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The purpose of this paper is to introduced a new concept of spaces which is called minimal 

𝐿(𝜃𝒞)-space, namely ℳin𝐿(𝜃𝒞)-space or ℳ𝐿(𝜃𝒞)-space, also given some properties, 

examples, theorems and the topological property of ℳin𝐿(𝜃𝒞)-space are discussed.  
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 الخلاصة

ℳ in𝐿(𝜃𝒞)ونرمز له minimal 𝐿(𝜃𝒞)-spaceوهو فضاء  تقديم مفهوم جديدالهدف من هذا البحث هو  − space   او 

ℳ𝐿(𝜃𝒞)-space عض الامثلة, النظريات و الخاصية التوبولوجية نوقشت.ا ب,وكدلك اعطين 

 

INTRODUCTION 
The concept of Lindelof space was introduced in 

1929 by Alexandrof and Urysohn [2], this space 

is an important in a topological space. Later, in 

1979 Mukherji and Sarkar [10], provide the 

concept of 𝐿𝐶-space. (A topological space 𝒳 is 

called 𝐿𝐶-space, if every Lindelof subset of a 

space 𝒳 is a closed set). 𝐿𝐶-space studied by 

many researchers such as [3].  
Notices that 𝐿𝐶-space is also know under the 

name 𝐿-closed such as [ 6, 9, 13]. 
The concept of 𝜃-closed and 𝜃-open set were first 

introduced by Velicko [16] in 1969. (Let (𝒳,𝒯) be 

a topological space, ℱ be a subset of 𝒳 and 𝑥𝒳. 

A point 𝑥 is called 𝜃-interior point of ℱ, if there 

is 𝒞 𝒯 , such that 𝑥 𝒞 and 𝑥 𝒞̅ ℱ.  -interior 

set which denoted by 𝐼𝑛𝑡𝜃(ℱ) is the set of all 𝜃-

interior points. A subset ℱ of 𝒳 is called  -open 

set iff 𝐼𝑛𝑡𝜃(ℱ) = ℱ. And (Let (𝒳, 𝒯) be 

topological space, 𝐻 𝒳, a point 𝑏𝑋 is said to 

be  -adherent point for a subset 𝐻 of 𝒳, if 

𝐻 ∩ 𝐺̅ ∅ for any open set 𝐺 of 𝒳 and 𝑏 ∈ 𝐺. The 

set of  -adherent points is said to be  -closure of 

𝐻 which denoted by 𝐶𝑙𝜃(𝐻). A subset 𝐻 of  𝒳 is 

called 𝜃-closed set iff 𝐻 = 𝐶𝑙𝜃(𝐻)). These 

concepts have been studied by many authors such 

as [8, 12]. In 2011, Al-Taai and Haider [4], study 

the new term called 𝐿(𝜃𝒞)-space. ( A topological 

space 𝒳 is called 𝐿(𝜃𝒞)-space, if every Lindelof 

subset of a space 𝒳 is  -closed set), which is a 

strong than 𝐿𝐶-space. And since the union of 𝜃-

closed set may be not 𝜃-closed set. Encourage the 

author to define ℱ𝜎-𝜃-closed set which is a 

countable union many 𝜃-closed sets. 

 In 2005, H. J. Ali [3], introduce Minimal 𝐿𝐶-

space, any 𝐿𝒞-space (𝒳, 𝒯) is ℳ𝑖𝑛𝐿𝒞-space, if  

𝒯⋇ 𝒯 on 𝒳, then (𝒳, 𝒯⋇) is not 𝐿𝒞-space 

studied by [14, 15]. 

The aim of this paper is to introduce a minimal 

𝐿(𝜃𝒞)-space (denoted by ℳin𝐿(𝜃𝒞)-space), that 

is a space 𝒳 which is 𝐿(𝜃𝒞)-space is called 

ℳin𝐿(𝜃𝒞)-space, if 𝒯⋇ 𝒯 on 𝒳, then (𝒳, 𝒯⋇) is 

not 𝐿(𝜃𝒞)-space. Note that every ℳ𝑖𝑛𝐿(𝜃𝒞)-

space is 𝐿(𝜃𝒞)-space, and study some properties 

of this space, also study the relation between this 

concept with ℳ𝑖𝑛𝒦(𝜃𝒞)-space and ℳ𝑖𝑛𝜃𝒯2-

space. Also study some important property such 

as, a topological property of ℳin𝐿(𝜃𝒞)-space. 

PRELIMINARIES 
Definition (2.1) [5]: A space 𝒳 is called ℛ1-

space, if ℯ and 𝒹 have a disjoint neighborhoods, 

whenever 𝐶𝑙(ℯ) ≠ 𝐶𝑙(𝒹). 

Remark (2.2) [5]: A space 𝒳 is 𝒯2-space iff 𝒳 is 

ℛ1 and 𝒯1-space. 

http://creativecommons.org/licenses/by-nc/4.0/
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Definition (2.3) [16]: Let (𝒳,𝒯) be a topological 

space, ℱ be a subset of 𝒳 and 𝑥𝒳. A point 𝑥 is 

called 𝜃-interior point of ℱ, if there is 𝒞 𝒯 , such 

that 𝑥 𝒞 and 𝑥 𝒞̅ ℱ.  -interior set which 

denoted by 𝐼𝑛𝑡𝜃(ℱ) is the set of all 𝜃-interior 

points. A subset ℱ of 𝒳 is called  -open set iff 

𝐼𝑛𝑡𝜃(ℱ) = ℱ. 

Definition (2.4) [16]: Let (𝒳, 𝒯) be topological 

space,𝐻 𝒳, a point 𝑏𝑋 is said to be  -adherent 

point for a subset 𝐻 of 𝒳, if 𝐻 ∩ 𝐺̅ ∅ for any 

open set 𝐺 of 𝒳 and 𝑏 ∈ 𝐺. The set of  -adherent 

points is said to be  -closure of 𝐻 which denoted 

by 𝐶𝑙𝜃(𝐻). A subset 𝐻 of  𝒳 is called 𝜃-closed 

set iff 𝐻 = 𝐶𝑙𝜃(𝐻). 

Example (2.5): Any subset of a discrete space 

(ℛ,𝐷) on a real numbers ℛ is 𝜃-closed set and 𝜃-

open set. 

