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 لخلاصـةا
الفوقية   ω̂-الغرض من هذا البحث هو لتقديم انواع جديدة من بديهيات الفصل الفوقية بأستخدام المجموعات المفتوحة

في الفضاءات الفوقية وتوضيح العلاقة بينهم, ولتقديم صيغ جديدة من الدوال المستمرة  الفوقية �̂�-والمجموعات المفتوحة 

 .*التامة والدوال التشاكلية الفوقية *, الدوال المستمرة الفوقية*الفوقية

 

Introduction                           
In 1983, Mashhour introduced the concept of 

supra topology [6]. The supra closure for a 

subset 𝒲 of a supra space 𝑋 was defined as the 

intersection of all supra closed subsets of 𝑋 

containing 𝒲, while the supra interior of 𝒲 

defined as the union of all supra open subsets 

of 𝑋 contained in 𝒲. The researcher in [1], 

defined the supra compact spaces. Also many 

researchers wrote about the supra separation 

axioms, and we introduced in this research 

definitions of two sets ŋ̂, �̂� in supra spaces and 

new forms of supra separation axioms such as 

supra �̂�𝑇0, supra �̂�𝑇1, supra �̂�𝑇2, supra ŋ̂𝑇0, 

supra ŋ̂𝑇1, and supra ŋ̂𝑇2, also new forms of 

supra* continuous functions, perfectly supra* 

continuous functions and new forms of supra* 

homeomorphism functions by using supra �̂�-

open and supra ŋ̂-open sets. We presented 

some theorems, propositions and remarks and 

we supported them by examples.  
 

1- Supra* �̂�-Continuous and supra* ŋ̂-

continuous functions.    

We introduced some new types of supra* 

continuous and perfectly supra*continuous 

functions by using su. ŋ̂-open, su. �̂�-open sets 

and illustrated the relation between them. We 

used the abbreviation "su." to refer to "supra". 
Definition (1.1) [3]: Let 𝑋 be a non- empty set 

and 𝜇 be a sub collection of the power set of 𝑋, 

then 𝜇 is a supra topology on 𝑋 if:  

1- ∅, 𝑋 ∈ 𝜇.  
2- 𝜇 is closed under the arbitrary union, any set 

𝒲 ∈ 𝜇 is called supra open set and its 

complement is supra closed set. The pair (𝑋, 𝜇) 

is called a supra space. 

Definition (1.2) [6]: Let (𝑋,Ʈ) be a topological 

space, 𝜇 is called a supra topology associated 

with Ʈ if Ʈ⊂ 𝜇. 

Remark (1.3): Any topology is su. topology, 

since every topology includes ∅, 𝑋 and it is 

closed under the infinite union. This remark is 

irreversible                

Example (1.4): In the su. space(𝑋, 𝜇), where 

𝑋= {1, 2, 3}, 𝜇= {∅, 𝑋, {1}, {2}, {1, 2}, {2, 

3}, {1, 3}}, 𝜇 is su. topology on 𝑋 but not 

topology since {1, 3} ⋂ {2, 3} = {3} ∉𝜇.                                                         

Definition (1.5):  

1- A subset 𝒲 of a su. space (𝑋, 𝜇) is called a 

su. �̂�-open set if for any 𝑠 ∈ 𝒲, there is 𝑉 ∈ 𝜇 
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such that 𝑠 ∈ 𝑉 and 𝑉-𝒲 is countable. 𝒲𝑐 is 

called a su. �̂�-closed set. 

2- A subset 𝒲 of a su. space (𝑋, 𝜇) is called a 

su. ŋ̂-open set if for any 𝑠 ∈ 𝒲, there is 𝑉 ∈ 𝜇 

such that 𝑠 ∈ 𝑉 and 𝑉-𝒲 is  finite. 𝒲𝑐 is 

called a su. ŋ̂-closed set. 

3- The su. �̂�-closure of a subset 𝒲 of a su. 

space (𝑋, 𝜇) is the intersection of all su. �̂�-

closed subsets of 𝑋 which contain 𝒲, and we 

denote it by 𝑐𝑙�̂�
𝜇

(𝒲). While the su. �̂�-interior 

of 𝒲 is the union of all su. �̂�-open subsets of 

𝑋 which contained in 𝒲, and we denote it by 

𝐼𝑛𝑡�̂�
𝜇

 (𝒲). By the same way we can define su. 

ŋ̂-closure for 𝒲 (denoted by 𝑐𝑙ŋ̂
𝜇

(𝒲)) and su. 

ŋ̂-interior for 𝒲 (denoted by 𝐼𝑛𝑡ŋ̂
𝜇

(𝒲)). 

Remark (1.6):  

1- Any su. open set is su �̂�-open (resp. su. ŋ̂ 

open) set. 

2- Any su. closed set is su �̂�-closed (resp.    su. 

ŋ̂ -closed) set.    

Definition (1.7): Let (𝑋, 𝜇𝑋), (𝑌, 𝜇𝑌) be a 

topological spaces and Ʈ𝑋 ⊂ 𝜇𝑋 , Ʈ𝑌 ⊂ 𝜇𝑌. The 

function 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is called:-  

1- Su*. continuous function. If the inverse 

image of any su. open (resp. su. closed) set in 𝑌 

is a su. open (resp. su. closed) set in 𝑋 [6]. 

2- Su*. �̂�-continuous function. If the 

inverse image of any su. open (resp. su. closed) 

set in 𝑌 is a su. �̂�-open (resp. su. �̂�-closed) set 

in 𝑋. 

3- Su*.  ŋ̂-continuous function. If the 

inverse image of any su. open (resp. su. closed) 

set in 𝑌 is a su.  ŋ̂-open (resp. su ŋ̂-closed) set 

in 𝑋. 

4- Strongly su*. �̂�-continuous function. If 

the inverse image of any su. �̂�-open (resp. su. 

�̂�-closed) set in 𝑌 is a su. open (resp. su. 

closed) set in 𝑋. 

5- Strongly su*. ŋ̂-continuous function. If 

the inverse image of any su. ŋ̂-open (resp. su. 

ŋ̂-closed) set in 𝑌 is a su. open (resp. su. 

closed) set in 𝑋.             

6- Su*. �̂�-irresolute function. If the 

inverse image of any su. �̂�-open (resp. su. �̂�-

closed) set in 𝑌 is a su. �̂�-open (resp. su. �̂�-

closed) set in 𝑋.        

