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Introduction functions by using su. fj-open, su. @-open sets

In 1983, Mashhour introduced the concept of
supra topology [6]. The supra closure for a
subset W of a supra space X was defined as the
intersection of all supra closed subsets of X
containing W, while the supra interior of W
defined as the union of all supra open subsets
of X contained in W. The researcher in [1],
defined the supra compact spaces. Also many
researchers wrote about the supra separation
axioms, and we introduced in this research
definitions of two sets fj, @ in supra spaces and
new forms of supra separation axioms such as
supra @T,, supra @T;, supra @T,, supra HTy,
supra §jT;, and supra §jT,, also new forms of
supra* continuous functions, perfectly supra*
continuous functions and new forms of supra*
homeomorphism functions by using supra @-
open and supra fj-open sets. We presented
some theorems, propositions and remarks and
we supported them by examples.

1- Supra* @-Continuous and supra* fj-
continuous functions.

We introduced some new types of supra*
continuous and perfectly supra*continuous
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and illustrated the relation between them. We
used the abbreviation "su." to refer to "supra".
Definition (1.1) [3]: Let X be a non- empty set
and u be a sub collection of the power set of X,
then u is a supra topology on X if:

1-9,X € pu.

2- p is closed under the arbitrary union, any set
W epu is called supra open set and its
complement is supra closed set. The pair (X, i)
is called a supra space.

Definition (1.2) [6]: Let (X,T) be a topological
space, u is called a supra topology associated
with T if Tc u.

Remark (1.3): Any topology is su. topology,
since every topology includes @,X and it is
closed under the infinite union. This remark is
irreversible

Example (1.4): In the su. space(X, ), where
X={1 2 3} p={0, X, {1}, {2}, {1, 2}, {2,
3}, {1, 3}}, u is su. topology on X but not
topology since {1, 3} N {2, 3} = {3} ¢u.
Definition (1.5):

1- A subset W of a su. space (X, u) is called a
su. @-open set if for any s € W, thereisV e u
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such that s € Vand V-W is countable. W¢ is
called a su. @-closed set.

2- A subset W of a su. space (X, u) is called a
su. f)-open set if for any s € W, thereisV e u
such that s e Vand V-W is finite. W€ is
called a su. fj-closed set.

3- The su. @-closure of a subset W of a su.
space (X,uw) is the intersection of all su. @-
closed subsets of X which contain W, and we
denote it by clf (W). While the su. @-interior
of W is the union of all su. @-open subsets of
X which contained in W, and we denote it by
Intg (W). By the same way we can define su.
-closure for W (denoted by clg(W)) and su.
fj-interior for W (denoted by Intf (W)).

Remark (1.6):

1- Any su. open set is su @-open (resp. su. fj
open) set.

2- Any su. closed set is su @-closed (resp.
i) -closed) set.

Definition (1.7): Let (X,uy),(Y,uy) be a
topological spaces and Ty < uy, Ty € uy. The
function f: (X, ux) — (Y, uy) is called:-

1- Su*. continuous function. If the inverse
image of any su. open (resp. su. closed) setin Y
is a su. open (resp. su. closed) set in X [6].

2- Su*. @-continuous function. If the
inverse image of any su. open (resp. su. closed)
setin Y is a su. @-open (resp. su. &-closed) set
inX.

3- Su*. T-continuous function. If the
inverse image of any su. open (resp. su. closed)
set in Y is a su. 1-open (resp. su fj-closed) set
in X.

4- Strongly su*. @-continuous function. If
the inverse image of any su. @-open (resp. su.
@-closed) set in Y is a su. open (resp. su.
closed) set in X.

5- Strongly su*. fj-continuous function. If
the inverse image of any su. fj-open (resp. su.
H-closed) set in Y is a su. open (resp. su.
closed) set in X.

6- Su*. @-irresolute function. If the
inverse image of any su. @-open (resp. su. &-
closed) set in Y is a su. @-open (resp. su. @-
closed) set in X.