Remark (2.6) [16]: Every 𝜃-closed (resp. 𝜃-open) 

set is a closed (resp. open) set. 

Lemma (2.7) [3]: Let 𝒴 be a subspace of a space 

𝒳. If 𝒫 is 𝜃-closed in 𝒳 then 𝒫 is 𝜃-closed in 𝒴, 

whenever 𝒫 𝒴. 

Definition (2.8) [1, 4]: A subset ℱof a space 𝒳 is 

said to be ℱ𝜎-𝜃-closed, if it is a countable union of 

𝜃-closed sets. The complement of ℱ𝜎-𝜃-closed is 

said to be 𝐺𝛿-𝜃-open set. 

Remark (2.9) [1]:  Every 𝜃-closed set is ℱ𝜎-𝜃-

closed set. But the converse need not be true. 

Example (2.10): Let (ℛ, 𝒯𝒰) be a usual topology 

on a real line ℛ, and 𝐺𝑛 = [1 𝑛⁄  ,1], where 

(𝑛 = 2, 3, 4, … ), be a 𝜃-closed sets, then 

⋃ 𝐺𝑛 = (0,1]
𝑛=2  is ℱ𝜎-𝜃-closed, but neither 

closed nor 𝜃-closed. 

Definition (2.11) [1, 3, 4]:  A space 𝒳 is said to 

be: 

1. 𝜃𝑃-space, if every ℱ𝜎-𝜃-closed is 𝜃-

closed.  

2. 𝒦(𝜃𝒞)-space, if every compact subset of 

𝒳 is 𝜃-closed set. 

3.  𝐿(𝜃𝒞)-space, if every Lindelof subset of 

𝒳 is 𝜃-closed set. 

Example (2.12): Let (𝒵, 𝒯𝐷) be a topological 

space where 𝒯𝐷 be a discrete topology on an 

integer numbers𝒵, (𝒵, 𝒯𝐷)  is 𝐿(𝜃𝒞)-space. 

Definition (2.13) [4]:  A subset 𝒜 of a space 𝒳 is 

said to be 𝜃-dense, if 𝐶𝑙𝜃(𝒜) = 𝒳. 

Proposition (2.14) [3]: The property of 𝐿(𝜃𝒞)-

space is a topological property. 

Proposition (2.15) [3]: The property of 𝐿(𝜃𝒞)-

space is a hereditary property. 

Theorem (2.16) [4]: 

1. If  a space 𝒳 is 𝜃𝐿1-space and 𝜃𝐿3-space, 

then 𝒳 is 𝐿(𝜃𝒞)-space. 

2. Every 𝜃𝑃-space is 𝜃𝐿1-space. 

Definition (2.17) [7]: A space 𝒳 is called 𝜃𝒯1 ( 

resp. 𝒯1)-space, if every two distinct points 𝑎, 𝑏 

belong to 𝒳, there is two 𝜃-open ( resp. open ) 

sets each one contain one point but not contain the 

other. 

Theorem (2.18) [7]: A space 𝒳 is called 𝜃𝒯1-

space if and only if every singleton set is 𝜃-closed 

set. 

Definition (2.19) [7]: A space 𝒳 is called 

𝜃𝒯2 (resp. 𝒯2 )-space, if every two points 𝑎, 𝑏 

belong to 𝒳, 𝑎 ≠ 𝑏 there is two disjoint 𝜃-open ( 

resp. open) sets 𝑀 and 𝑁  containing 𝑎 an𝑑 b 

respectively. 

Remarks (2.20): 

1. Every  𝐿(𝜃𝒞)-space is 𝜃𝒯1-space. 

2. Every 𝜃𝒯1 -space is 𝒯1-space. 

3. Every  𝐿(𝜃𝒞)-space is 𝒯1-space. 

Proof: 

      1. Let {𝑥} be a Lindelof subset of a space 𝒳, 

for each 𝑥 ∈ 𝒳, which is 𝐿(𝜃𝒞)-space, so {𝑥} is 

𝜃-closed set, then from Theorem (2.37), a space 𝒳 

is 𝜃𝒯1-space. 

      2.  Let 𝑎, 𝑏 be two distinct point in a space 𝒳 

which is 𝜃𝒯1 -space, so there exist two 𝜃-open sets 

𝐺 and 𝐻 containing 𝑎, 𝑏 respectively with 𝑎 ∉ 𝐻 

and 𝑏 ∉ 𝐺, from Remark 2.21, 𝐺 and  𝐻 are open 

set in 𝒳, containing 𝑎, 𝑏 respectively with 𝑎 ∉ 𝐻 

and 𝑏 ∉ 𝐺, that means  𝒳 is 𝒯1-space.                                       

      3. Let a space 𝒳 be 𝐿(𝜃𝒞)-space, from part 

(1) of this Remark, 𝒳 is 𝜃𝒯1-space and from part 

(2), 𝒳  is 𝒯1-space. 

Definition (2.21) [11]: A space 𝒳 is called 𝜃ℛ1-

space, if ℯ and 𝒹 have a disjoint 𝜃-neighbourhood, 

whenever 𝐶𝑙𝜃(ℯ) ≠ 𝐶𝑙𝜃(𝒹). 

Remark (2.22) [11]: A space 𝒳 is 𝜃𝒯2-space iff 

𝒳 is 𝜃ℛ1 and 𝜃𝒯1-space. 

Definition (2.23) [8]: Let (𝒳, 𝒯) and (𝒴, 𝒯′) be 

two topological space and 𝑓: (𝒳, 𝒯) ⟶ (𝒴, 𝒯′) 

be a function. Then 𝑓 is called: 

1. 𝜃-closed function [1], if 𝑓(𝐹) is 𝜃-closed 

set in 𝒴 for each closed subset 𝐹 of 𝒳. 

2. Closed function [10], if 𝑓(𝐹) is closed set 

in 𝒴 for each closed subset 𝐹 of 𝒳. 
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Remark (2.24) [1]: Every 𝜃-closed function is 

closed function. 

Definition (2.25) [11]: Let (𝒳, 𝒯) be 𝒦(𝜃𝒞)-

space, a space 𝒳 is said to be ℳ𝑖𝑛𝒦(𝜃𝒞)-space, 

if  𝒯⋇ 𝒯 on 𝒳, then (𝒳, 𝒯⋇) is not 𝒦(𝜃𝒞)-

space. 