7- Su*. ŋ̂-irresolute function. If the inverse 

image of any su. ŋ̂-open (resp. su. ŋ̂-closed) set 

in 𝑌 is a su. ŋ̂-open (resp. su. ŋ̂-closed) set in 

𝑋.           

8- Perfectly su*. continuous. If the inverse 

image of any su. open (resp. su. closed) set in 𝑌 

is a su. clopen set in 𝑋 [8]. 

9- Totally su*. �̂�-continuous. If the 

inverse image of any su. open (resp. su. closed) 

set in 𝑌 is a su. �̂�-clopen set in 𝑋. 

10- Totally su*.  ŋ̂-continuous. If the inverse 

image of any su. open (resp. su. closed) set in 𝑌 

is a su. ŋ̂-clopen set in 𝑋.  

11- Perfectly su*. �̂�-continuous. If the inverse 

image of any su. �̂�-open (resp. su. �̂�-closed) 

set in 𝑌  is a su. clopen set in 𝑋.    

12- Perfectly su*. ŋ̂-continuous. If the inverse 

image of any su. ŋ̂-open (resp. su. ŋ̂-closed) set 

in 𝑌 is a su. clopen set in 𝑋.                        

13- Perfectly su*. �̂�-irresolute. If the inverse 

image of any su. �̂�-open (resp. su. �̂�-closed) 

set in 𝑌 is a su. �̂�-clopen set in 𝑋. 
14- Perfectly su*. ŋ̂-irresolute. If the        

inverse image of any su. ŋ̂-open (resp. su. ŋ̂-

closed) set in 𝑌 is a su. ŋ̂-clopen set 𝑋. 

Example (1.8): Let 𝑋=𝑌={1, 2, 3}, 𝜇𝑋= {∅, 𝑋, 

{1}, {3}, {1, 3}, {2, 3}, {1, 2}}and 

𝜇𝑌={∅, 𝑌, {3}, {1, 2}}, so 𝑓: 𝑋 ⟶ 𝑌 defined as 

𝑓(1)=2, 𝑓(2)=1, 𝑓(3)=3 is su*. continuous, su*. 

�̂�-continuous, su*. ŋ̂-continuous, su*. �̂�-

irresolute, su*. ŋ̂-irresolute function, but not 

strongly su*. �̂�-continuous and not strongly 

su*. ŋ̂-continuous function, since {1} is su.  �̂�-

open and su. ŋ̂-open set in 𝑌 but 𝑓−1({1}) 

={2} is not su. open set in 𝑋. Also, it is 

perfectly su*. continuous, totally su*. �̂�-

continuous, totally su*. ŋ̂-continuous, perfectly 

su*. ŋ̂-irresolute, perfectly su*.�̂�-irresolute, 

but not perfectly su*. ŋ̂-continuous, and not 

perfectly su*. �̂�- 

continuous function.         

Remark (1.9): 

1-  Every perfectly su*. continuous 

function is su*. continuous function. 

2- Every totally su*. �̂�-continuous (resp. 

totally su*. ŋ̂-continuous) function is su*. �̂�-

continuous (resp. su*. ŋ̂-continuous) function. 

3- Every perfectly su*. �̂�-continuous (resp. 

perfectly su*. ŋ̂-continuous) function is 

strongly su*. �̂�-continuous (resp. strongly su*. 

ŋ̂-continuous) function. 
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4- Every perfectly su*. �̂�-irresolute (resp. 

perfectly su*. ŋ̂-irresolute) function is su*. �̂�-

irresolute (resp. su*. ŋ̂-irresolute).                               

Example (1.10): Let (ℛ, Ʈ𝑐𝑜𝑓)  be the co-finite 

topological space and Ʈ𝑐𝑜𝑓 ⊂ 𝜇𝑐𝑜𝑓, so 

 𝐼ℛ: (ℛ, 𝜇𝑐𝑜𝑐) ⟶ (ℛ, Ʈ𝑐𝑜𝑓)  is su*. continuous, 

su*. �̂�-continuous, su*. ŋ̂-continuous, strongly 

su*. �̂�-continuous, strongly su*. ŋ̂-continuous, 

su*. �̂�-irresolute and su*. ŋ̂-irresolute function 

but not totally su*. �̂�-continuous, not totally 

su*. ŋ̂-continuous, not perfectly su*. �̂�-

continuous, not perfectly su*. �̂�-irresolute, not 

perfectly su*. ŋ̂-continuous, not perfectly su*. 

ŋ̂-irresolute and not perfectly su*. continuous. 
 

2- Su. separation axioms by using su. �̂�-open 

and su. ŋ̂-open sets.  

At the beginning we presented definitions of 

some separation axioms by using su. �̂�-open 

and su. ŋ̂-open sets, and we provided the 

relation between them, also we connected them 

with several types of su*.continuous, su*. open 

and su*. closed functions. 

Definition (2.1): The su. space (𝑋, 𝜇) is  

called:-                                                          

1- A su. 𝑇0-space [6], if for each different 

elements 𝑥, 𝑦 in 𝑋, there is 𝒲 ∈ 𝜇 such 

that 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. 

2- A su. �̂�𝑇0-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there is a su. �̂�-open set 𝒲 

in 𝑋 such that 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. 
3- A su. ŋ̂𝑇0-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there is a su. ŋ̂-open set 𝒲 

in 𝑋 such that 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. 

4- A su. 𝑇1-space [6], if for each different 

elements 𝑥, 𝑦 in 𝑋, there are 𝒲1, 𝒲2 ∈ 𝜇 with 

𝑥 ∈ 𝒲1, 𝑦 ∉ 𝒲1 and 𝑦 ∈ 𝒲2, 𝑥 ∉ 𝒲2.  
5- A su. �̂�𝑇1-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are su. �̂�-open sets 

𝒲1, 𝒲2 in 𝑋 with 𝑥 ∈ 𝒲1, 𝑦 ∉ 𝒲1 and 

𝑦 ∈ 𝒲2, 𝑥 ∉ 𝒲2.  
6- A su. ŋ̂𝑇1-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are su. ŋ̂-open sets 

𝒲1, 𝒲2 with 𝑥 ∈ 𝒲1, 𝑦 ∉ 𝒲1 and 𝑦 ∈ 𝒲2, 𝑥 ∉
𝒲2. 

