Research Article

Open Access

Supra $\widehat{\omega}$ -separation axioms

Nadia Kadum Humadi*, Haider Jebur Ali

Department of Mathematics, College of Science, Mustansiriyah University, IRAQ. *Correspondent author email: <u>m.a.nadia313@gmail.com</u>,

ArticleInfo	Abstract
Received 30/06/2019	The purpose of this paper is to introduce new types of supra separation axioms by using supra $\hat{\omega}$ -open sets and supra $\hat{\eta}$ -open sets in the supra spaces and illustrate the relation between them, and to introduce new forms of supra* continuous functions, perfectly supra* continuous functions and supra* homeomorphism functions.
Accepted 02/08/2019	Keywords: supra $\hat{\omega}T_0$ -space, supra $\hat{\omega}T_1$ -space, supra $\hat{\omega}T_2$ -space, supra* $\hat{\omega}^*$ -homeomorphism function, supra* $\hat{\omega}^{**}$ -homeomorphism function.
Published 15/01/2020	الخلاصة الغرض من هذا البحث هو لتقديم انواع جديدة من بديهيات الفصل الفوقية بأستخدام المجموعات المفتوحة- 60 الفوقية والمجموعات المفتوحة -67 الفوقية في الفضاءات الفوقية وتوضيح العلاقة بينهم, ولتقديم صيغ جديدة من الدوال المستمرة الفوقية*, الدوال المستمرة الفوقية* التامة والدوال التشاكلية الفوقية*.

Introduction

In 1983, Mashhour introduced the concept of supra topology [6]. The supra closure for a subset \mathcal{W} of a supra space X was defined as the intersection of all supra closed subsets of Xcontaining \mathcal{W} , while the supra interior of \mathcal{W} defined as the union of all supra open subsets of X contained in \mathcal{W} . The researcher in [1], defined the supra compact spaces. Also many researchers wrote about the supra separation axioms, and we introduced in this research definitions of two sets $\hat{\eta}, \hat{\omega}$ in supra spaces and new forms of supra separation axioms such as supra $\widehat{\omega}T_0$, supra $\widehat{\omega}T_1$, supra $\widehat{\omega}T_2$, supra $\widehat{\eta}T_0$, supra $\hat{\eta}T_1$, and supra $\hat{\eta}T_2$, also new forms of supra* continuous functions, perfectly supra* continuous functions and new forms of supra* homeomorphism functions by using supra $\hat{\omega}$ open and supra $\hat{\eta}$ -open sets. We presented some theorems, propositions and remarks and we supported them by examples.

1- Supra* $\hat{\omega}$ -Continuous and supra* $\hat{\eta}$ -continuous functions.

We introduced some new types of supra* continuous and perfectly supra*continuous

functions by using su. \hat{p} -open, su. $\hat{\omega}$ -open sets and illustrated the relation between them. We used the abbreviation "su." to refer to "supra". *Definition (1.1) [3]:* Let X be a non- empty set and μ be a sub collection of the power set of X, then μ is a supra topology on X if:

1- $\emptyset, X \in \mu$.

2- μ is closed under the arbitrary union, any set $\mathcal{W} \in \mu$ is called supra open set and its complement is supra closed set. The pair (X, μ) is called a supra space.

Definition (1.2) [6]: Let (X, T) be a topological space, μ is called a supra topology associated with T if $T \subset \mu$.

Remark (1.3): Any topology is su. topology, since every topology includes \emptyset , *X* and it is closed under the infinite union. This remark is irreversible

Example (1.4): In the su. space(X, μ), where $X = \{1, 2, 3\}, \mu = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}, \mu$ is su. topology on X but not topology since $\{1, 3\} \cap \{2, 3\} = \{3\} \notin \mu$. *Definition (1.5):*

1- A subset \mathcal{W} of a su. space (X, μ) is called a su. $\hat{\omega}$ -open set if for any $s \in \mathcal{W}$, there is $V \in \mu$

Copyright © 2019 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

such that $s \in V$ and $V \cdot W$ is countable. W^c is called a su. $\hat{\omega}$ -closed set.

