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 لخلاصـةا
الفوقية   ω̂-الغرض من هذا البحث هو لتقديم انواع جديدة من بديهيات الفصل الفوقية بأستخدام المجموعات المفتوحة

في الفضاءات الفوقية وتوضيح العلاقة بينهم, ولتقديم صيغ جديدة من الدوال المستمرة  الفوقية 𝔶̂-والمجموعات المفتوحة 

 .*التامة والدوال التشاكلية الفوقية *, الدوال المستمرة الفوقية*الفوقية

 

Introduction                           
In 1983, Mashhour introduced the concept of 

supra topology [6]. The supra closure for a 

subset 𝒲 of a supra space 𝑋 was defined as the 

intersection of all supra closed subsets of 𝑋 

containing 𝒲, while the supra interior of 𝒲 

defined as the union of all supra open subsets 

of 𝑋 contained in 𝒲. The researcher in [1], 

defined the supra compact spaces. Also many 

researchers wrote about the supra separation 

axioms, and we introduced in this research 

definitions of two sets ŋ̂, 𝜔̂ in supra spaces and 

new forms of supra separation axioms such as 

supra 𝜔̂𝑇0, supra 𝜔̂𝑇1, supra 𝜔̂𝑇2, supra ŋ̂𝑇0, 

supra ŋ̂𝑇1, and supra ŋ̂𝑇2, also new forms of 

supra* continuous functions, perfectly supra* 

continuous functions and new forms of supra* 

homeomorphism functions by using supra 𝜔̂-

open and supra ŋ̂-open sets. We presented 

some theorems, propositions and remarks and 

we supported them by examples.  
 

1- Supra* 𝝎̂-Continuous and supra* ŋ̂-

continuous functions.    

We introduced some new types of supra* 

continuous and perfectly supra*continuous 

functions by using su. ŋ̂-open, su. 𝜔̂-open sets 

and illustrated the relation between them. We 

used the abbreviation "su." to refer to "supra". 
Definition (1.1) [3]: Let 𝑋 be a non- empty set 

and 𝜇 be a sub collection of the power set of 𝑋, 

then 𝜇 is a supra topology on 𝑋 if:  

1- ∅, 𝑋 ∈ 𝜇.  
2- 𝜇 is closed under the arbitrary union, any set 

𝒲 ∈ 𝜇 is called supra open set and its 

complement is supra closed set. The pair (𝑋, 𝜇) 

is called a supra space. 

Definition (1.2) [6]: Let (𝑋,Ʈ) be a topological 

space, 𝜇 is called a supra topology associated 

with Ʈ if Ʈ⊂ 𝜇. 

Remark (1.3): Any topology is su. topology, 

since every topology includes ∅, 𝑋 and it is 

closed under the infinite union. This remark is 

irreversible                

Example (1.4): In the su. space(𝑋, 𝜇), where 

𝑋= {1, 2, 3}, 𝜇= {∅, 𝑋, {1}, {2}, {1, 2}, {2, 

3}, {1, 3}}, 𝜇 is su. topology on 𝑋 but not 

topology since {1, 3} ⋂ {2, 3} = {3} ∉𝜇.                                                         

Definition (1.5):  

1- A subset 𝒲 of a su. space (𝑋, 𝜇) is called a 

su. 𝜔̂-open set if for any 𝑠 ∈ 𝒲, there is 𝑉 ∈ 𝜇 
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such that 𝑠 ∈ 𝑉 and 𝑉-𝒲 is countable. 𝒲𝑐 is 

called a su. 𝜔̂-closed set. 

2- A subset 𝒲 of a su. space (𝑋, 𝜇) is called a 

su. ŋ̂-open set if for any 𝑠 ∈ 𝒲, there is 𝑉 ∈ 𝜇 

such that 𝑠 ∈ 𝑉 and 𝑉-𝒲 is  finite. 𝒲𝑐 is 

called a su. ŋ̂-closed set. 

3- The su. 𝜔̂-closure of a subset 𝒲 of a su. 

space (𝑋, 𝜇) is the intersection of all su. 𝜔̂-

closed subsets of 𝑋 which contain 𝒲, and we 

denote it by 𝑐𝑙𝜔̂
𝜇

(𝒲). While the su. 𝜔̂-interior 

of 𝒲 is the union of all su. 𝜔̂-open subsets of 

𝑋 which contained in 𝒲, and we denote it by 

𝐼𝑛𝑡𝜔̂
𝜇

 (𝒲). By the same way we can define su. 

ŋ̂-closure for 𝒲 (denoted by 𝑐𝑙ŋ̂
𝜇

(𝒲)) and su. 

ŋ̂-interior for 𝒲 (denoted by 𝐼𝑛𝑡ŋ̂
𝜇

(𝒲)). 

Remark (1.6):  

1- Any su. open set is su 𝜔̂-open (resp. su. ŋ̂ 

open) set. 

2- Any su. closed set is su 𝜔̂-closed (resp.    su. 

ŋ̂ -closed) set.    

Definition (1.7): Let (𝑋, 𝜇𝑋), (𝑌, 𝜇𝑌) be a 

topological spaces and Ʈ𝑋 ⊂ 𝜇𝑋 , Ʈ𝑌 ⊂ 𝜇𝑌. The 

function 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is called:-  

1- Su*. continuous function. If the inverse 

image of any su. open (resp. su. closed) set in 𝑌 

is a su. open (resp. su. closed) set in 𝑋 [6]. 

2- Su*. 𝜔̂-continuous function. If the 

inverse image of any su. open (resp. su. closed) 

set in 𝑌 is a su. 𝜔̂-open (resp. su. 𝜔̂-closed) set 

in 𝑋. 

3- Su*.  ŋ̂-continuous function. If the 

inverse image of any su. open (resp. su. closed) 

set in 𝑌 is a su.  ŋ̂-open (resp. su ŋ̂-closed) set 

in 𝑋. 

4- Strongly su*. 𝜔̂-continuous function. If 

the inverse image of any su. 𝜔̂-open (resp. su. 

𝜔̂-closed) set in 𝑌 is a su. open (resp. su. 

closed) set in 𝑋. 

5- Strongly su*. ŋ̂-continuous function. If 

the inverse image of any su. ŋ̂-open (resp. su. 

ŋ̂-closed) set in 𝑌 is a su. open (resp. su. 

closed) set in 𝑋.             

6- Su*. 𝜔̂-irresolute function. If the 

inverse image of any su. 𝜔̂-open (resp. su. 𝜔̂-

closed) set in 𝑌 is a su. 𝜔̂-open (resp. su. 𝜔̂-

closed) set in 𝑋.        