7- A su. 𝑇2-space [6], if for each different 

elements 𝑥, 𝑦 in 𝑋, there are disjoint 𝒲1, 𝒲2 ∈
𝜇 with 𝑥 ∈ 𝒲1 and 𝑦 ∈ 𝒲2.  
8- A su. �̂�𝑇2-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are disjoint su. �̂�-

open sets 𝒲1, 𝒲2 in 𝑋 with 𝑥 ∈ 𝒲1 and 

𝑦 ∈ 𝒲2. 
9- A su. ŋ̂𝑇2-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are disjoint su. ŋ̂-open 

sets 𝒲1, 𝒲2 with 𝑥 ∈ 𝒲1  and 𝑦 ∈ 𝒲2. 

Example (2.2): 1- Let 𝑋= {1, 2, 3} and 𝜇𝑋= {∅, 

𝑋, {1, 2}, {2, 3}, {1, 3}}, so (𝑋, 𝜇𝑋) is su. 𝑇0-

space, su. �̂�𝑇0-space and su. ŋ̂𝑇0-space, su. 𝑇1-

space, su. �̂�𝑇1-space, su. ŋ̂𝑇1-space, su. �̂�𝑇2-

space, su. ŋ̂𝑇2-space, but not 𝑇2-space.  

2- Let 𝑋= {1, 2, 3} and 𝜇𝑋= {∅, 𝑋, {1},  

{2}, {1, 2}, {1, 3}, {2, 3}}, so (𝑋, 𝜇𝑋) is su. 

𝑇2-space, su. �̂�𝑇2-space, su. ŋ̂𝑇2-space. 

Remark (2.3): Suppose 𝑋 is a su. space, then, if 

𝑋 is:- 

1- Su. 𝑇𝑖-space, then it is su. �̂�𝑇𝑖-space and su. 

ŋ̂𝑇𝑖-space, 𝑖=0, 1, 2. 

2- Su. ŋ̂𝑇𝑖-space, then it is su. �̂�𝑇𝑖-space,                            

𝑖=0, 1, 2. 

3- Su. �̂�𝑇𝑖-space, then it is su.�̂�𝑇𝑖−1-space, 

𝑖=1, 2.   

4- Su. ŋ̂𝑇𝑖-space, then it is su. ŋ̂𝑇𝑖−1-space, 

𝑖=1, 2.  

5- Su. �̂�𝑇2-space (resp. ŋ̂𝑇2-space), then it is 

su. �̂�𝑇0-space (resp. ŋ̂𝑇0-space). 

Example (2.4): 

1. (𝒵, 𝜇𝑖𝑛𝑑) is su. �̂�𝑇0-space, su. ŋ̂𝑇0-space 

also su. �̂�𝑇2-space but not su. 𝑇0-space, not 

su. 𝑇2-space and not su. ŋ̂𝑇2-space.                            

2- Let X= {1, 2, 3} and μX= {∅, X, {1, 2}, {2, 

3}}, so (𝑋, 𝜇𝑋) is su. �̂�𝑇1-space, su. ŋ̂𝑇1-space, 

but not su. 𝑇1-space.   

3- (ℛ, 𝜇𝑐𝑜𝑓) is su. �̂�𝑇1-space and su. �̂�𝑇0-

space, but it is not su. �̂�𝑇2-space.                 

Proposition (2.5): If 𝒲𝑖, 𝑖 ∈ 𝐼 is u. �̂�-   open 

(resp. su. ŋ̂-open) subsets of a su. space (𝑋, 𝜇𝑋) 

then ⋃ 𝒲𝑖𝑖∈𝐼   is a su. �̂�- 

open (resp. su. ŋ̂-open) subset of (𝑋, 𝜇𝑋).  
Proof: Suppose 𝑒 ∈ ⋃ 𝒲𝑖𝑖∈𝐼 ⟹ 𝑒 ∈ 𝒲𝛼𝑖

, for 

some 𝛼𝑖 ∈ 𝐼, thus there is 𝐺 ∈ 𝜇𝑋 containing 𝑒 
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and 𝐺-𝒲𝛼𝑖
 is countable (resp. finite, but 𝐺-

⋃ 𝒲𝑖𝑖∈𝐼  ⊆ 𝐺-𝒲𝛼𝑖
 (since  

𝒲𝛼𝑖
⊆ ⋃ 𝒲𝑖𝑖∈𝐼  ⟹𝑋- ⋃ 𝒲𝑖𝑖∈𝐼  ⊆ 𝑋-𝒲𝛼𝑖

⟹  

𝐺 ⋂ (𝑋-⋃ 𝒲𝑖𝑖∈𝐼 ) ⊆ 𝐺 ⋂ (𝑋-𝒲𝛼𝑖
) ⟹ 𝐺- 

⋃ 𝒲𝑖𝑖∈𝐼  ⊆ 𝐺-𝒲𝛼𝑖
), hence 𝐺- ⋃ 𝒲𝑖𝑖∈𝐼    is a 

countable (resp. a finite) set (because 𝐺-𝒲𝛼𝑖
 is 

a countable (resp. finite) set and any subset of 

countable (resp. finite) set is countable (resp. 

finite)). Therefore ⋃ 𝒲𝑖𝑖∈𝐼  is a su. �̂�-open 

(resp. su. ŋ̂-open) set. 

Definition (2.6): Suppose 𝐻 is a subset of a su. 

space 𝑋, whenever for any element 𝑥 ∈ 𝐻 there 

is a su. �̂�-open (resp. su. ŋ̂-open) subset 𝑈 of 𝑋 

containing 𝑥 and 𝑈 ⊆ 𝐻, then 𝑥 is a su. �̂�-

interior (resp. su. ŋ̂-interior) point to 𝐻. 

Proposition (2.7):  

1- Consider 𝑋 as a su. space and 𝐻 as a subset 

of 𝑋, then 𝐻 is a su. �̂�-open set if 𝐻 =
𝐼𝑛𝑡�̂�

𝜇
 (𝐻).   

2- Consider 𝑋  a su. space and 𝐻 as a subset of 

𝑋, then 𝐻 is a su. ŋ̂-open set iff 𝐻 =  𝐼𝑛𝑡ŋ̂
𝜇

(𝐻). 