2- A subset \mathcal{W} of a su. space (X, μ) is called a su. \hat{y} -open set if for any $s \in \mathcal{W}$, there is $V \in \mu$ such that $s \in V$ and V- \mathcal{W} is finite. \mathcal{W}^c is called a su. \hat{y} -closed set.

3- The su. $\hat{\omega}$ -closure of a subset \mathcal{W} of a su. space (X,μ) is the intersection of all su. $\hat{\omega}$ closed subsets of X which contain \mathcal{W} , and we denote it by $cl^{\mu}_{\hat{\omega}}(\mathcal{W})$. While the su. $\hat{\omega}$ -interior of \mathcal{W} is the union of all su. $\hat{\omega}$ -open subsets of X which contained in \mathcal{W} , and we denote it by $Int^{\mu}_{\hat{\omega}}(\mathcal{W})$. By the same way we can define su. $\hat{\eta}$ -closure for \mathcal{W} (denoted by $cl^{\mu}_{\hat{\eta}}(\mathcal{W})$) and su. $\hat{\eta}$ -interior for \mathcal{W} (denoted by $Int^{\mu}_{\hat{\eta}}(\mathcal{W})$).

Remark (1.6):

1- Any su. open set is su $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ open) set.

2- Any su. closed set is su $\hat{\omega}$ -closed (resp. su. $\hat{\eta}$ -closed) set.

Definition (1.7): Let $(X, \mu_X), (Y, \mu_Y)$ be a topological spaces and $\mathbb{T}_X \subset \mu_X, \mathbb{T}_Y \subset \mu_Y$. The function $f: (X, \mu_X) \longrightarrow (Y, \mu_Y)$ is called:-

1- Su*. continuous function. If the inverse image of any su. open (resp. su. closed) set in Y is a su. open (resp. su. closed) set in X [6].

2- Su*. $\widehat{\omega}$ -continuous function. If the inverse image of any su. open (resp. su. closed) set in Y is a su. $\widehat{\omega}$ -open (resp. su. $\widehat{\omega}$ -closed) set in X.

3- Su*. $\hat{\eta}$ -continuous function. If the inverse image of any su. open (resp. su. closed) set in *Y* is a su. $\hat{\eta}$ -open (resp. su $\hat{\eta}$ -closed) set in *X*.

4- Strongly su*. $\hat{\omega}$ -continuous function. If the inverse image of any su. $\hat{\omega}$ -open (resp. su. $\hat{\omega}$ -closed) set in *Y* is a su. open (resp. su. closed) set in *X*.

5- Strongly su*. $\hat{\eta}$ -continuous function. If the inverse image of any su. $\hat{\eta}$ -open (resp. su. $\hat{\eta}$ -closed) set in *Y* is a su. open (resp. su. closed) set in *X*.

6- Su*. $\hat{\omega}$ -irresolute function. If the inverse image of any su. $\hat{\omega}$ -open (resp. su. $\hat{\omega}$ -closed) set in Y is a su. $\hat{\omega}$ -open (resp. su. $\hat{\omega}$ -closed) set in X.

7- Su*. $\hat{\eta}$ -irresolute function. If the inverse image of any su. $\hat{\eta}$ -open (resp. su. $\hat{\eta}$ -closed) set

in Y is a su. $\hat{\eta}$ -open (resp. su. $\hat{\eta}$ -closed) set in X.

8- Perfectly su*. continuous. If the inverse image of any su. open (resp. su. closed) set in Y is a su. clopen set in X [8].

9- Totally su*. $\hat{\omega}$ -continuous. If the inverse image of any su. open (resp. su. closed) set in *Y* is a su. $\hat{\omega}$ -clopen set in *X*.

10- Totally su*. $\hat{\eta}$ -continuous. If the inverse image of any su. open (resp. su. closed) set in *Y* is a su. $\hat{\eta}$ -clopen set in *X*.