7- Su*. §j-irresolute function. If the inverse
image of any su. fj-open (resp. su. fj-closed) set

Su.
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in Y is a su. fj-open (resp. su. fj-closed) set in
X.

8- Perfectly su*. continuous. If the inverse
image of any su. open (resp. su. closed) setin Y
is a su. clopen set in X [8].

9- Totally su*. @-continuous. If the
inverse image of any su. open (resp. su. closed)
setinY isasu. @-clopen setin X.

10- Totally su*. fj-continuous. If the inverse
image of any su. open (resp. su. closed) setin Y
is a su. fj-clopen set in X.

11- Perfectly su*. @-continuous. If the inverse
image of any su. @-open (resp. su. &-closed)
setinY isasu. clopensetin X.

12- Perfectly su*. fj-continuous. If the inverse
image of any su. fj-open (resp. su. fj-closed) set
inY isasu. clopen setin X.

13- Perfectly su*. @-irresolute. If the inverse
image of any su. @-open (resp. su. @-closed)
setinY isasu. @-clopensetin X.

14- Perfectly su*. fj-irresolute. If the
inverse image of any su. fj-open (resp. su. fj-
closed) setin Y is a su. fj-clopen set X.
Example (1.8): Let X=Y={1, 2, 3}, uyx= {0, X,
{1}, {8}, {1 3} {2 3} {1, 2}}and
uy={9,Y, {3} {1, 2}},s0 f: X — Y defined as
f(1)=2, f(2)=1, f(3)=3 is su*. continuous, su*.
@-continuous, su*. fj-continuous, su*. &-
irresolute, su*. fj-irresolute function, but not
strongly su*. @-continuous and not strongly
su*. fj-continuous function, since {1} is su. @-
open and su. fj-open set in Y but f1({1})
={2} is not su. open set in X. Also, it is
perfectly su*. continuous, totally su*. @-
continuous, totally su*. fj-continuous, perfectly
su*. fj-irresolute, perfectly su*.@-irresolute,
but not perfectly su*. fj-continuous, and not
perfectly su*. &-

continuous function.

Remark (1.9):

1- Every perfectly su*.
function is su*. continuous function.
2- Every totally su*. @-continuous (resp.
totally su*. fj-continuous) function is su*. &-
continuous (resp. su*. fj-continuous) function.
3- Every perfectly su*. @-continuous (resp.
perfectly su*. fj-continuous) function is
strongly su*. @-continuous (resp. strongly su*.
fj-continuous) function.

continuous
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4- Every perfectly su*. @-irresolute (resp.
perfectly su*. fj-irresolute) function is su*. @-
irresolute (resp. su*. fj-irresolute).

Example (1.10): Let (R, Tcor) be the co-finite
topological space and Tcor € Ueopr SO
Iz: (R, pieoc) — (R, Teop) is su*. continuous,
su*. @-continuous, su*. fj-continuous, strongly
su*. @-continuous, strongly su*. fj-continuous,
su*. @-irresolute and su*. fj-irresolute function
but not totally su*. @-continuous, not totally
su*. fj-continuous, not perfectly su*. @&-
continuous, not perfectly su*. @-irresolute, not
perfectly su*. fj-continuous, not perfectly su*.

f-irresolute and not perfectly su*. continuous.

2- Su. separation axioms by using su. @-open
and su. fj-open sets.

At the beginning we presented definitions of
some separation axioms by using su. @-open
and su. fj-open sets, and we provided the
relation between them, also we connected them
with several types of su*.continuous, su*. open
and su*. closed functions.

Definition (2.1): The su. space (X, u) is
called:-

1- A su. T,-space [6], if for each different
elements x,y inX, there is W € u such
thatx € W,y ¢ W.

2- A su. @Ty-space, if for each different
elements x,y in X, there is a su. @-open set W
in X suchthatx € W,y € W.