Proof: Let 𝐻 be a su. �̂�-open set, since 𝐼𝑛𝑡�̂�
𝜇

 

(𝐻) is the largest su. �̂�-open set in 𝑋 contained 

in 𝐻), so 𝐼𝑛𝑡�̂�
𝜇

(𝐻) ⊆ 𝐻, now to prove 𝐻 ⊆

𝐼𝑛𝑡�̂�
𝜇

(𝐻). Let 𝑥 ∈ 𝐻 ⊆ 𝐻 and since 𝐻 is su. �̂�-

open set, so 𝑥 ∈ 𝐼𝑛𝑡�̂�
𝜇

(𝐻), and since 𝑥 is 

arbitrary point in 𝐻, so each point in 𝐻 is su �̂�-

interior point, but ⋃ {𝑥}𝑥∈𝐻 = 𝐻, hence 

𝐻 ⊆ 𝐼𝑛𝑡�̂�
𝜇

(𝐻), therefore 𝐼𝑛𝑡 �̂�
𝜇 (𝐻) = 𝐻. 

Conversely, if 𝐼𝑛𝑡�̂�
𝜇

 (𝐻) = 𝐻, and since 

𝐼𝑛𝑡�̂�
𝜇

(𝐻) is su. �̂�-open set, therefore 𝐻 is a su. 

�̂�-open set.  

Definition (2.8) [2]: Whenever (𝑋, 𝜇𝑋) is a su. 

space and (𝑌, 𝜇𝑌) is a su. sub space of 𝑋, 

then 𝒲 ∈ 𝜇𝑌  iff  𝒲 = 𝑈⋂𝑌 in which 𝑈 ∈ 𝜇𝑋 .                                  
Proposition (2.9): In case 𝒲 is a su. �̂�-open 

(resp. su. ŋ̂-open) set in a su. space (𝑋, 𝜇), 

so 𝒲⋂𝑌 is a su. �̂�-open (resp. su. ŋ̂-open) set 

in (𝑌, 𝜇𝑌) whenever 𝑌 is a su. sub space of 𝑋.                                              
Proof: Consider 𝑥 ∈ 𝒲⋂𝑌 ⟹𝑥 ∈ 𝒲 and 

𝑥 ∈ 𝑌, so there is 𝐺 ∈ 𝜇𝑋, with 𝑥 ∈ 𝐺 and 𝐺-𝒲 

is countable (resp. finite), but (𝐺-𝒲)⋂𝑌 ⊆ (𝐺-

𝒲) ⟹ (𝐺-𝒲)⋂𝑌 is countable (resp. finite), 

and (𝐺-𝒲)⋂𝑌 = (𝐺⋂𝑌)-(𝒲⋂𝑌) is countable 

(resp. finite), where 𝐺 ⋂𝑌 is a su. open set in 𝑌 

(from definition (2.8)), which implies 𝒲⋂𝑌 is 

a su. �̂�-open (resp. su. ŋ̂-open) set in 𝑌.   

Definition (2.10): The function 𝑓 ∶ (𝑋, 𝜇𝑋) ⟶
(𝑌, 𝜇𝑌) is called:- 

1- Su*. closed function, if 𝑓(𝑉) is su.  

closed set in 𝑌, for any su. closed set 𝑉 in 𝑋 

[9]. 

2- Su*. open function, if 𝑓(𝑉) is su. open 

set in 𝑌, for any su. open set 𝑉 in 𝑋 [5].                      

 

3- Su*. �̂�-closed (resp. su*. �̂�-open) 

function, if 𝑓(𝑉) is su. �̂�-closed (resp. su. �̂�-

open) set in 𝑌, for any su. closed (resp. su. 

open) set 𝑉 in 𝑋. 

4- Totally su*. �̂�-closed (resp. totally 

su*.�̂� -open) function, if 𝑓(𝑉) is su. closed 

(resp. su. open) set in 𝑌, for any su. �̂�-closed 

(resp. su. �̂�-open) set 𝑉 in 𝑋.               

5- Strongly su*. �̂�-closed (resp. strongly 

su*. �̂�-open) function, if 𝑓(𝑉) is su. �̂�-closed 

(resp. su. �̂�-open) set in 𝑌, for any su. �̂�-

closed (resp. su. �̂�-open) set 𝑉 in 𝑋.                  

   

6- Su*. ŋ̂-closed (resp. su*. ŋ̂-open) 

function, if 𝑓(𝑉) is su. ŋ̂-closed (resp. su. ŋ̂-

open) set in 𝑌, for any su. closed (resp. su. 

open) set 𝑉 in 𝑋. 

7- Totally su*. ŋ̂-closed (resp. totally su*. 

ŋ̂-open) function, if 𝑓(𝑉) is su. closed (resp. 

su. open) set in 𝑌, for any su. ŋ̂-closed (resp. 

su. ŋ̂-open) set 𝑉 in 𝑋. 

8- Strongly su*. ŋ̂-closed (resp. strongly 

su*. ŋ̂-open) function, if 𝑓(𝑉) is su. ŋ̂-closed 

(resp. su. ŋ̂-open) set in 𝑌, for any su. ŋ̂-closed 

(resp. su. ŋ̂-open) set 𝑉 in 𝑋.    

Example (2.11): 

1- 𝑋= {1, 2} and 𝜇𝑋= {∅, 𝑋, {1}}, and 𝑌={1, 

2, 3}, 𝜇𝑌={∅, 𝑌, {1}, {3}, {1,2}, {1,3}, {2,3}}  

so  𝑓: (𝑋, 𝜇𝑋) ⟶  (𝑌, 𝜇𝑌) such that 𝑓(𝑎) = 𝑎 

for any 𝑎 ∈ 𝑋, is su*. closed and su*. open, 

su*. �̂�-closed, su*. �̂�-open, strongly su*. �̂�-

open and strongly su*. �̂�-closed, su*. ŋ̂-closed, 

su*. ŋ̂-open, strongly su*. ŋ̂-open, strongly 

su*.  ŋ̂-closed, totally su*. �̂�-closed, and 

totally su*. ŋ̂-closed function, but neither 

totally su*. ŋ̂-open nor totally su*. �̂�-open 

function.                                                      

2- A function 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌), where 𝑋= 

{1, 2}, 𝜇𝑋= {∅, 𝑋, {1}}, 𝑌= {1, 2, 3, 4} and 

𝜇𝑌={∅, 𝑌, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, 

{1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 
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3, 4}, {3, 4}}such that 𝑓(1)=1 and 𝑓(2)=2, then 

𝑓 satisfies all the definitions in (2.10). 

Theorem (2.12): Su. �̂�𝑇𝑖-space (resp. su. ŋ̂𝑇𝑖), 

𝑖=0, 1, 2 is a hereditary property and a 

topological property.                                    