7- Su*. ŋ̂-irresolute function. If the inverse 

image of any su. ŋ̂-open (resp. su. ŋ̂-closed) set 

in 𝑌 is a su. ŋ̂-open (resp. su. ŋ̂-closed) set in 

𝑋.           

8- Perfectly su*. continuous. If the inverse 

image of any su. open (resp. su. closed) set in 𝑌 

is a su. clopen set in 𝑋 [8]. 

9- Totally su*. 𝜔̂-continuous. If the 

inverse image of any su. open (resp. su. closed) 

set in 𝑌 is a su. 𝜔̂-clopen set in 𝑋. 

10- Totally su*.  ŋ̂-continuous. If the inverse 

image of any su. open (resp. su. closed) set in 𝑌 

is a su. ŋ̂-clopen set in 𝑋.  

11- Perfectly su*. 𝜔̂-continuous. If the inverse 

image of any su. 𝜔̂-open (resp. su. 𝜔̂-closed) 

set in 𝑌  is a su. clopen set in 𝑋.    

12- Perfectly su*. ŋ̂-continuous. If the inverse 

image of any su. ŋ̂-open (resp. su. ŋ̂-closed) set 

in 𝑌 is a su. clopen set in 𝑋.                        

13- Perfectly su*. 𝜔̂-irresolute. If the inverse 

image of any su. 𝜔̂-open (resp. su. 𝜔̂-closed) 

set in 𝑌 is a su. 𝜔̂-clopen set in 𝑋. 
14- Perfectly su*. ŋ̂-irresolute. If the        

inverse image of any su. ŋ̂-open (resp. su. ŋ̂-

closed) set in 𝑌 is a su. ŋ̂-clopen set 𝑋. 

Example (1.8): Let 𝑋=𝑌={1, 2, 3}, 𝜇𝑋= {∅, 𝑋, 

{1}, {3}, {1, 3}, {2, 3}, {1, 2}}and 

𝜇𝑌={∅, 𝑌, {3}, {1, 2}}, so 𝑓: 𝑋 ⟶ 𝑌 defined as 

𝑓(1)=2, 𝑓(2)=1, 𝑓(3)=3 is su*. continuous, su*. 

𝜔̂-continuous, su*. ŋ̂-continuous, su*. 𝜔̂-

irresolute, su*. ŋ̂-irresolute function, but not 

strongly su*. 𝜔̂-continuous and not strongly 

su*. ŋ̂-continuous function, since {1} is su.  𝜔̂-

open and su. ŋ̂-open set in 𝑌 but 𝑓−1({1}) 

={2} is not su. open set in 𝑋. Also, it is 

perfectly su*. continuous, totally su*. 𝜔̂-

continuous, totally su*. ŋ̂-continuous, perfectly 

su*. ŋ̂-irresolute, perfectly su*.𝜔̂-irresolute, 

but not perfectly su*. ŋ̂-continuous, and not 

perfectly su*. 𝜔̂- 

continuous function.         

Remark (1.9): 

1-  Every perfectly su*. continuous 

function is su*. continuous function. 

2- Every totally su*. 𝜔̂-continuous (resp. 

totally su*. ŋ̂-continuous) function is su*. 𝜔̂-

continuous (resp. su*. ŋ̂-continuous) function. 

3- Every perfectly su*. 𝜔̂-continuous (resp. 

perfectly su*. ŋ̂-continuous) function is 

strongly su*. 𝜔̂-continuous (resp. strongly su*. 

ŋ̂-continuous) function. 
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4- Every perfectly su*. 𝜔̂-irresolute (resp. 

perfectly su*. ŋ̂-irresolute) function is su*. 𝜔̂-

irresolute (resp. su*. ŋ̂-irresolute).                               

Example (1.10): Let (ℛ, Ʈ𝑐𝑜𝑓)  be the co-finite 

topological space and Ʈ𝑐𝑜𝑓 ⊂ 𝜇𝑐𝑜𝑓, so 

 𝐼ℛ: (ℛ, 𝜇𝑐𝑜𝑐) ⟶ (ℛ, Ʈ𝑐𝑜𝑓)  is su*. continuous, 

su*. 𝜔̂-continuous, su*. ŋ̂-continuous, strongly 

su*. 𝜔̂-continuous, strongly su*. ŋ̂-continuous, 

su*. 𝜔̂-irresolute and su*. ŋ̂-irresolute function 

but not totally su*. 𝜔̂-continuous, not totally 

su*. ŋ̂-continuous, not perfectly su*. 𝜔̂-

continuous, not perfectly su*. 𝜔̂-irresolute, not 

perfectly su*. ŋ̂-continuous, not perfectly su*. 

ŋ̂-irresolute and not perfectly su*. continuous. 
 

2- Su. separation axioms by using su. 𝝎̂-open 

and su. ŋ̂-open sets.  

At the beginning we presented definitions of 

some separation axioms by using su. 𝜔̂-open 

and su. ŋ̂-open sets, and we provided the 

relation between them, also we connected them 

with several types of su*.continuous, su*. open 

and su*. closed functions. 

Definition (2.1): The su. space (𝑋, 𝜇) is  

called:-                                                          

1- A su. 𝑇0-space [6], if for each different 

elements 𝑥, 𝑦 in 𝑋, there is 𝒲 ∈ 𝜇 such 

that 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. 

2- A su. 𝜔̂𝑇0-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there is a su. 𝜔̂-open set 𝒲 

in 𝑋 such that 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. 
3- A su. ŋ̂𝑇0-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there is a su. ŋ̂-open set 𝒲 

in 𝑋 such that 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. 

4- A su. 𝑇1-space [6], if for each different 

elements 𝑥, 𝑦 in 𝑋, there are 𝒲1, 𝒲2 ∈ 𝜇 with 

𝑥 ∈ 𝒲1, 𝑦 ∉ 𝒲1 and 𝑦 ∈ 𝒲2, 𝑥 ∉ 𝒲2.  
5- A su. 𝜔̂𝑇1-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are su. 𝜔̂-open sets 

𝒲1, 𝒲2 in 𝑋 with 𝑥 ∈ 𝒲1, 𝑦 ∉ 𝒲1 and 

𝑦 ∈ 𝒲2, 𝑥 ∉ 𝒲2.  
6- A su. ŋ̂𝑇1-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are su. ŋ̂-open sets 

𝒲1, 𝒲2 with 𝑥 ∈ 𝒲1, 𝑦 ∉ 𝒲1 and 𝑦 ∈ 𝒲2, 𝑥 ∉
𝒲2. 