3- A su. §jTy-space, if for each different
elements x,y in X, there is a su. fj-open set W
in X suchthatx € W,y ¢ W.

4- A su. Ty-space [6], if for each different
elements x,y in X, there are W;, W, € u with
XEW,yeW,andy € W,,x & W,.

5- A su. @T,-space, if for each different
elements x,y inX, there are su. @-open sets
W, W, in X with xeW,,y¢ W, and
y EW,,x & W,.

6- A su. §jT;-space, if for each different
elements x,y inX, there are su. fj-open sets
W, W, withx e W, yg W,andy € W,,x &
w,.
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7- A su. T,-space [6], if for each different
elements x,y in X, there are disjoint W;, W, €
U withx € W, andy € W,.

8- A su. @T,-space, if for each different
elements x,y inX, there are disjoint su. @-
open sets W;, W, in X with x € W, and
y € W,.

9- A su. ijT,-space, if for each different
elements x, y in X, there are disjoint su. fj-open
sets W;, W, with x € W, andy € W,.
Example (2.2): 1- Let X={1, 2, 3} and uyx= {@,
X, {1, 2}, {2, 3}, {1, 3}}, so (X, uy) is su. Ty-
space, su. &@Ty-space and su. §jT,-space, su. T; -
space, su. @T;-space, su. §jT;-space, su. wT,-
space, su. §jT,-space, but not T,-space.

2- Let X={1, 2, 3} and uy= {0, X, {1},

{2}, {1, 2}, {1, 3}, {2, 3}}, so (X, ux) is su.
T,-space, su. @T,-space, su. §jT,-space.
Remark (2.3): Suppose X is a su. space, then, if
X is:-

1- Su. T;-space, then it is su. &@T;-space and su.
§T;-space, i=0, 1, 2.

2- Su. §jT;-space, then it is su. @T;-space,
i=0, 1, 2.

3- Su. @T;-space, then it is su.&wT;_4-Space,
i=1, 2.

4- Su. fjT;-space, then it is su. §jT;_,-Space,
i=1, 2.

5- Su. @T,-space (resp. [jT,-space), then it is
su. @T,-space (resp. fjT,-space).

Example (2.4):

1. (Z, Uing) 1S SU. @T,-space, su. {HT,-space
also su. @T,-space but not su. T,-space, not
su. T,-space and not su. jT,-space.

2- Let X= {1, 2, 3} and ux= {9, X, {1, 2}, {2,
3}}, so (X, uy) is su. @T;-space, su. T, -space,
but not su. T;-space.

3- (R, peos) is su. @Ty-space and su. &T-
space, but it is not su. & T,-space.

Proposition (2.5): If W;, i €1 is u. @- open
(resp. su. fj-open) subsets of a su. space (X, uy)
then U;e; W; is asu. &-

open (resp. su. fj-open) subset of (X, ux).
Proof: Suppose e € Uje; W= e € W,,, for
some «a; € I, thus there is G € uy containing e
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and G-W,, is countable (resp. finite, but G-
Uiet W; € G-W,, (since

Wy, € Uigt W =X-Uigt W € X- Wy, =
GNX-UegW)EaGN (X-Wai) = G-
Uiet W; € G-W,,), hence G- U;e, W, is a
countable (resp. a finite) set (because G-W,, is
a countable (resp. finite) set and any subset of
countable (resp. finite) set is countable (resp.
finite)). Therefore U;; W; IS a su. @-open
(resp. su. fj-open) set.

Definition (2.6): Suppose H is a subset of a su.
space X, whenever for any element x € H there
IS a su. @-open (resp. su. fj-open) subset U of X
containing x and U € H, then x is a su. @-
interior (resp. su. fj-interior) point to H.
Proposition (2.7):

1- Consider X as a su. space and H as a subset
of X, then H is a su. @-open set if H=
Int (H).