11- Perfectly su^{*}. $\hat{\omega}$ -continuous. If the inverse image of any su. $\hat{\omega}$ -open (resp. su. $\hat{\omega}$ -closed) set in *Y* is a su. clopen set in *X*.

12- Perfectly su*. $\hat{\eta}$ -continuous. If the inverse image of any su. $\hat{\eta}$ -open (resp. su. $\hat{\eta}$ -closed) set in *Y* is a su. clopen set in *X*.

13- Perfectly su^{*}. $\hat{\omega}$ -irresolute. If the inverse image of any su. $\hat{\omega}$ -open (resp. su. $\hat{\omega}$ -closed) set in *Y* is a su. $\hat{\omega}$ -clopen set in *X*.

14- Perfectly su*. $\hat{\eta}$ -irresolute. If the inverse image of any su. $\hat{\eta}$ -open (resp. su. $\hat{\eta}$ -closed) set in *Y* is a su. $\hat{\eta}$ -clopen set *X*.

Example (1.8): Let $X=Y=\{1, 2, 3\}$, $\mu_X=\{\emptyset, X, \{1\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2\}\}$ and $\mu_Y=\{\emptyset, Y, \{3\}, \{1, 2\}\}$, so $f: X \to Y$ defined as f(1)=2, f(2)=1, f(3)=3 is su*. continuous, su*. $\hat{\omega}$ -continuous, su*. $\hat{\eta}$ -continuous, su*. $\hat{\omega}$ -irresolute, su*. $\hat{\eta}$ -continuous and not strongly su*. $\hat{\omega}$ -continuous function, since $\{1\}$ is su. $\hat{\omega}$ -open and su. $\hat{\eta}$ -open set in Y but $f^{-1}(\{1\}) = \{2\}$ is not su. open set in X. Also, it is perfectly su*. continuous, totally su*. $\hat{\omega}$ -continuous, perfectly su*. $\hat{\eta}$ -irresolute, perfectly su*. $\hat{\omega}$ -irresolute, but not perfectly su*. $\hat{\eta}$ -continuous, and not perfectly su*. $\hat{\omega}$ -

continuous function.

Remark (1.9):

1- Every perfectly su*. continuous function is su*. continuous function.

2- Every totally su*. $\hat{\omega}$ -continuous (resp. totally su*. $\hat{\eta}$ -continuous) function is su*. $\hat{\omega}$ - continuous (resp. su*. $\hat{\eta}$ -continuous) function.

3- Every perfectly su*. $\hat{\omega}$ -continuous (resp. perfectly su*. $\hat{\eta}$ -continuous) function is strongly su*. $\hat{\omega}$ -continuous (resp. strongly su*. $\hat{\eta}$ -continuous) function.

4- Every perfectly su^{*}. $\hat{\omega}$ -irresolute (resp. perfectly su^{*}. $\hat{\eta}$ -irresolute) function is su^{*}. $\hat{\omega}$ -irresolute (resp. su^{*}. $\hat{\eta}$ -irresolute).

Example (1.10): Let $(\mathcal{R}, \mathsf{T}_{cof})$ be the co-finite topological space and $\mathsf{T}_{cof} \subset \mu_{cof}$, so $I_{\mathcal{R}}: (\mathcal{R}, \mu_{coc}) \rightarrow (\mathcal{R}, \mathsf{T}_{cof})$ is su*. continuous, su su*. $\hat{\omega}$ -continuous, su*. $\hat{\mathfrak{g}}$ -continuous, strongly su*. $\hat{\omega}$ -continuous, strongly su*. $\hat{\mathfrak{g}}$ -continuous, not totally su*. $\hat{\mathfrak{g}}$ -continuous, not perfectly su*. $\hat{\mathfrak{g}}$ -continuous, not perfectly su*. $\hat{\mathfrak{g}}$ -irresolute, not perfectly su*. $\hat{\mathfrak{g}}$ -continuous, not perfectly su*. $\hat{\mathfrak{g}}$ -irresolute and not perfectly su*. continuous.