7- A su. 𝑇2-space [6], if for each different 

elements 𝑥, 𝑦 in 𝑋, there are disjoint 𝒲1, 𝒲2 ∈
𝜇 with 𝑥 ∈ 𝒲1 and 𝑦 ∈ 𝒲2.  
8- A su. 𝜔̂𝑇2-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are disjoint su. 𝜔̂-

open sets 𝒲1, 𝒲2 in 𝑋 with 𝑥 ∈ 𝒲1 and 

𝑦 ∈ 𝒲2. 
9- A su. ŋ̂𝑇2-space, if for each different 

elements 𝑥, 𝑦 in 𝑋, there are disjoint su. ŋ̂-open 

sets 𝒲1, 𝒲2 with 𝑥 ∈ 𝒲1  and 𝑦 ∈ 𝒲2. 

Example (2.2): 1- Let 𝑋= {1, 2, 3} and 𝜇𝑋= {∅, 

𝑋, {1, 2}, {2, 3}, {1, 3}}, so (𝑋, 𝜇𝑋) is su. 𝑇0-

space, su. 𝜔̂𝑇0-space and su. ŋ̂𝑇0-space, su. 𝑇1-

space, su. 𝜔̂𝑇1-space, su. ŋ̂𝑇1-space, su. 𝜔̂𝑇2-

space, su. ŋ̂𝑇2-space, but not 𝑇2-space.  

2- Let 𝑋= {1, 2, 3} and 𝜇𝑋= {∅, 𝑋, {1},  

{2}, {1, 2}, {1, 3}, {2, 3}}, so (𝑋, 𝜇𝑋) is su. 

𝑇2-space, su. 𝜔̂𝑇2-space, su. ŋ̂𝑇2-space. 

Remark (2.3): Suppose 𝑋 is a su. space, then, if 

𝑋 is:- 

1- Su. 𝑇𝑖-space, then it is su. 𝜔̂𝑇𝑖-space and su. 

ŋ̂𝑇𝑖-space, 𝑖=0, 1, 2. 

2- Su. ŋ̂𝑇𝑖-space, then it is su. 𝜔̂𝑇𝑖-space,                            

𝑖=0, 1, 2. 

3- Su. 𝜔̂𝑇𝑖-space, then it is su.𝜔̂𝑇𝑖−1-space, 

𝑖=1, 2.   

4- Su. ŋ̂𝑇𝑖-space, then it is su. ŋ̂𝑇𝑖−1-space, 

𝑖=1, 2.  

5- Su. 𝜔̂𝑇2-space (resp. ŋ̂𝑇2-space), then it is 

su. 𝜔̂𝑇0-space (resp. ŋ̂𝑇0-space). 

Example (2.4): 

1. (𝒵, 𝜇𝑖𝑛𝑑) is su. 𝜔̂𝑇0-space, su. ŋ̂𝑇0-space 

also su. 𝜔̂𝑇2-space but not su. 𝑇0-space, not 

su. 𝑇2-space and not su. ŋ̂𝑇2-space.                            

2- Let X= {1, 2, 3} and μX= {∅, X, {1, 2}, {2, 

3}}, so (𝑋, 𝜇𝑋) is su. 𝜔̂𝑇1-space, su. ŋ̂𝑇1-space, 

but not su. 𝑇1-space.   

3- (ℛ, 𝜇𝑐𝑜𝑓) is su. 𝜔̂𝑇1-space and su. 𝜔̂𝑇0-

space, but it is not su. 𝜔̂𝑇2-space.                 

Proposition (2.5): If 𝒲𝑖, 𝑖 ∈ 𝐼 is u. 𝜔̂-   open 

(resp. su. ŋ̂-open) subsets of a su. space (𝑋, 𝜇𝑋) 

then ⋃ 𝒲𝑖𝑖∈𝐼   is a su. 𝜔̂- 

open (resp. su. ŋ̂-open) subset of (𝑋, 𝜇𝑋).  
Proof: Suppose 𝑒 ∈ ⋃ 𝒲𝑖𝑖∈𝐼 ⟹ 𝑒 ∈ 𝒲𝛼𝑖

, for 

some 𝛼𝑖 ∈ 𝐼, thus there is 𝐺 ∈ 𝜇𝑋 containing 𝑒 
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and 𝐺-𝒲𝛼𝑖
 is countable (resp. finite, but 𝐺-

⋃ 𝒲𝑖𝑖∈𝐼  ⊆ 𝐺-𝒲𝛼𝑖
 (since  

𝒲𝛼𝑖
⊆ ⋃ 𝒲𝑖𝑖∈𝐼  ⟹𝑋- ⋃ 𝒲𝑖𝑖∈𝐼  ⊆ 𝑋-𝒲𝛼𝑖

⟹  

𝐺 ⋂ (𝑋-⋃ 𝒲𝑖𝑖∈𝐼 ) ⊆ 𝐺 ⋂ (𝑋-𝒲𝛼𝑖
) ⟹ 𝐺- 

⋃ 𝒲𝑖𝑖∈𝐼  ⊆ 𝐺-𝒲𝛼𝑖
), hence 𝐺- ⋃ 𝒲𝑖𝑖∈𝐼    is a 

countable (resp. a finite) set (because 𝐺-𝒲𝛼𝑖
 is 

a countable (resp. finite) set and any subset of 

countable (resp. finite) set is countable (resp. 

finite)). Therefore ⋃ 𝒲𝑖𝑖∈𝐼  is a su. 𝜔̂-open 

(resp. su. ŋ̂-open) set. 

Definition (2.6): Suppose 𝐻 is a subset of a su. 

space 𝑋, whenever for any element 𝑥 ∈ 𝐻 there 

is a su. 𝜔̂-open (resp. su. ŋ̂-open) subset 𝑈 of 𝑋 

containing 𝑥 and 𝑈 ⊆ 𝐻, then 𝑥 is a su. 𝜔̂-

interior (resp. su. ŋ̂-interior) point to 𝐻. 

Proposition (2.7):  

1- Consider 𝑋 as a su. space and 𝐻 as a subset 

of 𝑋, then 𝐻 is a su. 𝜔̂-open set if 𝐻 =
𝐼𝑛𝑡𝜔̂

𝜇
 (𝐻).   

2- Consider 𝑋  a su. space and 𝐻 as a subset of 

𝑋, then 𝐻 is a su. ŋ̂-open set iff 𝐻 =  𝐼𝑛𝑡ŋ̂
𝜇

(𝐻). 