2- Consider X a su. space and H as a subset of
X, then H is a su. fj-open set iff H = Intf (H).
Proof: Let H be a su. @-open set, since Int}
(H) is the largest su. @-open set in X contained
in H), so Intt(H) S H, now to prove H
Intf (H). Let x € H € H and since H is su. @-
open set, sox €Int;(H), and since x is
arbitrary point in H, so each point in H is su @-
interior point, but Uyep{x} = H, hence
H < Intt (H), therefore  Int%(H) =H.
Conversely, if Intf (H)=H, and since
Intg(H) IS su. @-open set, therefore H is a su.
@-open set.

Definition (2.8) [2]: Whenever (X, uy) is a su.
space and (Y,uy) is a su. sub space of X,
then W € uy iff W = UNY inwhich U € puy.
Proposition (2.9): In case W is a su. @-open
(resp. su. fj-open) set in a su. space (X,u),
so WNY is a su. @-open (resp. su. fj-open) set
in (Y, uy) whenever Y is a su. sub space of X.
Proof: Consider x e WNY =x €W and
x €Y,sothereis G € uy, withx € G and G-W
is countable (resp. finite), but (G-W)NY < (G-
W) = (G-W)NY is countable (resp. finite),
and (G-W)NY = (GNY)-(WNY) is countable
(resp. finite), where G NY is a su. open setin Y
(from definition (2.8)), which implies WNY is
a su. @-open (resp. su. j-open) setin'Y.
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Definition (2.10): The function f : (X, ux) —
(Y, uy) is called:-

1- Su*. closed function, if f(V) is su.
closed set in Y, for any su. closed set VV in X
[9].

2- Su*. open function, if f(V) is su. open
setinY, for any su. open set V in X [5].

3- Su*. @-closed (resp. su*. d&-open)
function, if f(V) is su. @-closed (resp. su. @-
open) set in Y, for any su. closed (resp. su.
open) set Vin X.

4- Totally su*. &-closed (resp. totally
su*.@ -open) function, if f(V) is su. closed
(resp. su. open) set in Y, for any su. @-closed
(resp. su. @-open) set V in X.

5- Strongly su*. @-closed (resp. strongly
su*. @-open) function, if f(V) is su. &-closed
(resp. su. @-open) set in Y, for any su. @-
closed (resp. su. @-open) set V in X.

6- Su*. fj-closed (resp. su*. fj-open)
function, if f(V) is su. fj-closed (resp. su. fj-
open) set in Y, for any su. closed (resp. su.
open) set Vin X.

7- Totally su*. fj-closed (resp. totally su*.
fj-open) function, if (V) is su. closed (resp.
su. open) set in Y, for any su. fj-closed (resp.
su. fj-open) set V in X.

8- Strongly su*. fj-closed (resp. strongly
su*. fj-open) function, if f(V) is su. fj-closed
(resp. su. fj-open) set in Y, for any su. fj-closed
(resp. su. fj-open) set V in X.

Example (2.11):

1- X={1, 2} and ux= {0, X, {1}}, and Y={1,
2,3} uy={0,Y, {1}, {3}, {1.2}, {1.3}, {2,3}}
so f:(X,ux) — (Y,uy)such that f(a) =a
for any a € X, is su*. closed and su*. open,
su*. @-closed, su*. @-open, strongly su*. @-
open and strongly su*. @-closed, su*. fj-closed,
su*. fj-open, strongly su*. fj-open, strongly
su*.  fj-closed, totally su*. @-closed, and
totally su*. fj-closed function, but neither
totally su*. fj-open nor totally su*. d&-open
function.

2- A function f: (X, uy) — (Y, uy), where X=
{1, 2}, ux= {9, X, {1}}, Y={1, 2, 3, 4} and
HY:{Q)' Y’ {1}’ {2}1 {3}! {1! 2}! {2! 3}! {1’ 3};
{1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2,
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3, 4}, {3, 4}}such that f(1)=1 and f(2)=2, then
f satisfies all the definitions in (2.10).