Proof: Take 𝑌 as a su. sub space of a su. space 

𝑋 and 𝑥, 𝑦 as distinct points in 𝑌, hence 𝑥, 𝑦 are 

distinct points in 𝑋 which is a su. �̂�𝑇0-space 

(resp. ŋ̂𝑇0-space), so there exists a su. �̂�-open 

(resp. su. ŋ̂-open) subset 𝒲 of 𝑋, with 

𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. We have 𝒲⋂𝑌 is a su. �̂�-open 

(resp. su. ŋ̂-open) subset of 𝑌 (proposition 

(2.9)) with 𝑥 ∈ 𝒲⋂𝑌, 𝑦 ∉ 𝒲⋂𝑌 (because 

𝑥 ∈ 𝒲 and 𝑥 ∈ 𝑌 but 𝑦 ∉ 𝒲). Therefore 𝑌 is a 

su. �̂�𝑇0-space (resp. su. ŋ̂𝑇0-space). Which 

means su. �̂�𝑇0-space (resp. su. ŋ̂𝑇0-space) is a 

hereditary property. Now to prove su. �̂�𝑇0-

space (resp. ŋ̂𝑇0-space) is a topological 

property. Suppose 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is a 

surjective, strongly su*. �̂�-open (resp. strongly 

su*. ŋ̂-open) function, in which 𝑋 is a su. �̂�𝑇0-

space (resp. su. ŋ̂𝑇0-space) and 𝑦1, 𝑦2 are 

different points in 𝑌, then there are different 

points 𝑥1, 𝑥2 in 𝑋 with 𝑓(𝑥1) = 𝑦1, 𝑓(𝑥2) =
𝑦2 (since 𝑓 is a surjective function), so there 

exists a su. �̂�-open (resp. su. ŋ̂-open) subset 𝒲 

of 𝑋 with 𝑥1 ∈ 𝒲 and 𝑥2 ∉ 𝒲 (because 𝑋 is a 

su. �̂�𝑇0-space (resp. su. ŋ̂𝑇0-space) where 

𝑓(𝑥1) = 𝑦1 ∈ 𝑓(𝒲) and 𝑓(𝑥2) = 𝑦2 ∉ 𝑓(𝒲), 
in which 𝑓(𝒲) is a su. �̂�-open (resp. su. ŋ̂-

open) subset of 𝑌 (because 𝑓 is strongly su*. 

�̂�-open (resp. strongly su*. ŋ̂-open) function, 

therefore 𝑌 is a su. �̂�𝑇0-space (resp. su. ŋ̂𝑇0-

space). Which means the su. �̂�𝑇0-space (resp. 

su. ŋ̂𝑇0-space) is a topological property. By the 

same way we can prove the rest properties.                                                  

Theorem (2.13): If 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is 

injective function, then the su. space (𝑋, 𝜇𝑋) 

is:-                                                    

1- A su. 𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. continuous function.                                                       

2. A su. �̂�𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. continuous function.                                                       

3- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. continuous function.                                                       

4- A su. �̂�𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is totally su*. �̂�-continuous function. 

5- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is totally su*. ŋ̂-continuous function.                                                       

6- A su. �̂�𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. �̂�-continuous function.                                                       

7- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. ŋ̂-continuous function.                                                       

8- A su. ω̂𝑇0-space, whenever 𝑌 is su. �̂�𝑇0-

space and 𝑓 is perfectly su*. �̂�-continuous 

function.                                     

9- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. ŋ̂𝑇0-

space and 𝑓 is perfectly su*. ŋ̂-continuous 

function.                                     

10- A su. 𝑇0-space, whenever 𝑌 is su. �̂�𝑇0-

space and 𝑓 is perfectly su*. �̂�-continuous 

function.                                                           

11- A su. 𝑇0-space, whenever 𝑌 is su. ŋ̂𝑇0-

space and 𝑓 is perfectly su*. ŋ̂-continuous 

function.                                                       

12- A su. �̂�𝑇0-space, whenever 𝑌 is su. 𝑇0-

space and 𝑓 is perfectly su*. �̂�-irresolute 

function.                                                       

13- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-

space and 𝑓 is perfectly su*. ŋ̂-irresolute 

function.                                     

14- A su. �̂�𝑇0-space, whenever 𝑌 is su. �̂�𝑇0-

space and 𝑓 is perfectly su*. �̂�-irresolute 

function.                                     

15- A su. ŋ̂𝑇0-space, whenever 𝑌 is su.       

ŋ̂𝑇0-space and 𝑓 is perfectly su*.  ŋ̂-irresolute 

function.                                     

Proof: 1- Consider 𝑥1 ≠ 𝑥2 are any points in 𝑋, 

since 𝑓 is injective, so 𝑓(𝑥1) ≠ 𝑓(𝑥2) in 𝑌 

which is su. 𝑇0-space. Then there is 𝑈 ∈ 𝜇𝑌 in 

which 𝑓(𝑥1) ∈ 𝑈 and  𝑓(𝑥2) ∉ 𝑈, hence 𝑈𝑐 is 

su. closed subset of 𝑌, therefore 𝑓−1(𝑈𝐶)  =

(𝑓−1(𝑈))
𝐶
 is su. clopen subset of 𝑋 (because 𝑓 

is perfectly su*. continuous), hence 𝑓−1(𝑈) is 

su. open subset of 𝑋 where 𝑓−1(𝑓(𝑥1)) = 𝑥1 ∈

𝑓−1(𝑈) and 𝑓−1(𝑓(𝑥2)) = 𝑥2 ∉ 𝑓−1(𝑈), 
therefore 𝑋 is su. 𝑇0-space. We can prove the 

other properties by the same way.                                             

Hint: The previous theorem is true when we 

replace each 𝑇0 by 𝑇1or 𝑇2.   
 

3- Su. �̂�-compact and su. ŋ̂-compact spaces.    

In this part we submitted definitions of new 

types of su. compact spaces which are su. �̂� -
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compact and su. ŋ̂-compact spaces, and new 

types of su*. Homeomorphism functions.  