Proof: Let 𝐻 be a su. 𝜔̂-open set, since 𝐼𝑛𝑡𝜔̂
𝜇

 

(𝐻) is the largest su. 𝜔̂-open set in 𝑋 contained 

in 𝐻), so 𝐼𝑛𝑡𝜔̂
𝜇

(𝐻) ⊆ 𝐻, now to prove 𝐻 ⊆

𝐼𝑛𝑡𝜔̂
𝜇

(𝐻). Let 𝑥 ∈ 𝐻 ⊆ 𝐻 and since 𝐻 is su. 𝜔̂-

open set, so 𝑥 ∈ 𝐼𝑛𝑡𝜔̂
𝜇

(𝐻), and since 𝑥 is 

arbitrary point in 𝐻, so each point in 𝐻 is su 𝜔̂-

interior point, but ⋃ {𝑥}𝑥∈𝐻 = 𝐻, hence 

𝐻 ⊆ 𝐼𝑛𝑡𝜔̂
𝜇

(𝐻), therefore 𝐼𝑛𝑡 𝜔̂
𝜇 (𝐻) = 𝐻. 

Conversely, if 𝐼𝑛𝑡𝜔̂
𝜇

 (𝐻) = 𝐻, and since 

𝐼𝑛𝑡𝜔̂
𝜇

(𝐻) is su. 𝜔̂-open set, therefore 𝐻 is a su. 

𝜔̂-open set.  

Definition (2.8) [2]: Whenever (𝑋, 𝜇𝑋) is a su. 

space and (𝑌, 𝜇𝑌) is a su. sub space of 𝑋, 

then 𝒲 ∈ 𝜇𝑌  iff  𝒲 = 𝑈⋂𝑌 in which 𝑈 ∈ 𝜇𝑋 .                                  
Proposition (2.9): In case 𝒲 is a su. 𝜔̂-open 

(resp. su. ŋ̂-open) set in a su. space (𝑋, 𝜇), 

so 𝒲⋂𝑌 is a su. 𝜔̂-open (resp. su. ŋ̂-open) set 

in (𝑌, 𝜇𝑌) whenever 𝑌 is a su. sub space of 𝑋.                                              
Proof: Consider 𝑥 ∈ 𝒲⋂𝑌 ⟹𝑥 ∈ 𝒲 and 

𝑥 ∈ 𝑌, so there is 𝐺 ∈ 𝜇𝑋, with 𝑥 ∈ 𝐺 and 𝐺-𝒲 

is countable (resp. finite), but (𝐺-𝒲)⋂𝑌 ⊆ (𝐺-

𝒲) ⟹ (𝐺-𝒲)⋂𝑌 is countable (resp. finite), 

and (𝐺-𝒲)⋂𝑌 = (𝐺⋂𝑌)-(𝒲⋂𝑌) is countable 

(resp. finite), where 𝐺 ⋂𝑌 is a su. open set in 𝑌 

(from definition (2.8)), which implies 𝒲⋂𝑌 is 

a su. 𝜔̂-open (resp. su. ŋ̂-open) set in 𝑌.   

Definition (2.10): The function 𝑓 ∶ (𝑋, 𝜇𝑋) ⟶
(𝑌, 𝜇𝑌) is called:- 

1- Su*. closed function, if 𝑓(𝑉) is su.  

closed set in 𝑌, for any su. closed set 𝑉 in 𝑋 

[9]. 

2- Su*. open function, if 𝑓(𝑉) is su. open 

set in 𝑌, for any su. open set 𝑉 in 𝑋 [5].                      

 

3- Su*. 𝜔̂-closed (resp. su*. 𝜔̂-open) 

function, if 𝑓(𝑉) is su. 𝜔̂-closed (resp. su. 𝜔̂-

open) set in 𝑌, for any su. closed (resp. su. 

open) set 𝑉 in 𝑋. 

4- Totally su*. 𝜔̂-closed (resp. totally 

su*.𝜔̂ -open) function, if 𝑓(𝑉) is su. closed 

(resp. su. open) set in 𝑌, for any su. 𝜔̂-closed 

(resp. su. 𝜔̂-open) set 𝑉 in 𝑋.               

5- Strongly su*. 𝜔̂-closed (resp. strongly 

su*. 𝜔̂-open) function, if 𝑓(𝑉) is su. 𝜔̂-closed 

(resp. su. 𝜔̂-open) set in 𝑌, for any su. 𝜔̂-

closed (resp. su. 𝜔̂-open) set 𝑉 in 𝑋.                  

   

6- Su*. ŋ̂-closed (resp. su*. ŋ̂-open) 

function, if 𝑓(𝑉) is su. ŋ̂-closed (resp. su. ŋ̂-

open) set in 𝑌, for any su. closed (resp. su. 

open) set 𝑉 in 𝑋. 

7- Totally su*. ŋ̂-closed (resp. totally su*. 

ŋ̂-open) function, if 𝑓(𝑉) is su. closed (resp. 

su. open) set in 𝑌, for any su. ŋ̂-closed (resp. 

su. ŋ̂-open) set 𝑉 in 𝑋. 

8- Strongly su*. ŋ̂-closed (resp. strongly 

su*. ŋ̂-open) function, if 𝑓(𝑉) is su. ŋ̂-closed 

(resp. su. ŋ̂-open) set in 𝑌, for any su. ŋ̂-closed 

(resp. su. ŋ̂-open) set 𝑉 in 𝑋.    

Example (2.11): 

1- 𝑋= {1, 2} and 𝜇𝑋= {∅, 𝑋, {1}}, and 𝑌={1, 

2, 3}, 𝜇𝑌={∅, 𝑌, {1}, {3}, {1,2}, {1,3}, {2,3}}  

so  𝑓: (𝑋, 𝜇𝑋) ⟶  (𝑌, 𝜇𝑌) such that 𝑓(𝑎) = 𝑎 

for any 𝑎 ∈ 𝑋, is su*. closed and su*. open, 

su*. 𝜔̂-closed, su*. 𝜔̂-open, strongly su*. 𝜔̂-

open and strongly su*. 𝜔̂-closed, su*. ŋ̂-closed, 

su*. ŋ̂-open, strongly su*. ŋ̂-open, strongly 

su*.  ŋ̂-closed, totally su*. 𝜔̂-closed, and 

totally su*. ŋ̂-closed function, but neither 

totally su*. ŋ̂-open nor totally su*. 𝜔̂-open 

function.                                                      

2- A function 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌), where 𝑋= 

{1, 2}, 𝜇𝑋= {∅, 𝑋, {1}}, 𝑌= {1, 2, 3, 4} and 

𝜇𝑌={∅, 𝑌, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, 

{1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 
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3, 4}, {3, 4}}such that 𝑓(1)=1 and 𝑓(2)=2, then 

𝑓 satisfies all the definitions in (2.10). 

Theorem (2.12): Su. 𝜔̂𝑇𝑖-space (resp. su. ŋ̂𝑇𝑖), 

𝑖=0, 1, 2 is a hereditary property and a 

topological property.                                    