Theorem (2.12): Su. @T;-space (resp. su. §T;),
i=0, 1, 2 is a hereditary property and a
topological property.

Proof: Take Y as a su. sub space of a su. space
X and x, y as distinct points in Y, hence x, y are
distinct points in X which is a su. @T,-space
(resp. §jT,-space), so there exists a su. @-open
(resp. su. fj-open) subset W of X, with
x €W,y & W. We have WNY is a su. &-open
(resp. su. fj-open) subset of Y (proposition
(2.9)) with x e WNY,y ¢ WNY (because
x €EWandx €Y buty € W). Therefore Y is a
su. @Ty-space (resp. su. fjTy-space). Which
means su. @T,-space (resp. su. fjT,-space) is a
hereditary property. Now to prove su. &@T,-
space (resp. fjT,-space) is a topological
property. Suppose f:(X,ux) — (Y,uy) is a
surjective, strongly su*. @-open (resp. strongly
su*. fj-open) function, in which X is a su. @Tj-
space (resp. su. §jT,-space) and y,,y, are
different points inY, then there are different
points xq,x, in X with f(x) =y, f(xy) =
y, (since f is a surjective function), so there
exists a su. @-open (resp. su. fj-open) subset W
of X with x; € W and x, ¢ W (because X is a
su. @T,-space (resp. su. f[jT,-space) where
fGx1) =y, € f(W) and f(x2) =y, & fF(W),
in which f(W) is a su. @-open (resp. su. fj-
open) subset of Y (because f is strongly su*.
@-open (resp. strongly su*. fj-open) function,
therefore Y is a su. @Ty-space (resp. su. §jT,-
space). Which means the su. @T,-space (resp.
su. )T,-space) is a topological property. By the
same way we can prove the rest properties.
Theorem (2.13): If f:(X,ux) — (Y,uy) is
injective function, then the su. space (X, uy)
is:-

1- A su. Ty-space, whenever Y is su. Ty-Space
and f is perfectly su*. continuous function.

2. A su. @T,-space, whenever Y is su. T,-space
and f is perfectly su*. continuous function.

3- A su. §)T,-space, whenever Y is su. T,-space
and f is perfectly su*. continuous function.

4- A su. @T,-space, whenever Y is su. T,-space
and f is totally su*. @-continuous function.
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5- A su. jT,-space, whenever Y is su. T,-space
and f is totally su*. fj-continuous function.

6- A su. @T,-space, whenever Y is su. T,-space
and f is perfectly su*. @-continuous function.
7- A su. §T,-space, whenever Y is su. T,-space
and f is perfectly su*. fj-continuous function.
8- A su. ®T,-space, whenever Y is su. @T,-
space and f is perfectly su*. @-continuous
function.

9- A su. §jT,-space, whenever Y is su. §iT,-
space and f is perfectly su*. fj-continuous
function.

10- A su. T,-space, whenever Y is su. &T,-
space and f is perfectly su*. d&-continuous
function.

11- A su. Ty-space, whenever Y is su. §iT,-
space and f is perfectly su*. fj-continuous
function.

12- A su. @Ty-space, whenever Y is su. Ty-
space and f is perfectly su*. &@-irresolute
function.

13- A su. §jT,-space, whenever Y is su. Ty-
space and f is perfectly su*. fj-irresolute
function.

14- A su. &@T,-space, whenever Y is su. &T,-
space and f is perfectly su*. @-irresolute
function.

15- A su. fjT,-space, whenever Y is su.
jTy-space and f is perfectly su*. fj-irresolute
function.

