continuous, then $\pi_1(L_1)$ is Lindelof in \mathcal{X} , and since \mathcal{X} is $L(\theta C)$ -space, then $\pi_1(L_1)$ is θ -closed, by Remark 2.6, $\pi_1(L_1)$ is closed in \mathcal{X} , so there is an open neighbourhood $G \subseteq \mathcal{X}$ of x_o , with $G \cap \pi_1(L_1) = \emptyset$. In the same way, since $y_0 \notin \pi_2(L_2)$ and L_2 is Lindelof in \mathcal{Y} , with π_1 is continuous, so $\pi_2(L_2)$ is Lindelof in \mathcal{Y} , and since \mathcal{Y} is $L(\theta \mathcal{C})$ -space, then $\pi_2(L_2)$ is θ closed, so $\pi_2(L_2)$ is closed in \mathcal{Y} , so there is an

open neighbourhood $H \subseteq \mathcal{Y}$ of x_o , with $H \cap \pi_2(L_2) = \emptyset$, we now claim $(G \times H) \cap L = \emptyset$, since $(x, y) \in L$, suppose $(x, y) \in (G \times H)$, then $x \in G$, but $G \cap \pi_1(L_1) = \emptyset$, then $x \notin \pi_1(L_1)$, so $(x, y) \notin L_1$, alsoy $\notin \pi_2(L_2)$, hence $(x, y) \notin L_2$, since $L_1 \cup L_2 = L$ That is $(x, y) \notin L$ and this is contradiction, so $\mathcal{X} \times \mathcal{Y}$ is $L(\theta \mathcal{C})$ -space.

Corollary (3.41): If \mathcal{X} and \mathcal{Y} are compact \mathcal{T}_2 -spaces and $L(\theta C)$ -spaces, then $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{M}inL(\theta C)$ -space and $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let \mathcal{X} and \mathcal{Y} are compact \mathcal{T}_2 -spaces and $L(\theta C)$ -space, then by Theorem 3.40, $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space and then $\mathcal{X} \times \mathcal{Y}$ is compact, also $\mathcal{X} \times \mathcal{Y}$ is Lindelof and $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space, by Theorem 3.3, $\mathcal{X} \times \mathcal{Y}$ is \mathcal{M} inL(θC)-space. Now, by Proposition 3.20, $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{K}(\theta C)$ -space and it is compact, then by Theorem 2.27, $\mathcal{X} \times \mathcal{Y}$ is \mathcal{M} in $\mathcal{K}(\theta C)$ -space.

Corollary (3.42): If \mathcal{X} and \mathcal{Y} are Lindelof \mathcal{T}_2 -spaces and $L(\theta C)$ -space, then $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{M}inL(\theta C)$ -space.

Proof: Let \mathcal{X} and \mathcal{Y} are compact \mathcal{T}_2 -spaces and $L(\theta C)$ -spaces, then by Theorem 3.40, $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space and from hypothesis $\mathcal{X} \times \mathcal{Y}$ is Lindelof, and the by Theorem 3.3, $\mathcal{X} \times \mathcal{Y}$ is \mathcal{M} inL(θC)-space.

Proposition (3.43): If \mathcal{X} and \mathcal{Y} are \mathcal{R}_1 , $L(\theta C)$ -spaces, then $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space.

Proof: Let \mathcal{X} and \mathcal{Y} are $L(\theta C)$ -spaces, by Remarks 2.20, part (3), \mathcal{X} and \mathcal{Y} are \mathcal{T}_1 -spaces, but \mathcal{X} and \mathcal{Y} are \mathcal{R}_1 -spaces, then \mathcal{X} and \mathcal{Y} are \mathcal{T}_2 space and by Theorem 3.40, $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ space.

Theorem (3.44) If \mathcal{X} and \mathcal{Y} are compact \mathcal{R}_1 and $L(\theta C)$ -space, then $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{M}inL(\theta C)$ -space and $\mathcal{M}in\mathcal{K}(\theta C)$ -space.