Proof: Take 𝑌 as a su. sub space of a su. space 

𝑋 and 𝑥, 𝑦 as distinct points in 𝑌, hence 𝑥, 𝑦 are 

distinct points in 𝑋 which is a su. 𝜔̂𝑇0-space 

(resp. ŋ̂𝑇0-space), so there exists a su. 𝜔̂-open 

(resp. su. ŋ̂-open) subset 𝒲 of 𝑋, with 

𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲. We have 𝒲⋂𝑌 is a su. 𝜔̂-open 

(resp. su. ŋ̂-open) subset of 𝑌 (proposition 

(2.9)) with 𝑥 ∈ 𝒲⋂𝑌, 𝑦 ∉ 𝒲⋂𝑌 (because 

𝑥 ∈ 𝒲 and 𝑥 ∈ 𝑌 but 𝑦 ∉ 𝒲). Therefore 𝑌 is a 

su. 𝜔̂𝑇0-space (resp. su. ŋ̂𝑇0-space). Which 

means su. 𝜔̂𝑇0-space (resp. su. ŋ̂𝑇0-space) is a 

hereditary property. Now to prove su. 𝜔̂𝑇0-

space (resp. ŋ̂𝑇0-space) is a topological 

property. Suppose 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is a 

surjective, strongly su*. 𝜔̂-open (resp. strongly 

su*. ŋ̂-open) function, in which 𝑋 is a su. 𝜔̂𝑇0-

space (resp. su. ŋ̂𝑇0-space) and 𝑦1, 𝑦2 are 

different points in 𝑌, then there are different 

points 𝑥1, 𝑥2 in 𝑋 with 𝑓(𝑥1) = 𝑦1, 𝑓(𝑥2) =
𝑦2 (since 𝑓 is a surjective function), so there 

exists a su. 𝜔̂-open (resp. su. ŋ̂-open) subset 𝒲 

of 𝑋 with 𝑥1 ∈ 𝒲 and 𝑥2 ∉ 𝒲 (because 𝑋 is a 

su. 𝜔̂𝑇0-space (resp. su. ŋ̂𝑇0-space) where 

𝑓(𝑥1) = 𝑦1 ∈ 𝑓(𝒲) and 𝑓(𝑥2) = 𝑦2 ∉ 𝑓(𝒲), 
in which 𝑓(𝒲) is a su. 𝜔̂-open (resp. su. ŋ̂-

open) subset of 𝑌 (because 𝑓 is strongly su*. 

𝜔̂-open (resp. strongly su*. ŋ̂-open) function, 

therefore 𝑌 is a su. 𝜔̂𝑇0-space (resp. su. ŋ̂𝑇0-

space). Which means the su. 𝜔̂𝑇0-space (resp. 

su. ŋ̂𝑇0-space) is a topological property. By the 

same way we can prove the rest properties.                                                  

Theorem (2.13): If 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is 

injective function, then the su. space (𝑋, 𝜇𝑋) 

is:-                                                    

1- A su. 𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. continuous function.                                                       

2. A su. 𝜔̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. continuous function.                                                       

3- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. continuous function.                                                       

4- A su. 𝜔̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is totally su*. 𝜔̂-continuous function. 

5- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is totally su*. ŋ̂-continuous function.                                                       

6- A su. 𝜔̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. 𝜔̂-continuous function.                                                       

7- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-space 

and 𝑓 is perfectly su*. ŋ̂-continuous function.                                                       

8- A su. ω̂𝑇0-space, whenever 𝑌 is su. 𝜔̂𝑇0-

space and 𝑓 is perfectly su*. 𝜔̂-continuous 

function.                                     

9- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. ŋ̂𝑇0-

space and 𝑓 is perfectly su*. ŋ̂-continuous 

function.                                     

10- A su. 𝑇0-space, whenever 𝑌 is su. 𝜔̂𝑇0-

space and 𝑓 is perfectly su*. 𝜔̂-continuous 

function.                                                           

11- A su. 𝑇0-space, whenever 𝑌 is su. ŋ̂𝑇0-

space and 𝑓 is perfectly su*. ŋ̂-continuous 

function.                                                       

12- A su. 𝜔̂𝑇0-space, whenever 𝑌 is su. 𝑇0-

space and 𝑓 is perfectly su*. 𝜔̂-irresolute 

function.                                                       

13- A su. ŋ̂𝑇0-space, whenever 𝑌 is su. 𝑇0-

space and 𝑓 is perfectly su*. ŋ̂-irresolute 

function.                                     

14- A su. 𝜔̂𝑇0-space, whenever 𝑌 is su. 𝜔̂𝑇0-

space and 𝑓 is perfectly su*. 𝜔̂-irresolute 

function.                                     

15- A su. ŋ̂𝑇0-space, whenever 𝑌 is su.       

ŋ̂𝑇0-space and 𝑓 is perfectly su*.  ŋ̂-irresolute 

function.                                     

Proof: 1- Consider 𝑥1 ≠ 𝑥2 are any points in 𝑋, 

since 𝑓 is injective, so 𝑓(𝑥1) ≠ 𝑓(𝑥2) in 𝑌 

which is su. 𝑇0-space. Then there is 𝑈 ∈ 𝜇𝑌 in 

which 𝑓(𝑥1) ∈ 𝑈 and  𝑓(𝑥2) ∉ 𝑈, hence 𝑈𝑐 is 

su. closed subset of 𝑌, therefore 𝑓−1(𝑈𝐶)  =

(𝑓−1(𝑈))
𝐶
 is su. clopen subset of 𝑋 (because 𝑓 

is perfectly su*. continuous), hence 𝑓−1(𝑈) is 

su. open subset of 𝑋 where 𝑓−1(𝑓(𝑥1)) = 𝑥1 ∈

𝑓−1(𝑈) and 𝑓−1(𝑓(𝑥2)) = 𝑥2 ∉ 𝑓−1(𝑈), 
therefore 𝑋 is su. 𝑇0-space. We can prove the 

other properties by the same way.                                             

Hint: The previous theorem is true when we 

replace each 𝑇0 by 𝑇1or 𝑇2.   
 

3- Su. 𝝎̂-compact and su. ŋ̂-compact spaces.    

In this part we submitted definitions of new 

types of su. compact spaces which are su. 𝜔̂ -

http://creativecommons.org/licenses/by-nc/4.0/
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compact and su. ŋ̂-compact spaces, and new 

types of su*. Homeomorphism functions.  