Proof: 1- Consider x; # x, are any points in X,
since f is injective, SO f(x;) # f(x,) In Y
which is su. T,-space. Then there is U € py in
which f(x;) € U and f(x,) € U, hence U°€ is
su. closed subset of Y, therefore f~1(U¢) =

(£=(U))" is su. clopen subset of X (because f
is perfectly su*. continuous), hence f~1(U) is
su. open subset of X where f~1(f(x,)) = x; €
AU and  fFHf(xp) = x; € FHU),
therefore X is su. T,-space. We can prove the
other properties by the same way.

Hint: The previous theorem is true when we
replace each T, by T;or T,.

3- Su. w-compact and su. fj-compact spaces.
In this part we submitted definitions of new
types of su. compact spaces which are su. @ -
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compact and su. fj-compact spaces, and new
types of su*. Homeomorphism functions.
Definition (3.1): 1- A class ¢= {W,| a €A} of
su. @-open subsets W _ of (X,u) is a su. @-
open cover to a subset S of X whenever
C Ugen W, ,when S = X, then {W,, | « €A} is
a su. @-open cover to X. If W, is su. fj-open
set, then ¢ is called a su. fj-open cover to S.

2- A subset S of (X,u) is a su. @-compact if
any su. @-open cover for S possesses a finite
sub cover, when X =S, then X is a su. @-
compact space.

3- A subset S of (X,u) is a su. fj-compact if
any su. fj-open cover for S possesses a finite
sub cover, when X =S, then X is a su. §j-
compact space.

Example (3.2): 1- Let X= {1, 2, 3}, ux={0.X,
{1, 2}, {1, 3}} is su. compact, su. @-compact
and su. fj-compact space.

Remark (3.3): 1- If X is a su. @-compact space,
then it is a su. compact.

2- If X is a su. fj-compact space, then it is a su.
compact.

Theorem (3.4) [4]: A su. closed subset of a su.
compact space is a su. compact.

Proposition (3.5): 1- A su. @-closed subset M
of a su. @-compact space (X, uy), is a su. @-
compact set.

2- A su. fj-closed subset M of a su. fj-compact
space (X, uy), is a su. fj-compact set.

Proof: 1- Consider (X, ty) is a su. @-compact
space and M is a su. @-closed set in X, let
{W,},ex be asu. @-open cover for M=M <
UgerW,, but X =MUMS =XC
{Uger W, } U M€ and since M is su. @-closed
set in X, then M€ is su. @-open, this means
{(W,|a e, M} is a su. ®-open cover for X,
but X is a su. @-compact, so any su. @-open
cover for X possesses a finite sub cover,
hence X € (UL, W,,)UME, but M cX =
M S (UL W, )UME,  since MNME =
=M< UL, W, , then {wai}?_l is a
finite

sub cover of the su. @-open cover {W, },e, for
M, therefore M is a su. @-compact.

Theorem (3.6) [7]: The continuous image of
su. compact space is su. compact.
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Proposition (3.7): If the function f: (X, ux) —
(Y' .uY) is:-

1- Su*. @-continuous, so the image of each su.
@-compact set in X is a su. compact setinY.

2- Strongly su*. @-continuous, so the image of
each su. compact set in X is a su. @-compact
setinY.

3- Su*. @-irresolute, so the image of each su.
@-compact set in X is a su. w-compact setin Y.
4- Su*. fj-continuous, so the image of each su.
fj-compact set in X is a su. compact setinY.

5- Strongly su*. fj-continuous, so the image of
each su. compact set in X is a su. fj-compact set
inY.

6- Su*. fj-irresolute, so the image of each su. fj-
compact set in X is a su. fj-compact setin Y.
Proof: Let f be a su*. @-continuous function
and W be a su. @-compact set in X. Take
{V}aen t0 be a su. open cover to f(W), where
each V, € uy,a €A., then f(W) € UgenVas
but f is su*. @-continuous, hence W <
fHUFM) € 71 (Uger V) =
Uaen(f 1 (V). then {f 71 (V) }aen is a su. &-
open cover for W, since W is su. @-compact,
so each su. @-open cover to it possesses a finite
sub cover, hence W < U}, f~*(V,,) and by
take the image of both sides we get f(W)c
FOURLf (V) = Ua f(F (V)

=1 Vo, = f(W) € Uiz, V,,, which means
that {Vai}?=1 is a finite sub cover for the su.

open cover {V,}4en, SO f(W) is a su. compact
subset of Y. The rest of the possibilities can be
proved by the same way.