Proof: Let \mathcal{X} and \mathcal{Y} are \mathcal{R}_1 , $L(\theta C)$ -space, then by Proposition 3.43, $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space. Also, \mathcal{X} and \mathcal{Y} are compact spaces, so $\mathcal{X} \times \mathcal{Y}$ is compact and then $\mathcal{X} \times \mathcal{Y}$ is Lindelof. Therefor from Theorem 3.3, $\mathcal{X} \times \mathcal{Y}$ is \mathcal{M} inL(θC)-space. Now, from Proposition 3.20, $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{K}(\theta C)$ -space and it is compact, then by Theorem 2.27, $\mathcal{X} \times \mathcal{Y}$ is \mathcal{M} in $\mathcal{K}(\theta C)$ -space.

Theorem (3.45) If \mathcal{X} and \mathcal{Y} are Lindelof \mathcal{R}_1 and $L(\theta C)$ -spaces, then $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{M}inL(\theta C)$ -space

Proof: Let \mathcal{X} and \mathcal{Y} are \mathcal{R}_1 , $L(\theta C)$ -spaces, then by Proposition 3.43, $\mathcal{X} \times \mathcal{Y}$ is $L(\theta C)$ -space, also \mathcal{X} and \mathcal{Y} are Lindelof spaces, so $\mathcal{X} \times \mathcal{Y}$ is Lindelof. Hence from Theorem 3.3, $\mathcal{X} \times \mathcal{Y}$ is $\mathcal{M}inL(\theta C)$ -space.

REFERENCES

- H. A. Abu-Ragheef, Some type of Kc-spaces and Lcspaces, M.Sc. Thesis, Al- Mustansiriyah University, Baghdad, Iraq, (2015).
- [2] P. Alexandrof and P. Urysohn, Memoir sur les espaces topologiques compacts, Verb. Akkad. Welensch. Amsterdam. 14 (1929).
- [3] H. J. Ali, Certain types of LC- spaces, Thesis submitted to the college of education, AL-Mustansiriyah University, (2005).
- [4] A. H. Al-Taai and H. J. Ali, Weak types of *L*(*θC*)spaces, Vol.37, No. 4, 234-237, (2011).
- [5] J. Dontchev, M. Ganster M., On the product of *LC*spaces, Q & A in general topology 15,71-74, (1997).
- [6] H. Z. Hdeib, A Note on L-closed spaces, Q & A in general topology 4, 67-72, (1988).
- [7] S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Sci. 6(5), (1988).
- [8] R. M. Latif, Application of θ-open sets, Journal King Fahd Univ, Science Riyadh Vol. 21, 243-250, (2009/1430H).
- [9] R. Levy, A Non PL-closed spaces, Q & A in general topology 4(87), 145-146, (1986).
- [10] T. K. Mukherji and M. Sarkar, On a class of almost discrete spaces, Math. Vesnik 3, 459-474, (1979).
- [11] N. A. Nadhim, H. J. Ali and R. N. Majeed, $\mathcal{MK}(\theta C)$ -spaces and $\mathcal{M}\theta T_2$ -spaces, submitted.
- [12] M. Saleh, On θ -closed sets and some forms of continuity, 40, 383-393, (2004).
- [13] R. G. Ori, A note on L-closed spaces, Q & A in general topology 4, 141-143, (1987).
- [14] I. M. Radhi, Minimal KC-spaces and Minimal LCspaces, Tishreen University Journal for studies and scientific Research-Basic science series Vol. 28, No. 1, (2006).
- [15] D. A. Reyadh and A.A. Adam, On MKC-spaces, MLC-spaces and MH-spaces, Journal of Al-Qadisiyah for Computer science and Mathematics, Vol.7, No. 1, (2015).
- [16] N. V. Velicko, H-closed topological spaces, Trans. Amer. Math .Soc, Transi, 78 (series 2), 103-118, (1969).
- [17] S. Willard, General topology", Addison-Wesley, London, (1970).