Definition (3.1): 1- A class ç= {𝒲𝛼| 𝛼 ∈∧} of 

su. �̂�-open subsets 𝒲
𝛼

 of (𝑋, 𝜇) is a su. �̂�-

open cover to a subset 𝑆 of 𝑋 whenever 

⊆ ⋃ 𝒲𝛼𝛼∈∧  , when 𝑆 = 𝑋, then {𝒲𝛼 | 𝛼 ∈∧} is 

a su. �̂�-open cover to 𝑋. If  𝒲𝛼  is su. ŋ̂-open 

set, then ç is called a su. ŋ̂-open cover to 𝑆.                                

2- A subset 𝑆 of (𝑋, 𝜇) is a su. �̂�-compact if 

any su. �̂�-open cover for 𝑆 possesses a finite 

sub cover, when 𝑋 = 𝑆, then 𝑋 is a su. �̂�-

compact space.                                    

3- A subset 𝑆 of (𝑋, 𝜇) is a su. ŋ̂-compact if 

any su. ŋ̂-open cover for 𝑆 possesses a finite 

sub cover, when 𝑋 = 𝑆, then 𝑋 is a su. ŋ̂-

compact space.                                    

Example (3.2): 1- Let 𝑋= {1, 2, 3}, 𝜇𝑋= {∅,𝑋, 

{1, 2}, {1, 3}} is su. compact, su. �̂�-compact 

and su. ŋ̂-compact space. 

Remark (3.3): 1- If 𝑋 is a su. �̂�-compact space, 

then it is a su. compact.                       

2- If 𝑋 is a su. ŋ̂-compact space, then it is a su. 

compact. 

Theorem (3.4) [4]: A su. closed subset of a su. 

compact space is a su. compact.                

Proposition (3.5): 1- A su. �̂�-closed subset ℳ 

of a su. �̂�-compact space (𝑋, 𝜇𝑋), is a su. �̂�-

compact set. 

2- A su. ŋ̂-closed subset ℳ of a su. ŋ̂-compact 

space (𝑋, 𝜇𝑋), is a su. ŋ̂-compact set.                                            

Proof: 1- Consider (𝑋, 𝜇𝑋) is a su. �̂�-compact 

space and ℳ is a su. �̂�-closed set in 𝑋, let 
{𝒲𝛼}𝛼∈∧ be a su. �̂�-open cover for ℳ⟹ℳ ⊆
 ⋃ 𝒲𝛼𝛼∈∧ , but 𝑋 = ℳ⋃ℳ𝐶 ⟹ 𝑋 ⊆
{⋃ 𝒲𝛼𝛼∈∧ } ⋃ ℳ𝐶 and since ℳ is su. �̂�-closed 

set in 𝑋, then ℳ𝐶 is su. �̂�-open, this means 

{𝒲𝛼|𝛼 ∈∧, ℳ𝐶} is a su. ω̂-open cover for 𝑋, 

but 𝑋 is a su. �̂�-compact, so any su. �̂�-open 

cover for 𝑋 possesses a finite sub cover, 

hence 𝑋 ⊆ (⋃ 𝒲𝛼𝑖

𝑛
𝑖=1 )⋃ℳ𝐶, but ℳ ⊆ 𝑋 ⟹

ℳ ⊆ (⋃ 𝒲𝛼𝑖

𝑛
𝑖=1 )⋃ℳ𝐶 , since ℳ⋂ℳ𝐶 =

∅ ⟹ ℳ ⊆  ⋃ 𝒲𝛼𝑖

𝑛
𝑖=1  , then {𝒲𝛼𝑖

}
𝑖=1

𝑛
 is a 

finite  

sub cover of the su. �̂�-open cover {𝒲𝛼}𝛼∈∧ for 

ℳ, therefore ℳ is a su. �̂�-compact.                                          

Theorem (3.6) [7]:  The continuous image of 

su. compact space is su. compact. 

Proposition (3.7): If the function 𝑓: (𝑋, 𝜇𝑋) ⟶
(𝑌, 𝜇𝑌) is:-                             

1- Su*. �̂�-continuous, so the image of each su. 

�̂�-compact set in 𝑋 is a su. compact set in 𝑌.                                                         

2- Strongly su*. �̂�-continuous, so the image of 

each su. compact set in 𝑋 is a su. �̂�-compact 

set in 𝑌.                                                              

3- Su*. �̂�-irresolute, so the image of each su. 

�̂�-compact set in 𝑋 is a su. �̂�-compact set in 𝑌.                                          

4- Su*. ŋ̂-continuous, so the image of each su. 

ŋ̂-compact set in 𝑋 is a su. compact set in 𝑌.                                                         

5- Strongly su*. ŋ̂-continuous, so the image of 

each su. compact set in 𝑋 is a su. ŋ̂-compact set 

in 𝑌.    

6- Su*. ŋ̂-irresolute, so the image of each su. ŋ̂-

compact set in 𝑋 is a su. ŋ̂-compact set in 𝑌.                                                         

Proof: Let 𝑓 be a su*. �̂�-continuous function 

and 𝒲 be a su. �̂�-compact set in 𝑋. Take 
{𝑉𝛼}𝛼∈∧ to be a su. open cover to 𝑓(𝒲), where 

each 𝑉𝛼 ∈ 𝜇𝑌, 𝛼 ∈∧., then 𝑓(𝒲) ⊆  ⋃ 𝑉𝛼𝛼∈∧ , 

but 𝑓 is su*. �̂�-continuous, hence 𝒲 ⊆

𝑓−1 (𝑓(𝒲)) ⊆  𝑓−1 (⋃ 𝑉𝛼𝛼∈∧ ) =

⋃ (𝑓−1(𝑉𝛼))𝛼∈∧ , then {𝑓−1(𝑉𝛼)}𝛼∈∧  is a su. �̂�-

open cover for 𝒲, since 𝒲 is su. �̂�-compact, 

so each su. �̂�-open cover to it possesses a finite  

sub cover, hence 𝒲 ⊆ ⋃ 𝑓−1(𝑉𝛼𝑖
)𝑛

𝑖=1  and by 

take the image of both sides we get 𝑓(𝒲)⊆

𝑓(⋃ 𝑓−1(𝑉𝛼𝑖
)𝑛

𝑖=1 ) = ⋃ 𝑓(𝑓−1(𝑉𝛼𝑖

𝑛
𝑖=1 )) ⊆

⋃ 𝑉𝛼𝑖

𝑛
𝑖=1 ⟹ 𝑓(𝒲) ⊆ ⋃ 𝑉𝛼𝑖

𝑛
𝑖=1 , which means 

that {𝑉𝛼𝑖
}

𝑖=1

𝑛
 is a finite sub cover for the su. 

open cover {𝑉𝛼}𝛼∈∧, so 𝑓(𝒲) is a su. compact 

subset of 𝑌. The rest of the possibilities can be 

proved by the same way.     