Theorem (3.8): Let f:(X,uy) — (Y,uy) be a
surjective function, if:-

1- X is su. T;-space and f is su*. open
function, then Y is su. T;-space.

2- X is su. T;-space and f is su*. open
function, then Y is su. @T;-space.

3- X is su. Tj-space and f is su*. open
function, then Y is su. {jT; -space.

4- X is su. @T;-space and f is totally su*. &-
open function, then Y is su. T, -space.

5- X is su. fjT,-space and f is totally su*.
open function, then Y is su. T;-space.

6- X is su. @Ty-space and f is totally su*.
open function, then Y is su. &@T;-space.

~
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7- X is su. §T;- space and f is totally su*. §j-
open function, then Y is su. §jT;-space.

8- X is su. @T,-space and f is strongly su*. &-
open function, then Y is @T; - space.

9- X is su. §jT;-space and f is strongly su*. fj-
open function, then Y is j T; -space.

10- X is su. Ty-space and f is strongly su*. @-
open function, then Y is @T; - space.

11- X is su. Ty-space and f is strongly su*. §j-
open function, then Y is jT;-Space.

Proof: Suppose a, b be distinct two points in Y.
So there are two distinct points x,y in X in
which f(x) = a, f(y) = b (because f is onto
and by definition of functions), since X is su.
T,-space, so there are two su. open sets W, B
in X with xeW, y¢ Wandy € B, x ¢ B,
hence, f(x) = ae f(W), f() =b ¢
fW) andf(y) = bef(B),f(x) =a¢
f(B) where f(W), f(B) are su. open sets in Y
(since f is su*. open function), then Y is su. T;-
space.

Hint: Theorem (3.8) remains true when we
replace T; by T, or T,, also it is true if we use
the types of su*. closed function instead of the
types of su*. open function.

Definition (3.9): A bijective function f from a
su. space X into a su. space Y is.

1- Su*. homeomorphism function, if f and f~1
are su*. continuous [5].

2- Su*. @-homeomorphism function, if f and
f~1 are su*. @-continuous.

3- Su*. fj-homeomorphism function, if f and
f~1 are su*. fj-continuous.

4- Su*. @*-homeomorphism function, if f and
f~1 are su*. @-irresolute.

5- Su*. fj*-homeomorphism function, if f and
f~1 are su*. f-irresolute.

6- Su*. @**-homeomorphism function, if f and
£~ are strongly su*. @-continuous.

7- Su. §j**-homeomorphism function, if f and
£~ are strongly su*. fi-continuous.

Definition (3.10): A bijective function f from a
Su. space X into a su. space Y is:-

1- Su*. homeomorphism function, if it is su*.
continuous and su*. open (or su*. closed)
function .
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2- Su*. @-homeomorphism function, if it is
su*. @-continuous and su*. @-open (or su*. @-
closed) function.

3- Su*. fj-homeomorphism function, if it is
su*. fj-continuous and su*. fj-open (or su*. ij-
closed) function.

4- Su*. @"-homeomorphism function, if it is
su*. @-irresolute and strongly su*. &@-open (or
strongly su*. @-closed) function.

5- Su*. fj*-homeomorphism function, if it is
su*. fj-irresolute and strongly su*. fj-open (or
strongly su*. fj-closed) function.

6- Su*. @**-homeomorphism function, if it is
strongly su*. @-continuous and totally su*. &-
open (or totally su*. &-closed) function.