Example (2.26): Let (ℛ, 𝒯𝒰) be a usual topology 

defined on the real numbers,(ℛ, 𝒯𝒰) is 

ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Theorem (2.27) [11]: If a space 𝒳 is compact 

𝒦(𝜃𝒞)-space, then it is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proposition (2.28) [11]: If a space 𝒳 is Locally 

compact, 𝒦(𝜃𝒞)-space then 𝒳 is 𝜃𝒯2-space. 

Definition (2.29) [11]: A space 𝒳 is 𝜃𝒯2-space, 

we say that 𝒳 is ℳ𝑖𝑛𝜃𝒯2-space, if there is 𝒯∗ 𝒯 

on 𝒳, then (𝒳, 𝒯⋇) is not 𝜃𝒯2-space. 

Theorem (2.30) [11]: If a space 𝒳 is 𝜃𝒯2 and 

ℳ𝑖𝑛𝒦(𝜃𝒞)-space then 𝒳 is ℳ𝑖𝑛𝜃𝒯2-space. 

𝓜𝒊𝒏𝑳(𝜽𝓒)-Spaces 

Definition (3.1): Let (𝒳, 𝒯) be 𝐿(𝜃𝒞)-space, a 

space 𝒳 is said to be ℳ𝑖𝑛𝐿(𝜃𝒞)-space, if  𝒯⋇ 𝒯 

on 𝒳, then (𝒳, 𝒯⋇) is not 𝐿(𝜃𝒞)-space.  

Example (3.2): Let (𝒳, 𝒯𝐷) be a discrete topology 

defined on countable set 𝒳, (𝒳, 𝒯𝐷) is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space, since, if we take any subset 

ℋof a space 𝒳, which is countable then ℋ is 

countable, so ℋ is Lindelof, let 𝑥 ℋ, also {𝑥} is 

open set containing 𝑥, also {𝑥}̅̅ ̅̅ ∩ ℋ = ∅, so ℋ is 

𝜃-closed set and then  𝒳 is 𝐿(𝜃𝒞)-space, also 

since 𝒯𝑖𝑛𝑑 𝒯𝐷, but 𝒯𝑖𝑛𝑑 is not 𝐿(𝜃𝒞)-space. 

Therefore 𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Theorem (3.3): If a space 𝒳 is Lindelof 𝐿(𝜃𝒞)-

space, then it is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Let (𝒳, 𝒯) be 𝐿(𝜃𝒞)-space and suppose 𝒳 

is not ℳ𝑖𝑛𝐿(𝜃𝒞)-spac, that is there is a topology 

𝒯⋇ 𝒯 on 𝒳and (𝒳, 𝒯⋇) is 𝐿(𝜃𝒞)-space. Let 

𝐼𝑥 : (𝒳, 𝒯) ⟶  (𝒳, 𝒯⋇) be the identity function on 

𝒳. Now 𝐼𝑥 is continuous, bijective and 𝜃-closed 

function since ( if 𝒩 is a closed subset of 𝒳, and 

𝒳 is Lindelof, so 𝒩 is Lindelof), also 𝐼𝑥 is 

continuous, then 𝐼𝑥 (𝒩) is Lindelof subset of 

(𝒳, 𝒯⋇) which is 𝐿(𝜃𝒞)-space, hence 𝐼𝑥 (𝒩) is 𝜃-

closed and then 𝐼𝑥 is 𝜃-closed function, by 

Remark 2.24, 𝐼𝑥  is a closed function that is  𝐼𝑥 is 

homeomorphism function, so 𝒯⋇ ≅  𝒯 and this is 

contradiction, so 𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Example (3.4): Let 𝒳 = ℛ be a real numbers, and 

𝒯𝐸𝑥𝑐 = { 𝒰 ℛ: 𝑥 𝒰, for some 𝑥 ∈ ℛ} ∪ {ℛ}, be 

excluded point topology, (ℛ, 𝒯𝐸𝑥𝑐) is 

not ℳ𝑖𝑛𝒦(𝜃𝒞)-space, since (ℛ, 𝒯𝐸𝑥𝑐) is compact, 

so (ℛ, 𝒯𝐸𝑥𝑐) is Lindelof, but not 𝐿(𝜃𝒞)-space 

because, if we take 𝑥 = 5 and 𝐶 = {{𝑥}}𝑥5 ∪ ℛ 

is an open cover to ℛ, then we can reduce to just 

ℛ that is (ℛ, 𝒯𝐸𝑥𝑐) is Lindelof, also {1, 5} is finite 

set, then it is countable, so it is Lindelof set and 

2 {1, 5}, so there is  open set {2} in ℛ and 

{2}̅̅ ̅̅ = {2,5} ∩ {1,5} ≠ ∅, then 2 ∈ 𝜃-adherent 

point, that is {1,5} is not 𝜃-closed set, hence 

(ℛ, 𝒯𝐸𝑥𝑐) is not 𝐿(𝜃𝒞)-space and from Theorem 

3.3, this topological space is not ℳ𝑖𝑛𝐿(𝜃𝒞)-

space. 

Corollary (3.5):  Every compact and L(θ𝒞)-space 

is ℳinL(θ𝒞)-space.  

Proof: From Theorem 3.3. And every compact 

space is Lindelof space. 

Remark (3.6): The continuous image of 

ℳ𝑖𝑛𝐿(𝜃𝒞) is not necessarily ℳ𝑖𝑛𝐿(𝜃𝒞), the 

following example explain this Remark: 

Example (3.7): Let 𝑓: (ℛ, 𝒯𝐷) ⟶ (ℛ, 𝒯𝑖𝑛𝑑) be a 

function from a discrete topology 𝒯𝐷 into 

indiscrete topology 𝒯𝑖𝑛𝑑, defined by 𝑓(𝑥) =
𝑥, ∀𝑥 ∈ ℛ, so 𝑓 is continuous and (ℛ, 𝒯𝐷) is 

ℳ𝑖𝑛𝐿(𝜃𝒞), also 𝒯𝑖𝑛𝑑 𝒯𝐷, but (ℛ, 𝒯𝑖𝑛𝑑) is not 

𝐿𝒞, implies that, it is not 𝐿(𝜃𝒞). Therefore 

(ℛ, 𝒯𝑖𝑛𝑑) is not  ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proposition (3.8): The property of being 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space is a topological property. 