2- Su. separation axioms by using su. $\hat{\omega}$ -open and su. $\hat{\eta}$ -open sets.

At the beginning we presented definitions of some separation axioms by using su. $\hat{\omega}$ -open and su. $\hat{\eta}$ -open sets, and we provided the relation between them, also we connected them with several types of su*.continuous, su*. open and su*. closed functions.

Definition (2.1): The su. space (X, μ) is called:-

1- A su. T_0 -space [6], if for each different elements x, y in X, there is $\mathcal{W} \in \mu$ such that $x \in \mathcal{W}, y \notin \mathcal{W}$.

2- A su. $\widehat{\omega}T_0$ -space, if for each different elements x, y in X, there is a su. $\widehat{\omega}$ -open set \mathcal{W} in X such that $x \in \mathcal{W}, y \notin \mathcal{W}$.

3- A su. $\hat{\eta}T_0$ -space, if for each different elements x, y in X, there is a su. $\hat{\eta}$ -open set \mathcal{W} in X such that $x \in \mathcal{W}, y \notin \mathcal{W}$.

4- A su. T_1 -space [6], if for each different elements x, y in X, there are $\mathcal{W}_1, \mathcal{W}_2 \in \mu$ with $x \in \mathcal{W}_1, y \notin \mathcal{W}_1$ and $y \in \mathcal{W}_2, x \notin \mathcal{W}_2$.

5- A su. $\widehat{\omega}T_1$ -space, if for each different elements x, y in X, there are su. $\widehat{\omega}$ -open sets $\mathcal{W}_1, \mathcal{W}_2$ in X with $x \in \mathcal{W}_1, y \notin \mathcal{W}_1$ and $y \in \mathcal{W}_2, x \notin \mathcal{W}_2$.

6- A su. $\hat{\eta}T_1$ -space, if for each different elements x, y in X, there are su. $\hat{\eta}$ -open sets $\mathcal{W}_1, \mathcal{W}_2$ with $x \in \mathcal{W}_1, y \notin \mathcal{W}_1$ and $y \in \mathcal{W}_2, x \notin \mathcal{W}_2$.

7- A su. T_2 -space [6], if for each different elements x, y in X, there are disjoint $\mathcal{W}_1, \mathcal{W}_2 \in \mu$ with $x \in \mathcal{W}_1$ and $y \in \mathcal{W}_2$.

8- A su. $\widehat{\omega}T_2$ -space, if for each different elements x, y in X, there are disjoint su. $\widehat{\omega}$ -open sets $\mathcal{W}_1, \mathcal{W}_2$ in X with $x \in \mathcal{W}_1$ and $y \in \mathcal{W}_2$.

9- A su. $\hat{\eta}T_2$ -space, if for each different elements x, y in X, there are disjoint su. $\hat{\eta}$ -open sets W_1, W_2 with $x \in W_1$ and $y \in W_2$.

Example (2.2): 1- Let $X = \{1, 2, 3\}$ and $\mu_X = \{\emptyset, X, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$, so (X, μ_X) is su. T_0 -space, su. $\widehat{\omega}T_0$ -space and su. $\widehat{\eta}T_0$ -space, su. T_1 -space, su. $\widehat{\omega}T_1$ -space, su. $\widehat{\eta}T_1$ -space, su. $\widehat{\omega}T_2$ -space, su. $\widehat{\eta}T_2$ -space, but not T_2 -space.

2- Let $X = \{1, 2, 3\}$ and $\mu_X = \{\emptyset, X, \{1\}, \}$

{2}, {1, 2}, {1, 3}, {2, 3}}, so (X, μ_X) is su. T_2 -space, su. $\hat{\omega}T_2$ -space, su. $\hat{\eta}T_2$ -space.

Remark (2.3): Suppose *X* is a su. space, then, if *X* is:-

1- Su. T_i -space, then it is su. $\hat{\omega}T_i$ -space and su. $\hat{\eta}T_i$ -space, i=0, 1, 2.

2- Su. $\hat{\eta}T_i$ -space, then it is su. $\hat{\omega}T_i$ -space, i=0, 1, 2.