Definition (3.1): 1- A class ç= {𝒲𝛼| 𝛼 ∈∧} of 

su. 𝜔̂-open subsets 𝒲
𝛼

 of (𝑋, 𝜇) is a su. 𝜔̂-

open cover to a subset 𝑆 of 𝑋 whenever 

⊆ ⋃ 𝒲𝛼𝛼∈∧  , when 𝑆 = 𝑋, then {𝒲𝛼 | 𝛼 ∈∧} is 

a su. 𝜔̂-open cover to 𝑋. If  𝒲𝛼  is su. ŋ̂-open 

set, then ç is called a su. ŋ̂-open cover to 𝑆.                                

2- A subset 𝑆 of (𝑋, 𝜇) is a su. 𝜔̂-compact if 

any su. 𝜔̂-open cover for 𝑆 possesses a finite 

sub cover, when 𝑋 = 𝑆, then 𝑋 is a su. 𝜔̂-

compact space.                                    

3- A subset 𝑆 of (𝑋, 𝜇) is a su. ŋ̂-compact if 

any su. ŋ̂-open cover for 𝑆 possesses a finite 

sub cover, when 𝑋 = 𝑆, then 𝑋 is a su. ŋ̂-

compact space.                                    

Example (3.2): 1- Let 𝑋= {1, 2, 3}, 𝜇𝑋= {∅,𝑋, 

{1, 2}, {1, 3}} is su. compact, su. 𝜔̂-compact 

and su. ŋ̂-compact space. 

Remark (3.3): 1- If 𝑋 is a su. 𝜔̂-compact space, 

then it is a su. compact.                       

2- If 𝑋 is a su. ŋ̂-compact space, then it is a su. 

compact. 

Theorem (3.4) [4]: A su. closed subset of a su. 

compact space is a su. compact.                

Proposition (3.5): 1- A su. 𝜔̂-closed subset ℳ 

of a su. 𝜔̂-compact space (𝑋, 𝜇𝑋), is a su. 𝜔̂-

compact set. 

2- A su. ŋ̂-closed subset ℳ of a su. ŋ̂-compact 

space (𝑋, 𝜇𝑋), is a su. ŋ̂-compact set.                                            

Proof: 1- Consider (𝑋, 𝜇𝑋) is a su. 𝜔̂-compact 

space and ℳ is a su. 𝜔̂-closed set in 𝑋, let 
{𝒲𝛼}𝛼∈∧ be a su. 𝜔̂-open cover for ℳ⟹ℳ ⊆
 ⋃ 𝒲𝛼𝛼∈∧ , but 𝑋 = ℳ⋃ℳ𝐶 ⟹ 𝑋 ⊆
{⋃ 𝒲𝛼𝛼∈∧ } ⋃ ℳ𝐶 and since ℳ is su. 𝜔̂-closed 

set in 𝑋, then ℳ𝐶 is su. 𝜔̂-open, this means 

{𝒲𝛼|𝛼 ∈∧, ℳ𝐶} is a su. ω̂-open cover for 𝑋, 

but 𝑋 is a su. 𝜔̂-compact, so any su. 𝜔̂-open 

cover for 𝑋 possesses a finite sub cover, 

hence 𝑋 ⊆ (⋃ 𝒲𝛼𝑖

𝑛
𝑖=1 )⋃ℳ𝐶, but ℳ ⊆ 𝑋 ⟹

ℳ ⊆ (⋃ 𝒲𝛼𝑖

𝑛
𝑖=1 )⋃ℳ𝐶 , since ℳ⋂ℳ𝐶 =

∅ ⟹ ℳ ⊆  ⋃ 𝒲𝛼𝑖

𝑛
𝑖=1  , then {𝒲𝛼𝑖

}
𝑖=1

𝑛
 is a 

finite  

sub cover of the su. 𝜔̂-open cover {𝒲𝛼}𝛼∈∧ for 

ℳ, therefore ℳ is a su. 𝜔̂-compact.                                          

Theorem (3.6) [7]:  The continuous image of 

su. compact space is su. compact. 

Proposition (3.7): If the function 𝑓: (𝑋, 𝜇𝑋) ⟶
(𝑌, 𝜇𝑌) is:-                             

1- Su*. 𝜔̂-continuous, so the image of each su. 

𝜔̂-compact set in 𝑋 is a su. compact set in 𝑌.                                                         

2- Strongly su*. 𝜔̂-continuous, so the image of 

each su. compact set in 𝑋 is a su. 𝜔̂-compact 

set in 𝑌.                                                              

3- Su*. 𝜔̂-irresolute, so the image of each su. 

𝜔̂-compact set in 𝑋 is a su. 𝜔̂-compact set in 𝑌.                                          

4- Su*. ŋ̂-continuous, so the image of each su. 

ŋ̂-compact set in 𝑋 is a su. compact set in 𝑌.                                                         

5- Strongly su*. ŋ̂-continuous, so the image of 

each su. compact set in 𝑋 is a su. ŋ̂-compact set 

in 𝑌.    

6- Su*. ŋ̂-irresolute, so the image of each su. ŋ̂-

compact set in 𝑋 is a su. ŋ̂-compact set in 𝑌.                                                         

Proof: Let 𝑓 be a su*. 𝜔̂-continuous function 

and 𝒲 be a su. 𝜔̂-compact set in 𝑋. Take 
{𝑉𝛼}𝛼∈∧ to be a su. open cover to 𝑓(𝒲), where 

each 𝑉𝛼 ∈ 𝜇𝑌, 𝛼 ∈∧., then 𝑓(𝒲) ⊆  ⋃ 𝑉𝛼𝛼∈∧ , 

but 𝑓 is su*. 𝜔̂-continuous, hence 𝒲 ⊆

𝑓−1 (𝑓(𝒲)) ⊆  𝑓−1 (⋃ 𝑉𝛼𝛼∈∧ ) =

⋃ (𝑓−1(𝑉𝛼))𝛼∈∧ , then {𝑓−1(𝑉𝛼)}𝛼∈∧  is a su. 𝜔̂-

open cover for 𝒲, since 𝒲 is su. 𝜔̂-compact, 

so each su. 𝜔̂-open cover to it possesses a finite  

sub cover, hence 𝒲 ⊆ ⋃ 𝑓−1(𝑉𝛼𝑖
)𝑛

𝑖=1  and by 

take the image of both sides we get 𝑓(𝒲)⊆

𝑓(⋃ 𝑓−1(𝑉𝛼𝑖
)𝑛

𝑖=1 ) = ⋃ 𝑓(𝑓−1(𝑉𝛼𝑖

𝑛
𝑖=1 )) ⊆

⋃ 𝑉𝛼𝑖

𝑛
𝑖=1 ⟹ 𝑓(𝒲) ⊆ ⋃ 𝑉𝛼𝑖

𝑛
𝑖=1 , which means 

that {𝑉𝛼𝑖
}

𝑖=1

𝑛
 is a finite sub cover for the su. 

open cover {𝑉𝛼}𝛼∈∧, so 𝑓(𝒲) is a su. compact 

subset of 𝑌. The rest of the possibilities can be 

proved by the same way.     