Proof: Let (𝒳, 𝒯) be ℳ𝑖𝑛𝐿(𝜃𝒞)-space, 

𝑓: (𝒳, 𝒯) ⟶ (𝒴, 𝒯  ) is a homeomorphism 

function, to prove (𝒴, 𝒯  ) is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Now from Proposition 2.14, (𝒴, 𝒯  ) is 𝐿(𝜃𝒞)-

space, suppose (𝒴, 𝒯  ) is not ℳ𝑖𝑛𝐿(𝜃𝒞)-space, 

then there is a topology 𝒯⋇ 𝒯   on 𝒴, implies 

(𝒴, 𝒯⋇) is 𝐿(𝜃𝒞)-space. 

Define 𝒯1 = {𝑓−1(𝒰): 𝒰 𝒯⋇}, so (𝒳, 𝒯1) is a 

topology on (𝒳, 𝒯) and 𝒯1 𝒯 and (𝒳, 𝒯1) is 

𝐿(𝜃𝒞)-space, ( let 𝒮 be a Lindelof subset of 𝒳, to 

prove 𝒮 is 𝜃-closed in 𝒳, since 𝑓 is continuous 

and then we have 𝑓(𝒮) is Lindelof set in 𝒴 which 

is 𝐿(𝜃𝒞)-space, then 𝑓(𝒮) is 𝜃-closed in (𝒴, 𝒯⋇), 

to show 𝒮 is 𝜃-closed set, that is to show 𝒮 =
𝐶𝑙𝜃(𝒮), since 𝒮 𝐶𝑙𝜃(𝒮), let 𝑠𝐶𝑙𝜃(𝒮) and 𝑠𝒮, 

since 𝑓  is injective,then 𝑓(𝑠)𝑓(𝒮) and 𝑓 is 

surjective, so 𝑤𝑓(𝒮) where 𝑤 = 𝑓(𝑠), but 𝑓(𝒮) 

is 𝜃-closed in 𝒴, then there is open set 𝒲 in 𝒴 

with  𝑤 𝒲 and 𝒲̅ ∩ 𝑓(𝒮) = , so 𝑓−1(𝒲̅ ∩

𝑓(𝒮)) = 𝑓−1() = , and  𝑓−1(𝒲̅) ∩

𝑓−1(𝑓(𝒮)) = , then 𝑓−1(𝒲̅) ∩ 𝒮 = , since 𝑓 is 
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homeomorphism, then 𝑓−1 (𝒲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ 𝒮 = , we have 

𝑠 is not 𝜃-adherent point to 𝒮. Therefore 𝒮 is 𝜃-

closed in 𝒳), which is contradiction, since 𝒳 

is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. Hence (𝒴, 𝒯  ) is  

ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Lemma (3.9):  In Lindelof space, any 𝜃-closed set 

is Lindelof set. 

Proof: Let 𝒳 be a Lindelof space and 𝒜 be 𝜃-

closed subset of 𝒳. From Remark 2.6, 𝒜 is a 

closed subset of 𝒳.  Then 𝒜 is Lindelof set. 

Proposition (3.10): Let (𝒴, 𝒯) be a subspace of a 

Lindelof 𝐿(𝜃𝒞)-space (𝒳, 𝒯), 𝒴 is Lindelof iff 𝒴 

is 𝜃-closed. 

Proof: Suppose 𝒴 is Lindelof subspace of 𝒳, 

since 𝒳 is 𝐿(𝜃𝒞)-space, then 𝒴 is 𝜃-closed. 

Conversely, suppose 𝒴 is 𝜃-closed in 𝒳, which is 

Lindelof, then by Lemma 3.9, 𝒴 is Lindelof. 

Example (3.11): The discrete topology 𝒯𝐷 on an 

integer numbers 𝒵, (𝒵, 𝒯𝐷)  is Lindelof 𝐿(𝜃𝒞)-

space, also subspace (𝒩, 𝒯𝐷) is Lindelof and 𝜃-

closed, where 𝒩 is a natural number.  

Proposition (3.12): If (𝒳, 𝒯) is a Lindelof 

𝐿(𝜃𝒞)-space, then every 𝜃-closed subspace of 𝒳 

is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Let 𝒴 be 𝜃-closed in 𝒳, but 𝒳 is Lindelof, 

then by Proposition 3.10, 𝒴 is Lindelof. Now let 

𝒩 be a Lindelof subset of 𝒴, then 𝒩 is Lindelof 

in 𝒳, but 𝒳 is 𝐿(𝜃𝒞)-space, so 𝒩 is 𝜃-closed in 

𝒳. Now 𝒩 = 𝒩 ∩ 𝒴, since 𝒩 𝒴, by Lemma 

2.7, 𝒩 is 𝜃-closed in 𝒴, hence 𝒴 is 𝐿(𝜃𝒞)-space 

and by Theorem 3.3, 𝒴 is  ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Lemma (3.13): A subset ℋof a space 𝒳 is 𝐺𝛿-𝜃-

open set if and only if every point in ℋ is 𝐺𝛿-𝜃-

interior point to ℋ. 

Proof: Suppose ℋ is 𝐺𝛿-𝜃-open set and 𝑥 ∈ ℋ, 

then there exists 𝒜 = ℋ which is 𝐺𝛿-𝜃-open set 

and 𝑥 ∈ 𝒜 = ℋ ℋ, so 𝑥 is 𝐺𝛿-𝜃-interior point 

to ℋ, but 𝑥 is an arbitrary point, so any point in 𝒜 

is 𝐺𝛿-𝜃-interior point to 𝒜. Conversely, suppose 

any point in ℋ is 𝐺𝛿-𝜃-interior point to ℋ, that is, 

for each 𝑥𝑖 ∈ ℋ, there is 𝒜𝑥𝑖
 is 𝐺𝛿-𝜃-open subset 

of ℋ, we get ℋ =  ⋃ 𝒜𝑥𝑖𝑥𝑖∈ℋ , then ℋ is 𝐺𝛿-𝜃-

open set. 

Proposition (3.14): Every Lindelof set in 𝜃𝒯2-

space is ℱ𝜎-𝜃-closed set. 