Theorem (3.8): Let 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) be a 

surjective function, if:-                         

1- 𝑋 is su. 𝑇1-space and 𝑓 is su*. open 

function, then 𝑌 is su. 𝑇1-space. 

2- 𝑋 is su. 𝑇1-space and 𝑓 is su*. open 

function, then 𝑌 is su. �̂�𝑇1-space.                

3- 𝑋 is su. 𝑇1-space and 𝑓 is su*. open 

function, then 𝑌 is su. ŋ̂𝑇1-space.               

4- 𝑋 is su. �̂�𝑇1-space and 𝑓 is totally su*. �̂�-

open function, then 𝑌 is su. 𝑇1-space.                          

5- 𝑋 is su. ŋ̂𝑇1-space and 𝑓 is totally su*. ŋ̂-

open function, then 𝑌 is su. 𝑇1-space.                   

6- 𝑋 is su. �̂�𝑇1-space and 𝑓 is totally su*. �̂�-

open function, then 𝑌 is su. �̂�𝑇1-space.                
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7- 𝑋 is su. ŋ̂𝑇1- space and 𝑓 is totally su*. ŋ̂-

open function, then 𝑌 is su. ŋ̂𝑇1-space.                        

8- 𝑋 is su. �̂�𝑇1-space and 𝑓 is strongly su*. �̂�-

open function, then 𝑌 is �̂�𝑇1- space.       

9- 𝑋 is su. ŋ̂𝑇1-space and 𝑓 is strongly su*. ŋ̂-

open function, then 𝑌 is ŋ̂ 𝑇1-space.            

10- 𝑋 is su. 𝑇1-space and 𝑓 is strongly su*.  �̂�-

open function, then 𝑌 is �̂�𝑇1- space.            

11- 𝑋 is su. 𝑇1-space and 𝑓 is strongly su*. ŋ̂-

open function, then 𝑌 is ŋ̂𝑇1-space. 

Proof: Suppose 𝑎, 𝑏 be distinct two points in 𝑌. 

So there are two distinct points 𝑥, 𝑦 in 𝑋 in 

which 𝑓(𝑥) = 𝑎, 𝑓(𝑦) = 𝑏 (because 𝑓 is onto 

and by definition of functions), since 𝑋 is su. 

𝑇1-space, so there are two su. open sets 𝒲, ℬ 

in 𝑋 with 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲 and 𝑦 ∈ ℬ, 𝑥 ∉ ℬ, 

hence, 𝑓(𝑥)  =  𝑎 ∈ 𝑓(𝒲), 𝑓(𝑦) =  𝑏 ∉
𝑓(𝒲)  and 𝑓(𝑦)  =  𝑏 ∈ 𝑓(ℬ), 𝑓(𝑥)  = 𝑎 ∉
𝑓(ℬ) where 𝑓(𝒲), 𝑓(ℬ) are su. open sets in 𝑌 

(since 𝑓 is su*. open function), then 𝑌 is su. 𝑇1-

space. 

Hint: Theorem (3.8) remains true when we 

replace 𝑇1 by 𝑇0  or 𝑇2, also it is true if we use 

the types of su*. closed function instead of the 

types of su*. open function.          

Definition (3.9): A bijective function 𝑓 from a 

su. space 𝑋 into a su. space 𝑌 is.        

1- Su*. homeomorphism function, if 𝑓 and 𝑓−1 

are su*. continuous [5].                      

2- Su*. �̂�-homeomorphism function, if 𝑓 and 

𝑓−1 are su*. �̂�-continuous.  

3- Su*. ŋ̂-homeomorphism function, if f and 

𝑓−1 are su*. ŋ̂-continuous. 

4- Su*. �̂�∗-homeomorphism function, if 𝑓 and 

𝑓−1 are su*. �̂�-irresolute.   

5- Su*. ŋ̂∗-homeomorphism function, if 𝑓 and 

𝑓−1 are su*. ŋ̂-irresolute.                              

6- Su*. �̂�∗∗-homeomorphism function, if 𝑓 and 

𝑓−1 are strongly su*. �̂�-continuous.    

7- Su. ŋ̂∗∗-homeomorphism function, if 𝑓 and 

𝑓−1 are strongly su*. ŋ̂-continuous.          

Definition (3.10): A bijective function 𝑓 from a 

su. space 𝑋 into a su. space 𝑌 is:-    

1- Su*. homeomorphism function, if it is su*. 

continuous and su*. open (or su*. closed) 

function . 

2- Su*. �̂�-homeomorphism function, if it is 

su*. �̂�-continuous and su*. �̂�-open (or su*. �̂�-

closed) function.    

3- Su*. ŋ̂-homeomorphism function, if it is 

su*. ŋ̂-continuous and su*. ŋ̂-open (or su*. ŋ̂-

closed) function.                                                                         

4- Su*. �̂�∗-homeomorphism function, if it is 

su*. �̂�-irresolute and strongly su*. �̂�-open (or 

strongly su*. �̂�-closed) function.   

5- Su*. ŋ̂∗-homeomorphism function, if it is 

su*. ŋ̂-irresolute and strongly su*. ŋ̂-open (or 

strongly su*. ŋ̂-closed) function.                                                             

6- Su*. �̂�∗∗-homeomorphism function, if it is 

strongly su*. �̂�-continuous and totally su*. �̂�-

open (or totally su*. �̂�-closed) function.   

7- Su*. ŋ̂∗∗-homeomorphism function, if it is 

strongly su*. ŋ̂-continuous and totally su*. ŋ̂-

open (or totally su*. ŋ̂-closed) function.                                                         

Proposition (3.11):  

1- Each su. topology finer than su. 𝑇0 is also 

su.𝑇0.                       
2- Each su. topology finer than su. �̂�𝑇0 is also 

su. �̂�𝑇0.                
3- Each su. topology finer than su. 𝑇1 is also 

su. 𝑇1.                                                  
4- Each su. topology finer than su. �̂�𝑇1 is also 

su. �̂�𝑇1.                                                 
Proof: Let 𝑎 ≠ 𝑏 be two elements in a su. 

space 𝑋 and 𝜇, 𝜇∗ are two su. topologies 

defined on 𝑋, where 𝜇∗ is finer than 𝜇, and 𝜇 is 

a su. 𝑇0-topology on 𝑋, so there is 𝑈 ∈ 𝜇 

containing 𝑎 but not 𝑏, since 𝜇 ⊆ 𝜇∗, hence 

𝑈 ∈ 𝜇∗ too, then 𝜇∗  is a su.𝑇0-topology on 𝑋. 