Theorem (3.8): Let 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) be a 

surjective function, if:-                         

1- 𝑋 is su. 𝑇1-space and 𝑓 is su*. open 

function, then 𝑌 is su. 𝑇1-space. 

2- 𝑋 is su. 𝑇1-space and 𝑓 is su*. open 

function, then 𝑌 is su. 𝜔̂𝑇1-space.                

3- 𝑋 is su. 𝑇1-space and 𝑓 is su*. open 

function, then 𝑌 is su. ŋ̂𝑇1-space.               

4- 𝑋 is su. 𝜔̂𝑇1-space and 𝑓 is totally su*. 𝜔̂-

open function, then 𝑌 is su. 𝑇1-space.                          

5- 𝑋 is su. ŋ̂𝑇1-space and 𝑓 is totally su*. ŋ̂-

open function, then 𝑌 is su. 𝑇1-space.                   

6- 𝑋 is su. 𝜔̂𝑇1-space and 𝑓 is totally su*. 𝜔̂-

open function, then 𝑌 is su. 𝜔̂𝑇1-space.                
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7- 𝑋 is su. ŋ̂𝑇1- space and 𝑓 is totally su*. ŋ̂-

open function, then 𝑌 is su. ŋ̂𝑇1-space.                        

8- 𝑋 is su. 𝜔̂𝑇1-space and 𝑓 is strongly su*. 𝜔̂-

open function, then 𝑌 is 𝜔̂𝑇1- space.       

9- 𝑋 is su. ŋ̂𝑇1-space and 𝑓 is strongly su*. ŋ̂-

open function, then 𝑌 is ŋ̂ 𝑇1-space.            

10- 𝑋 is su. 𝑇1-space and 𝑓 is strongly su*.  𝜔̂-

open function, then 𝑌 is 𝜔̂𝑇1- space.            

11- 𝑋 is su. 𝑇1-space and 𝑓 is strongly su*. ŋ̂-

open function, then 𝑌 is ŋ̂𝑇1-space. 

Proof: Suppose 𝑎, 𝑏 be distinct two points in 𝑌. 

So there are two distinct points 𝑥, 𝑦 in 𝑋 in 

which 𝑓(𝑥) = 𝑎, 𝑓(𝑦) = 𝑏 (because 𝑓 is onto 

and by definition of functions), since 𝑋 is su. 

𝑇1-space, so there are two su. open sets 𝒲, ℬ 

in 𝑋 with 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲 and 𝑦 ∈ ℬ, 𝑥 ∉ ℬ, 

hence, 𝑓(𝑥)  =  𝑎 ∈ 𝑓(𝒲), 𝑓(𝑦) =  𝑏 ∉
𝑓(𝒲)  and 𝑓(𝑦)  =  𝑏 ∈ 𝑓(ℬ), 𝑓(𝑥)  = 𝑎 ∉
𝑓(ℬ) where 𝑓(𝒲), 𝑓(ℬ) are su. open sets in 𝑌 

(since 𝑓 is su*. open function), then 𝑌 is su. 𝑇1-

space. 

Hint: Theorem (3.8) remains true when we 

replace 𝑇1 by 𝑇0  or 𝑇2, also it is true if we use 

the types of su*. closed function instead of the 

types of su*. open function.          

Definition (3.9): A bijective function 𝑓 from a 

su. space 𝑋 into a su. space 𝑌 is.        

1- Su*. homeomorphism function, if 𝑓 and 𝑓−1 

are su*. continuous [5].                      

2- Su*. 𝜔̂-homeomorphism function, if 𝑓 and 

𝑓−1 are su*. 𝜔̂-continuous.  

3- Su*. ŋ̂-homeomorphism function, if f and 

𝑓−1 are su*. ŋ̂-continuous. 

4- Su*. 𝜔̂∗-homeomorphism function, if 𝑓 and 

𝑓−1 are su*. 𝜔̂-irresolute.   

5- Su*. ŋ̂∗-homeomorphism function, if 𝑓 and 

𝑓−1 are su*. ŋ̂-irresolute.                              

6- Su*. 𝜔̂∗∗-homeomorphism function, if 𝑓 and 

𝑓−1 are strongly su*. 𝜔̂-continuous.    

7- Su. ŋ̂∗∗-homeomorphism function, if 𝑓 and 

𝑓−1 are strongly su*. ŋ̂-continuous.          

Definition (3.10): A bijective function 𝑓 from a 

su. space 𝑋 into a su. space 𝑌 is:-    

1- Su*. homeomorphism function, if it is su*. 

continuous and su*. open (or su*. closed) 

function . 

2- Su*. 𝜔̂-homeomorphism function, if it is 

su*. 𝜔̂-continuous and su*. 𝜔̂-open (or su*. 𝜔̂-

closed) function.    

3- Su*. ŋ̂-homeomorphism function, if it is 

su*. ŋ̂-continuous and su*. ŋ̂-open (or su*. ŋ̂-

closed) function.                                                                         

4- Su*. 𝜔̂∗-homeomorphism function, if it is 

su*. 𝜔̂-irresolute and strongly su*. 𝜔̂-open (or 

strongly su*. 𝜔̂-closed) function.   

5- Su*. ŋ̂∗-homeomorphism function, if it is 

su*. ŋ̂-irresolute and strongly su*. ŋ̂-open (or 

strongly su*. ŋ̂-closed) function.                                                             

6- Su*. 𝜔̂∗∗-homeomorphism function, if it is 

strongly su*. 𝜔̂-continuous and totally su*. 𝜔̂-

open (or totally su*. 𝜔̂-closed) function.   

7- Su*. ŋ̂∗∗-homeomorphism function, if it is 

strongly su*. ŋ̂-continuous and totally su*. ŋ̂-

open (or totally su*. ŋ̂-closed) function.                                                         

Proposition (3.11):  

1- Each su. topology finer than su. 𝑇0 is also 

su.𝑇0.                       
2- Each su. topology finer than su. 𝜔̂𝑇0 is also 

su. 𝜔̂𝑇0.                
3- Each su. topology finer than su. 𝑇1 is also 

su. 𝑇1.                                                  
4- Each su. topology finer than su. 𝜔̂𝑇1 is also 

su. 𝜔̂𝑇1.                                                 
Proof: Let 𝑎 ≠ 𝑏 be two elements in a su. 

space 𝑋 and 𝜇, 𝜇∗ are two su. topologies 

defined on 𝑋, where 𝜇∗ is finer than 𝜇, and 𝜇 is 

a su. 𝑇0-topology on 𝑋, so there is 𝑈 ∈ 𝜇 

containing 𝑎 but not 𝑏, since 𝜇 ⊆ 𝜇∗, hence 

𝑈 ∈ 𝜇∗ too, then 𝜇∗  is a su.𝑇0-topology on 𝑋. 