Proof: Let 𝒜 be a Lindelof subset of a space 𝒳, 

and 𝑝 ∉ 𝒜, then for each 𝑞 ∈ 𝒜, 𝑝 ≠ 𝑞 and 

𝑝, 𝑞 ∈ 𝒳, since 𝒳 is 𝜃𝒯2-space, then there exist 

two 𝜃-open sets 𝒰 and 𝒱, with 𝑞 ∈ 𝒰, 𝑝 ∈ 𝒱 and 

𝒰 ∩ 𝒱 = ∅. Let  ⋃ 𝒰𝑞𝑞∈𝒜  is 𝜃-open cover to 𝒜, 

then it is open cover to 𝒜 which is Lindelof, so 

𝒜⋃ 𝒰𝑞𝑖𝑖∈𝑁 , then 𝒰∗ = ⋃ 𝒰𝑞𝑖𝑖∈𝑁  is open and 

𝒱∗ = ⋂ 𝒱𝑞𝑖(𝑝)𝑖∈𝑁 , since 𝒱∗ is the intersection of 

countable many 𝜃-open set, then 𝒱∗ is 𝐺𝛿-𝜃-open 

set and 𝒱∗ ∩ 𝒰∗ = ∅, so 𝑝 ∈ 𝒱∗ 𝒜𝑐, then  𝑝 is 

𝐺𝛿-𝜃-interior point to 𝒜𝑐, from Lemma 3.13,  𝒜𝑐 

is 𝐺𝛿-𝜃-open set. Therefore 𝒜 is ℱ𝜎-𝜃-closed set. 

Proposition (3.15): Every ℱ𝜎-𝜃-closed set in 

Lindelof space is Lindelof. 

Proof: Let ℋ be ℱ𝜎-𝜃-closed subset of a space 𝒳, 

that is ℋ = ⋃ ℱ𝑖𝑖∈𝑁 , where ℱ𝑖 is 𝜃-closed set in 

𝒳, but 𝒳 is Lindelof space, so by Lemma 3.9, ℱ𝑖 

, 𝑖 ∈ 𝑁, is Lindelof. Now, ⋃ ℱ𝑖𝑖∈𝑁  is Lindelof and 

ℋ = ⋃ ℱ𝑖𝑖∈𝑁 , so ℋ is Lindelof.  

Remark (3.16): Let (ℛ, 𝒯𝐷) be a discrete 

topology on a real numbers ℛ. Every singleton set 

is 𝜃-closed, then it is ℱ𝜎-𝜃-closed set and 

Lindelof, but (ℛ, 𝒯𝐷) is not Lindelof. 

Theorem (3.17):  Let a space 𝒳 is 𝜃𝒯2, Lindelof 

space, then 𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space iff 𝒳 is 𝜃𝑃-

space. 

Proof: Let 𝒳 be ℳ𝑖𝑛𝐿(𝜃𝒞)-space, to prove 𝒳 

is 𝜃𝑃-space. Let 𝒜 be ℱ𝜎-𝜃-closed subset in 𝒳, 

which is Lindelof, by Proposition 3.15, 𝒜 is 

Lindelof subset of 𝒳, which is 𝐿(𝜃𝒞)-space, then 

𝒜 is 𝜃-closed set in 𝒳, Therefore 𝒳 is 𝜃𝑃-space. 

Conversely, suppose 𝒳 is 𝜃𝑃-space, to prove 𝒳 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space, let ℋ be a Lindelof subset of 

𝒳, but 𝒳 is 𝜃𝒯2-space, then by Proposition 3.14 , 

ℋ is ℱ𝜎-𝜃-closed set, also 𝒳 is 𝜃𝑃-space, then ℋ 

is 𝜃-closed subset of 𝒳, that means 𝒳 is 𝐿(𝜃𝒞)-

space and it is Lindelof, so from Theorem 3.3, 𝒳 

is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proposition (3.18): Every 𝜃𝒯2-space and 𝜃𝑃-

space is 𝐿(𝜃𝒞)-space. 

Proof: Let ℳ be a Lindelof subset of 𝒳, but 𝒳 is 

𝜃𝒯2-space, so by Proposition 3.14, ℳ is ℱ𝜎-𝜃-

closed set in 𝒳, which is 𝜃𝑃-space, hence ℳ is 𝜃-

closed set in 𝒳, therefore 𝒳 is 𝐿(𝜃𝒞)-space. 

Theorem (3.19): Every Lindelof 𝜃𝒯2 and 𝜃𝑃-

space is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Let a space 𝒳 be 𝜃𝒯2 and 𝜃𝑃-space, by 

Proposition 3.18, 𝒳 is 𝐿(𝜃𝒞)-space and it is 

Lindelof, so by  Theorem 3.3, 𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-

space. 

Proposition (3.20): Every 𝐿(𝜃𝒞)-space is 

𝒦(𝜃𝒞)-space. 

Proof: Let ℬ be a compact subset of a space 𝒳, 

then ℬ is Lindelof in 𝒳, but 𝒳 is 𝐿(𝜃𝒞)-space, so 

ℬ is 𝜃-closed. Hence 𝒳 is 𝒦(𝜃𝒞)-space. 

The convers of Proposition 3.20, is not true as 

shown by the following example. 
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Example (3.21): Let (ℛ, 𝒯𝒰) be a usual topology 

on a real numbers ℛ. The compact subset of this 

space is only finite sets or closed interval, also 

they are 𝜃-closed. Therefore,  (ℛ, 𝒯𝒰) is 𝒦(𝜃𝒞)-

space. Also, the rational numbers ℚ is Lindelof 

but not 𝜃-closed. Hence(ℛ, 𝒯𝒰) is not  𝐿(𝜃𝒞)-

space. 

Theorem (3.22): If a space 𝒳 is compact and 𝜃𝑃-

space, then 𝒳 is ℳ𝑖𝑛𝜃𝒯2-space iff 𝒳 is 𝜃𝒯2-space 

and ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Suppose a space 𝒳 is ℳ𝑖𝑛𝜃𝒯2-space, then 

𝒳 is 𝜃𝒯2-space, by Proposition 3.18, 𝒳 is 𝐿(𝜃𝒞)-

space. Also 𝒳 is compact, then 𝒳 is Lindelof, 

hence by Theorem 3.3, 𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Conversely, suppose 𝒳 is 𝜃𝒯2-space 

and ℳ𝑖𝑛𝐿(𝜃𝒞)-space, so 𝒳 is 𝜃𝒯2-space and 

𝐿(𝜃𝒞)-space, by Proposition 3.20, 𝒳 is 𝜃𝒯2-space 

and 𝒦(𝜃𝒞)-space, and since 𝒳 is compact 

𝒦(𝜃𝒞)-space, so from Theorem 2.27, 𝒳 is 

ℳ𝑖𝑛𝒦(𝜃𝒞)-space, and by Theorem 2.30, 𝒳 is 

ℳ𝑖𝑛𝜃𝒯2-space. 