7- Su*. §j**-homeomorphism function, if it is
strongly su*. fj-continuous and totally su*. §j-
open (or totally su*. fy-closed) function.
Proposition (3.11):

1- Each su. topology finer than su. T, is also
su.Ty.

2- Each su. topology finer than su. @T, is also
su. @T,.

3- Each su. topology finer than su. T; is also
su. Ty.

4- Each su. topology finer than su. @T; is also
Su. &Tj.

Proof: Let a # b be two elements in a su.
space X and u,u* are two su. topologies
defined on X, where u* is finer than u, and u is
a su. T,-topology on X, so there is U € u
containing a but not b, since u € u*, hence
U € u* too, then u* is a su.T,-topology on X.
By the same way we can prove the rest
properties.

Theorem (3.12) [6]: A space X is a su. Ty-
space, iff for any x € X, {x} is su. closed set.
Corollary (3.13): A space X is su. &T;-

space iff any singleton subset {x} of X is

su. &-closed.

Proof: Suppose any singleton {x} is a su. @-
closed subset of X, and letd # e € X, so
{d}¢,{e}c are su. @-open sets containing e,d
respectively, which lead us to X is su. &T;-
space. Conversely, let X be a su. &@T;-space, let
e € X, and e € {d}¢, so d # e and there exists
a su. @-open set W in X with e € W,d & W,
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S0 e € W c {d}¢, thus {d}¢ is su. @-open set
(by proposition (2.7)), therefore {d} is su. @-
closed, but d is arbitrary element in X, that
means every singleton subset in X is su. @-
closed.

Definition (3.14): The su. space X is called su.
@-space, if each su. @-open subset from X, is
su. open.

Theorem (3.15): A su. space X is su. @T,-
space iff clf (x) # cl5 (y) for each non-equal
points x, y in X.

Proof: Suppose clf (x) # cl5(y) for each
distinct points x, y in X, so there is at least one
element in one of them and not in the other, say
aecs(x),agclk(y), and suppose x &
cl (y), because if x €cly (y) then cl5(x)

cls (clg (y)) =cd5(y) = aecdi(x) ¢
clg (y) and that is a contradiction, therefore
x € X —c5(y), Now X —clb(y) is su. @-
open set containing x but not y, that implies X
IS su. @T,-space. Conversely, If X is su. @T,-
space and x # y are arbitrary elements in X, so
there is a su. @-open set U of X with x € U and
y & U, then X — U is su. &-closed set contains
y but not x, from definition of clg(y) we get
cl(y) € X — U, which means x & clt (y) but
x € clg (x), so that clg(x) + clg(y).
Corollary (3.16): A su. space X is su. wTy-
space iff x & cl!,(y) or y & cl’, (x) for each
distinct points x, y in X.

Theorem (3.17): The composition between:-

[

1- Perfectly su*. continuous function and
Perfectly su*. &-continuous function is
Perfectly su*. @-continuous function.

2- Perfectly su*. continuous function and
perfectly su*. fj-continuous function is
perfectly su*. fj-continuous function.

3- Totally su*. @-continuous function and
perfectly su*. @-continuous function is
perfectly su*. @-irresolute function.

Proof:
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1- Take f: (X, ux) — (Y, uy) as perfectly su*.
continuous, g: (Y, uy) — (Z,uy) as perfectly
su*. @-continuous and M is su. @-closed set in
Z, so g~1(M) is su. clopen set in Y, then

fFHg7r (M) = (g o £)~1(M) is su. clopen
set in X, thus gof is perfectly su*. @&-
continuous function.

3- Take f: (X, ux) — (Y, uy) as totally su*. @-
continuous, g: (Y, uy) — (Z,uz) as perfectly
su* & -continuous and M is su. @-closed set
in Z, so g~1(M) is su. clopen set in Y, then

fH D) =(ge HTM) is su. -
clopen set in X, thus g o f is perfectly su*. @-
irresolute function.

The rest of properties can be proved in the
same way.
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