By the same way we can prove the rest 

properties. 

Theorem (3.12) [6]: A space 𝑋 is a su. 𝑇1-

space, iff for any 𝑥 ∈ 𝑋, {𝑥} is su. closed set.                                                                

Corollary (3.13): A space 𝑋 is su. 𝜔̂𝑇1-  

space iff any singleton subset {𝑥} of 𝑋 is   

su. 𝜔̂-closed.                                                 

Proof: Suppose any singleton {𝑥} is a su. 𝜔̂-

closed subset of 𝑋, and let 𝑑 ≠  𝑒 ∈  𝑋, so 

{𝑑}𝑐, {𝑒}𝑐 are su. 𝜔̂-open sets containing 𝑒, 𝑑 

respectively, which lead us to 𝑋 is su. 𝜔̂𝑇1-

space. Conversely, let 𝑋 be a su. 𝜔̂𝑇1-space, let 

𝑒 ∈ 𝑋, and 𝑒 ∈ {𝑑}𝑐, so 𝑑 ≠ 𝑒 and there exists 

a su. 𝜔̂-open set 𝒲 in 𝑋 with 𝑒 ∈ 𝒲, 𝑑 ∉ 𝒲, 
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so 𝑒 ∈ 𝒲 ⊆ {𝑑}𝑐, thus {𝑑}𝑐 is su. 𝜔̂-open set 

(by proposition (2.7)), therefore {𝑑} is su. 𝜔̂-

closed, but d is arbitrary element in 𝑋, that 

means every singleton subset in 𝑋 is su. 𝜔̂-

closed. 

Definition (3.14): The su. space 𝑋 is called su. 

𝜔̂-space, if each su. 𝜔̂-open subset from 𝑋, is 

su. open.                           

Theorem (3.15): A su. space 𝑋 is su. 𝜔̂𝑇0-

space iff 𝑐𝑙𝜔̂
𝜇 (𝑥) ≠ 𝑐𝑙𝜔̂

𝜇 (𝑦) for each non-equal 

points 𝑥, 𝑦 in 𝑋.                                   
Proof: Suppose 𝑐𝑙𝜔̂

𝜇 (𝑥) ≠ 𝑐𝑙𝜔̂
𝜇 (𝑦) for each 

distinct points 𝑥, 𝑦 in 𝑋, so there is at least one 

element in one of them and not in the other, say 

a ∈ clω̂ 
μ

(𝑥), a ∉ clω̂ 
μ (y), and suppose 𝑥 ∉

clω̂ 
μ (y), because if 𝑥 ∈ clω̂

μ
 (y) then clω̂

μ
(𝑥) 

⊆  clω̂ 
μ

(clω̂ 
μ (y)) = clω̂

μ (y) ⟹  a ∈ clω̂
μ

(𝑥) ⊆

 clω̂
μ (y) and that is a contradiction, therefore 

𝑥 ∈ 𝑋 − clω̂
μ (y), Now 𝑋 − 𝑐𝑙𝜔̂

𝜇 (𝑦) is su. 𝜔̂-

open set containing 𝑥 but not 𝑦, that implies 𝑋 

is su. 𝜔̂𝑇0-space. Conversely, If 𝑋 is su. 𝜔̂𝑇0-

space and 𝑥 ≠ 𝑦 are arbitrary elements in 𝑋, so 

there is a su. 𝜔̂-open set 𝑈 of 𝑋 with 𝑥 ∈ 𝑈 and 

𝑦 ∉ 𝑈, then 𝑋 − 𝑈 is su. 𝜔̂-closed set contains 

𝑦 but not 𝑥, from definition of 𝑐𝑙𝜔̂
𝜇 (𝑦) we get 

𝑐𝑙𝜔̂
𝜇 (𝑦) ⊆ 𝑋 − 𝑈, which means 𝑥 ∉ 𝑐𝑙𝜔̂

𝜇
(𝑦) but 

𝑥 ∈ 𝑐𝑙𝜔̂
𝜇

 (𝑥), so that 𝑐𝑙𝜔̂
𝜇 (𝑥) ≠ 𝑐𝑙𝜔̂

𝜇 (𝑦).        

Corollary (3.16): A su. space 𝑋 is su. 𝜔𝑇0-

space iff 𝑥 ∉ 𝑐𝑙𝜔
𝜇 (𝑦) or 𝑦 ∉ 𝑐𝑙𝜔

𝜇
 (𝑥)  for each 

distinct points 𝑥, 𝑦 in 𝑋.             
Theorem (3.17): The composition between:-

                                                      

1- Perfectly su*. continuous function and 

Perfectly su*. 𝜔̂-continuous function is 

Perfectly su*. 𝜔̂-continuous function.                

2- Perfectly su*. continuous function and 

perfectly su*. ŋ̂-continuous function is 

perfectly su*. ŋ̂-continuous function.               

3- Totally su*. 𝜔̂-continuous function and 

perfectly su*. 𝜔̂-continuous function is 

perfectly su*. 𝜔̂-irresolute function.              

Proof:  

1- Take 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) as perfectly su*. 

continuous, 𝑔: (𝑌, 𝜇𝑌) ⟶ (𝒵, 𝜇𝒵) as perfectly 

su*. 𝜔̂-continuous and ℳ is su. 𝜔̂-closed set in 

𝒵, so 𝑔−1(ℳ) is su. clopen set in 𝑌, then 

𝑓−1(𝑔−1(ℳ)) = (𝑔 ∘ 𝑓)−1(ℳ) is su. clopen 

set in 𝑋, thus 𝑔 ∘ 𝑓 is perfectly su*. 𝜔̂-

continuous function.  

3- Take 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) as totally su*. 𝜔̂-

continuous, 𝑔: (𝑌, 𝜇𝑌) ⟶ (𝒵, 𝜇𝒵) as perfectly 

su*  𝜔̂ -continuous and ℳ is su. 𝜔̂-closed set 

in 𝒵, so 𝑔−1(ℳ) is su. clopen set in 𝑌, then 

𝑓−1(𝑔−1(ℳ)) = (𝑔 ∘ 𝑓)−1(ℳ) is su. 𝜔̂-

clopen set in 𝑋, thus 𝑔 ∘ 𝑓 is perfectly su*.  𝜔̂-

irresolute function.  

The rest of properties can be proved in the 

same way.                                                         
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