Corollary (3.23): If a space 𝒳 is compact 

and ℳ𝑖𝑛𝐿(𝜃𝒞)-space, then 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-

space. 

Proof: Suppose 𝒳 is compact and ℳ𝑖𝑛𝐿(𝜃𝒞)-

space, so 𝒳 is compact and 𝐿(𝜃𝒞)-space, by 

Proposition 3.20, 𝒳 is compact and 𝒦(𝜃𝒞)-space, 

so from Theorem 2.27, we have 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-

space. 

Corollary (3.24): If a space 𝒳 is compact and 

𝐿(𝜃𝒞)-space, then 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)- space. 

Proof: Suppose 𝒳 is compact and 𝐿(𝜃𝒞)-space, 

by Proposition 3.20, 𝒳 is compact and 𝒦(𝜃𝒞)-

space, so from Theorem 2.27, 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-

space. 

Corollary (3.25): Every countably compact, 

Lindelof and 𝐿(𝜃𝒞)-space is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof: Suppose 𝒳 is countably compact and 

Lindelof space, then 𝒳 is compact, from 

Corollary 3.24, 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Theorem (3.26): If a space 𝒳 is compact and 

𝐿(𝜃𝒞)-space, then a closed subspace of 𝒳 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space and ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof: Let 𝒴 be a closed subspace of a compact 

space 𝒳, so 𝒴 is compact set in 𝒳, then 𝒴 is 

Lindelof. Also, 𝒳 is 𝐿(𝜃𝒞)-space, so by 

Proposition 2.15, 𝒴 is 𝐿(𝜃𝒞)-space. Hence from 

Theorem 3.3, 𝒴 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. Now, from 

Proposition 3.20, 𝒳 is 𝒦(𝜃𝒞)-space, so from 

Theorem 2.27, 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Corollary (3.27): If a space 𝒳 is Lindelof and 

𝐿(𝜃𝒞)-space, then a closed subspace of 𝒳 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Let 𝒴 be a closed subset of a Lindelof 

space 𝒳, then  𝒴 is Lindelof in 𝒳, and then by 

Proposition 2.15, 𝒴 is 𝐿(𝜃𝒞)-space, from 

Theorem 3.3, 𝒳 is ℳinL(θ𝒞)-space.  

Corollary (3.28): If a space 𝒳 is Lindelof and 

𝐿(𝜃𝒞)-space, then a 𝜃-closed subspace of 𝒳 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Corollary (3.29): If a space 𝒳 is hereditarily 

Lindelof and 𝐿(𝜃𝒞)-space, then any subspace of 

𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Let 𝒴 be a subspace of a space 𝒳, since 𝒳 

is hereditarily Lindelof, so 𝒴 is Lindelof, also by 

Proposition 2.15, 𝒴 is 𝐿(𝜃𝒞)-space, from 

Theorem 3.3, 𝒳 is ℳinL(θ𝒞)-space. 

Theorem (3.30): If a space 𝒳 is compact 𝜃𝑃-

space, then 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-space if and only if 

𝒳 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Suppose 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-space, that 

means 𝒳 is 𝒦(𝜃𝒞)-space and by hypothesis 𝒳 is 

compact, so 𝒳 is locally compact space and then 

from Proposition 2.28, 𝒳 is 𝜃𝒯2-space, also 𝒳 is 

Lindelof.  Therefore, by Theorem 3.19, 𝒳 

is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. Conversely, suppose 𝒳 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space, so 𝒳 is 𝐿(𝜃𝒞)-space, by 

Proposition 3.20, 𝒳 is 𝒦(𝜃𝒞)-space and it is 

compact, hence from Theorem 2.27, 𝒳 is 

ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Definition (3.31): A space 𝒳 is said to be 𝜃𝒬-set 

space, if any subset of 𝒳 is ℱ𝜎-𝜃-closed set in 𝒳. 

Proposition (3.32): 

1. Every 𝜃𝒬-set space is 𝜃𝐿3-space. 

2. Every 𝜃𝒬-set space and  𝜃𝐿1-space is 

𝐿(𝜃𝒞)-space. 

3. Every 𝜃𝒬-set space and  𝜃𝑃-space is 

𝐿(𝜃𝒞)-space. 

4. Every Lindelof 𝜃𝐿1-space is 𝜃𝑃-space. 

5. Every 𝜃𝑃-space and 𝜃𝐿3-space is 𝐿(𝜃𝒞)-

space. 

Proof:  

1. Let ℋ be a Lindelof subset of 𝜃𝒬-set 

space 𝒳, then ℋ is ℱ𝜎-𝜃-closed set in 𝒳. 

Therefore, 𝒳 is 𝜃𝐿3-space. 

2. Let 𝒳 be a 𝜃𝒬-set space 𝒳, by part(1), 𝒳 

is 𝜃𝐿3-space, and from Theorem 2.16 part 

(1), 𝒳 is 𝐿(𝜃𝒞)-space. 
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3. Let 𝐿 be a Lindelof subset of 𝜃𝒬-set space 

𝒳, then 𝐿 is ℱ𝜎-𝜃-closed set in 𝒳 which is  

𝜃𝑃-space, then 𝐿 is 𝜃-closed set in 𝒳. 

Therefore, 𝒳 is 𝐿(𝜃𝒞)-space. 

4. Let 𝒦 be ℱ𝜎-𝜃-closed set in a Lindelof 

space 𝒳, then 𝒦 = ⋃ ℋ𝑖𝑖∈𝑁 , where ℋ𝑖 is 

𝜃-closed set in a space 𝒳, for each 𝑖 ∈ 𝑁, 

by Lemma 3.9, ℋ𝑖 is Lindelof, so 𝒦 is 

Lindelof and ℱ𝜎-𝜃-closed set, since 𝒳  is 

𝜃𝐿1-space, then 𝒦 is 𝜃-closed set. 