By the same way we can prove the rest 

properties. 

Theorem (3.12) [6]: A space 𝑋 is a su. 𝑇1-

space, iff for any 𝑥 ∈ 𝑋, {𝑥} is su. closed set.                                                                

Corollary (3.13): A space 𝑋 is su. �̂�𝑇1-  

space iff any singleton subset {𝑥} of 𝑋 is   

su. �̂�-closed.                                                 

Proof: Suppose any singleton {𝑥} is a su. �̂�-

closed subset of 𝑋, and let 𝑑 ≠  𝑒 ∈  𝑋, so 

{𝑑}𝑐, {𝑒}𝑐 are su. �̂�-open sets containing 𝑒, 𝑑 

respectively, which lead us to 𝑋 is su. �̂�𝑇1-

space. Conversely, let 𝑋 be a su. �̂�𝑇1-space, let 

𝑒 ∈ 𝑋, and 𝑒 ∈ {𝑑}𝑐, so 𝑑 ≠ 𝑒 and there exists 

a su. �̂�-open set 𝒲 in 𝑋 with 𝑒 ∈ 𝒲, 𝑑 ∉ 𝒲, 
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so 𝑒 ∈ 𝒲 ⊆ {𝑑}𝑐, thus {𝑑}𝑐 is su. �̂�-open set 

(by proposition (2.7)), therefore {𝑑} is su. �̂�-

closed, but d is arbitrary element in 𝑋, that 

means every singleton subset in 𝑋 is su. �̂�-

closed. 

Definition (3.14): The su. space 𝑋 is called su. 

�̂�-space, if each su. �̂�-open subset from 𝑋, is 

su. open.                           

Theorem (3.15): A su. space 𝑋 is su. �̂�𝑇0-

space iff 𝑐𝑙�̂�
𝜇 (𝑥) ≠ 𝑐𝑙�̂�

𝜇 (𝑦) for each non-equal 

points 𝑥, 𝑦 in 𝑋.                                   
Proof: Suppose 𝑐𝑙�̂�

𝜇 (𝑥) ≠ 𝑐𝑙�̂�
𝜇 (𝑦) for each 

distinct points 𝑥, 𝑦 in 𝑋, so there is at least one 

element in one of them and not in the other, say 

a ∈ clω̂ 
μ

(𝑥), a ∉ clω̂ 
μ (y), and suppose 𝑥 ∉

clω̂ 
μ (y), because if 𝑥 ∈ clω̂

μ
 (y) then clω̂

μ
(𝑥) 

⊆  clω̂ 
μ

(clω̂ 
μ (y)) = clω̂

μ (y) ⟹  a ∈ clω̂
μ

(𝑥) ⊆

 clω̂
μ (y) and that is a contradiction, therefore 

𝑥 ∈ 𝑋 − clω̂
μ (y), Now 𝑋 − 𝑐𝑙�̂�

𝜇 (𝑦) is su. �̂�-

open set containing 𝑥 but not 𝑦, that implies 𝑋 

is su. �̂�𝑇0-space. Conversely, If 𝑋 is su. �̂�𝑇0-

space and 𝑥 ≠ 𝑦 are arbitrary elements in 𝑋, so 

there is a su. �̂�-open set 𝑈 of 𝑋 with 𝑥 ∈ 𝑈 and 

𝑦 ∉ 𝑈, then 𝑋 − 𝑈 is su. �̂�-closed set contains 

𝑦 but not 𝑥, from definition of 𝑐𝑙�̂�
𝜇 (𝑦) we get 

𝑐𝑙�̂�
𝜇 (𝑦) ⊆ 𝑋 − 𝑈, which means 𝑥 ∉ 𝑐𝑙�̂�

𝜇
(𝑦) but 

𝑥 ∈ 𝑐𝑙�̂�
𝜇

 (𝑥), so that 𝑐𝑙�̂�
𝜇 (𝑥) ≠ 𝑐𝑙�̂�

𝜇 (𝑦).        

Corollary (3.16): A su. space 𝑋 is su. 𝜔𝑇0-

space iff 𝑥 ∉ 𝑐𝑙𝜔
𝜇 (𝑦) or 𝑦 ∉ 𝑐𝑙𝜔

𝜇
 (𝑥)  for each 

distinct points 𝑥, 𝑦 in 𝑋.             
Theorem (3.17): The composition between:-

                                                      

1- Perfectly su*. continuous function and 

Perfectly su*. �̂�-continuous function is 

Perfectly su*. �̂�-continuous function.                

2- Perfectly su*. continuous function and 

perfectly su*. ŋ̂-continuous function is 

perfectly su*. ŋ̂-continuous function.               

3- Totally su*. �̂�-continuous function and 

perfectly su*. �̂�-continuous function is 

perfectly su*. �̂�-irresolute function.              

Proof:  

1- Take 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) as perfectly su*. 

continuous, 𝑔: (𝑌, 𝜇𝑌) ⟶ (𝒵, 𝜇𝒵) as perfectly 

su*. �̂�-continuous and ℳ is su. �̂�-closed set in 

𝒵, so 𝑔−1(ℳ) is su. clopen set in 𝑌, then 

𝑓−1(𝑔−1(ℳ)) = (𝑔 ∘ 𝑓)−1(ℳ) is su. clopen 

set in 𝑋, thus 𝑔 ∘ 𝑓 is perfectly su*. �̂�-

continuous function.  

3- Take 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) as totally su*. �̂�-

continuous, 𝑔: (𝑌, 𝜇𝑌) ⟶ (𝒵, 𝜇𝒵) as perfectly 

su*  �̂� -continuous and ℳ is su. �̂�-closed set 

in 𝒵, so 𝑔−1(ℳ) is su. clopen set in 𝑌, then 

𝑓−1(𝑔−1(ℳ)) = (𝑔 ∘ 𝑓)−1(ℳ) is su. �̂�-

clopen set in 𝑋, thus 𝑔 ∘ 𝑓 is perfectly su*.  �̂�-

irresolute function.  

The rest of properties can be proved in the 

same way.                                                         
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