Therefore, 𝒳 is 𝜃𝑃-space. 

5. Suppose 𝒳 is 𝜃𝑃-space, by Theorem 2.16, 

part(2), 𝒳 is 𝜃𝐿1-space and it is 𝜃𝐿3-

space, so by Theorem 2.16, part(1), 𝒳 is 

𝐿(𝜃𝒞)-space. 

Proposition (3.33):   

1. Every Lindelof 𝜃𝐿1-space and 𝜃𝐿3-space 

is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

2. Every Lindelof 𝜃𝐿1-space and 𝜃𝒯2-space is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

3. Every Lindelof  𝜃𝒬-set and 𝜃𝐿1-space  is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof:  

1. Let a space 𝒳 is 𝜃𝐿1-space and 𝜃𝐿3-space, 

the by Theorem 2.16, part(1), 𝒳 is 𝐿(𝜃𝒞)-

space and it is Lindelof, so from Theorem 

3.3, 𝒳 is ℳinL(θ𝒞)-space. 

2. Let a space 𝒳 is Lindelof 𝜃𝐿1-space, the 

by Proposition 3.32 part(4), 𝒳 is 𝜃𝑃-

space, and from Proposition 3.18, 𝒳 

is 𝐿(𝜃𝒞)-space, also from Theorem 3.3, 𝒳 

is ℳinL(θ𝒞)-space. 

3. Let a space 𝒳 is Lindelof 𝜃𝐿1-space, the 

by Proposition 3.32, part (4), 𝒳 is 𝜃𝑃-

space, and from Proposition 3.32, part (3), 

𝒳 is 𝐿(𝜃𝒞)-space, also from Theorem 3.3, 

𝒳 is ℳinL(θ𝒞)-space. 

Theorem (3.34): Every 𝐿(𝜃𝒞)-space having 𝜃-

dense Lindelof subset is ℳinL(θ𝒞)-space. 

Proof: Let 𝒜 be a 𝜃-dense Lindelof subset of a 

space 𝒳, but 𝒳 is 𝐿(𝜃𝒞)-space, then 𝒜 is 𝜃-

closed, then 𝒜 = 𝐶𝑙𝜃(𝒜) = 𝒳, hence 𝒳 is 

Lindelof and it is 𝐿(𝜃𝒞)-space, so from Theorem 

3.3, 𝒳 is ℳinL(θ𝒞)-space. 

Proposition (3.35): Every Lindelof 𝜃𝒬-set space 

and 𝜃𝑃-space is ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: From Proposition 3.32, part(3) and 

Theorem 3.3. 

Proposition (3.36): Every compact 𝜃𝒬-set space 

and  𝜃𝑃-space is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof:   Let a space 𝒳 is 𝜃𝒬-set space and  𝜃𝑃-

space, then  from Proposition 3.32, part(3), 𝒳 is 

𝐿(𝜃𝒞)-space and by proposition 3.20, 𝒳 is 

𝒦(𝜃𝒞)-space, since 𝒳 is compact and 𝒦(𝜃𝒞)-

space so by Theorem 2.27, 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-

space. 

Theorem (3.37): Every compact 𝜃𝒬-set space and 

𝜃𝐿1-space is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof: Let a space 𝒳 be 𝜃𝒬-set space and 𝜃𝐿1-

space, so by Proposition 3.32 part (3), 𝒳 

is 𝐿(𝜃𝒞)-space, and from Proposition 3.20, 𝒳 

is 𝒦(𝜃𝒞)-space, so we have a space 𝒳 is compact 

𝒦(𝜃𝒞)-space, hence by Theorem 2.27, 𝒳 is 

ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Corollary (3.38): Every compact 𝜃𝐿1-space and  

𝜃𝐿3-space is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof: Let 𝒳 be 𝜃𝐿1 and 𝜃𝐿3-space,         from 

Proposition 2.16, part(1), 𝒳 is 𝐿(𝜃𝒞)-space, also 

by Proposition 3.20, 𝒳 is   𝒦(𝜃𝒞)-space and from 

Theorem 2.27, 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Corollary (3.39): Every compact 𝜃𝑃-space and 

𝜃𝐿3-space is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof: Let 𝒳 be 𝜃𝑃-space, from Theorem 2.16, 

part(2), 𝒳 is 𝜃𝐿1-space and from Corollary 

3.38, 𝒳 is ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Theorem (3.40): If 𝒳 and 𝒴 are 𝒯2-spaces, 

𝐿(𝜃𝒞)-spaces, then 𝒳 𝒴 is 𝐿(𝜃𝒞)-space. 

Proof: Let 𝐿 be a Lindelof subset of  𝒳 𝒴, and 

let (𝑥𝑜 , 𝑦𝑜) ∉ 𝐿, for each (𝑥, 𝑦) ∈ 𝐿, then there 

exists open neighbourhoods 𝒰𝑥 and 𝒱𝑦 of 𝑥 and 𝑦 

respectively, such that (𝑥𝑜 , 𝑦𝑜) ∉ 𝒰𝑥
̅̅ ̅̅  𝒱𝑦

̅̅ ̅, since 

𝐿 ⊆∪ {𝒰𝑥𝒱𝑦: (𝑥, 𝑦) ∈ 𝐿}, we have 𝐿 ⊆∪

{𝒰𝑥𝑛
𝒱𝑦𝑛

: 𝑛 ∈ 𝒵   , for some  (𝑥𝑛, 𝑦𝑛) ∈ 𝐿, 

𝑛 ∈ 𝒵   }. Now, let 𝐸1 = {𝑛 ∈ 𝒵   : 𝑥𝑜 ∉ 𝒰𝑥𝑛
̅̅ ̅̅ ̅} 

and 𝐸2 = {𝑛 ∈ 𝒵   : 𝑦𝑜 ∉ 𝒰𝑦𝑛
̅̅ ̅̅ ̅}, then 𝐸1  ∪ 𝐸2 =

𝒵   . And, if  𝐿1 =∪ {𝐿 ∩ (𝒰𝑥𝑛
̅̅ ̅̅ ̅  𝒰𝑦𝑛

̅̅ ̅̅ ̅ :𝑛 ∈ 𝐸1} 

and 𝐿2 =∪ {𝐿 ∩ (𝒰𝑥𝑛
̅̅ ̅̅ ̅ 𝒱𝑦𝑛

̅̅ ̅̅̅ : 𝑛 ∈ 𝐸2}, then 𝐿1 and 

𝐿2 are Lindelof subset of 𝒳 𝒴, such that 

𝐿1 ∪ 𝐿2 = 𝐿. Clearly 𝑥𝑜 ∉ 1(𝐿1) and since 𝐿1 is 

Lindelof and 1 is continuous, then 1(𝐿1) is 

Lindelof in 𝒳, and since 𝒳 is 𝐿(𝜃𝒞)-space, then 

1(𝐿1) is 𝜃-closed, by Remark 2.6, 1(𝐿1) is 

closed in 𝒳, so there is an open neighbourhood 

𝐺 𝒳 of 𝑥𝑜, with 𝐺 ∩ 1(𝐿1) = ∅. In the same 

way, since 𝑦𝑜 ∉ 2(𝐿2) and 𝐿2 is Lindelof in 𝒴, 

with 1 is continuous, so 2(𝐿2) is Lindelof in 𝒴, 

and since 𝒴 is 𝐿(𝜃𝒞)-space, then 2(𝐿2) is 𝜃-

closed, so 2(𝐿2) is closed in 𝒴, so there is an 
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open neighbourhood 𝐻 𝒴 of 𝑥𝑜, with 𝐻 ∩
2(𝐿2) = ∅, we now claim (𝐺 𝐻) ∩ 𝐿 = ∅, 

since(𝑥, 𝑦) ∈ 𝐿, suppose(𝑥, 𝑦) ∈ (𝐺 𝐻), then 

𝑥 ∈ 𝐺, but 𝐺 ∩ 1(𝐿1) = ∅, then 𝑥 ∉ 1(𝐿1), so 

(𝑥, 𝑦) ∉ 𝐿1, also𝑦 ∉ 2(𝐿2), hence (𝑥, 𝑦) ∉ 𝐿2, 

since 𝐿1 ∪ 𝐿2 = 𝐿 That is (𝑥, 𝑦) ∉ 𝐿 and this is 

contradiction, so 𝒳 𝒴 is 𝐿(𝜃𝒞)-space. 
Corollary (3.41): If 𝒳 and 𝒴 are compact 𝒯2-

spaces and 𝐿(𝜃𝒞)-spaces, then 𝒳 𝒴 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space and ℳ𝑖𝑛𝒦(𝜃𝒞)-space. 

Proof: Let 𝒳 and 𝒴 are compact 𝒯2-spaces and 

𝐿(𝜃𝒞)-space, then by Theorem 3.40, 𝒳  𝒴 is 

𝐿(𝜃𝒞)-space and then 𝒳 𝒴 is compact, also 

𝒳 𝒴 is Lindelof and 𝒳 𝒴 is 𝐿(𝜃𝒞)-space, by 

Theorem 3.3, 𝒳 𝒴  is ℳinL(θ𝒞)-space. Now, 

by Proposition 3.20, 𝒳 𝒴 is 𝒦(𝜃𝒞)-space and it 

is compact, then by Theorem 2.27, 𝒳 𝒴  is 

ℳin𝒦(θ𝒞)-space. 

Corollary (3.42): If 𝒳 and 𝒴 are Lindelof 𝒯2-

spaces and 𝐿(𝜃𝒞)-space, then 𝒳 𝒴 is 

ℳ𝑖𝑛𝐿(𝜃𝒞)-space. 

Proof: Let 𝒳 and 𝒴 are compact 𝒯2-spaces and 

𝐿(𝜃𝒞)-spaces, then by Theorem 3.40, 𝒳  𝒴 is 

𝐿(𝜃𝒞)-space and from hypothesis 𝒳 𝒴 is 

Lindelof, and the by Theorem 3.3, 𝒳 𝒴  is 

ℳinL(θ𝒞)-space. 

Proposition (3.43): If 𝒳 and 𝒴 are ℛ1, 𝐿(𝜃𝒞)-

spaces, then 𝒳  𝒴 is 𝐿(𝜃𝒞)-space. 

Proof: Let 𝒳 and 𝒴 are 𝐿(𝜃𝒞)-spaces, by 

Remarks 2.20, part (3), 𝒳 and 𝒴 are 𝒯1-spaces, 

but 𝒳 and 𝒴 are ℛ1-spaces, then 𝒳 and 𝒴 are 𝒯2-

space and by Theorem 3.40, 𝒳 𝒴 is 𝐿(𝜃𝒞)-

space. 

Theorem (3.44) If 𝒳 and 𝒴 are compact ℛ1 and 

𝐿(𝜃𝒞)-space, then 𝒳 𝒴 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space and 

ℳ𝑖𝑛𝒦(𝜃𝒞)-space.   

Proof: Let 𝒳 and 𝒴 are ℛ1, 𝐿(𝜃𝒞)-space, then by 

Proposition 3.43, 𝒳𝒴 is 𝐿(𝜃𝒞)-space. Also, 𝒳 

and 𝒴 are compact spaces, so 𝒳 𝒴 is compact 

and then 𝒳 𝒴 is Lindelof. Therefor from 

Theorem 3.3, 𝒳 𝒴  is ℳinL(θ𝒞)-space. Now, 

from Proposition 3.20, 𝒳 𝒴 is 𝒦(𝜃𝒞)-space and 

it is compact, then by Theorem 2.27, 𝒳 𝒴  is 

ℳin𝒦(θ𝒞)-space. 

Theorem (3.45) If 𝒳 and 𝒴 are Lindelof ℛ1 and 

𝐿(𝜃𝒞)-spaces, then 𝒳 𝒴 is ℳ𝑖𝑛𝐿(𝜃𝒞)-space 

Proof: Let 𝒳 and 𝒴 are ℛ1, 𝐿(𝜃𝒞)-spaces, then 

by Proposition 3.43,  𝒳  𝒴 is 𝐿(𝜃𝒞)-space, 

also 𝒳 and 𝒴 are Lindelof spaces, so 𝒳 𝒴 is 

Lindelof. Hence from Theorem 3.3, 𝒳 𝒴  is 

ℳinL(θ𝒞)-space. 
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