3- Su. $\widehat{\omega}T_i$ -space, then it is su. $\widehat{\omega}T_{i-1}$ -space, i=1, 2.

4- Su. $\hat{\eta}T_i$ -space, then it is su. $\hat{\eta}T_{i-1}$ -space, i=1, 2.

5- Su. $\widehat{\omega}T_2$ -space (resp. $\widehat{\eta}T_2$ -space), then it is su. $\widehat{\omega}T_0$ -space (resp. $\widehat{\eta}T_0$ -space).

Example (2.4):

1. (Z, μ_{ind}) is su. $\widehat{\omega}T_0$ -space, su. $\widehat{\eta}T_0$ -space also su. $\widehat{\omega}T_2$ -space but not su. T_0 -space, not su. T_2 -space and not su. $\widehat{\eta}T_2$ -space.

2- Let $X = \{1, 2, 3\}$ and $\mu_X = \{\emptyset, X, \{1, 2\}, \{2, 3\}\}$, so (X, μ_X) is su. $\hat{\omega}T_1$ -space, su. $\hat{\eta}T_1$ -space, but not su. T_1 -space.

3- (\mathcal{R}, μ_{cof}) is su. $\widehat{\omega}T_1$ -space and su. $\widehat{\omega}T_0$ -space, but it is not su. $\widehat{\omega}T_2$ -space.

Proposition (2.5): If \mathcal{W}_i , $i \in I$ is u. $\hat{\omega}$ - open (resp. su. $\hat{\eta}$ -open) subsets of a su. space (X, μ_X) then $\bigcup_{i \in I} \mathcal{W}_i$ is a su. $\hat{\omega}$ -

open (resp. su. $\hat{\eta}$ -open) subset of (X, μ_X).

Proof: Suppose $e \in \bigcup_{i \in I} \mathcal{W}_i \Longrightarrow e \in \mathcal{W}_{\alpha_i}$, for some $\alpha_i \in I$, thus there is $G \in \mu_X$ containing e

Copyright © 2019 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

and $G \cdot W_{\alpha_i}$ is countable (resp. finite, but $G \cdot \bigcup_{i \in I} W_i \subseteq G \cdot W_{\alpha_i}$ (since

 $\mathcal{W}_{\alpha_i} \subseteq \bigcup_{i \in I} \mathcal{W}_i \Longrightarrow X - \bigcup_{i \in I} \mathcal{W}_i \subseteq X - \mathcal{W}_{\alpha_i} \Longrightarrow$ $G \cap (X - \bigcup_{i \in I} \mathcal{W}_i) \subseteq G \cap (X - \mathcal{W}_{\alpha_i}) \Longrightarrow G -$

 $\bigcup_{i \in I} \mathcal{W}_i \subseteq G \cdot \mathcal{W}_{\alpha_i}$), hence $G \cdot \bigcup_{i \in I} \mathcal{W}_i$ is a countable (resp. a finite) set (because $G \cdot \mathcal{W}_{\alpha_i}$ is a countable (resp. finite) set and any subset of countable (resp. finite) set is countable (resp. finite). Therefore $\bigcup_{i \in I} \mathcal{W}_i$ is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) set.

Definition (2.6): Suppose *H* is a subset of a su. space *X*, whenever for any element $x \in H$ there is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) subset *U* of *X* containing *x* and $U \subseteq H$, then *x* is a su. $\hat{\omega}$ interior (resp. su. $\hat{\eta}$ -interior) point to *H*. *Proposition* (2.7):

1- Consider X as a su. space and H as a subset of X, then H is a su. $\hat{\omega}$ -open set if $H = Int_{\hat{\omega}}^{\mu}(H)$.

2- Consider X a su. space and H as a subset of X, then H is a su. $\hat{\eta}$ -open set iff $H = Int_{\hat{\eta}}^{\mu}(H)$.

Proof: Let H be a su. $\widehat{\omega}$ -open set, since $Int_{\widehat{\omega}}^{\mu}(H)$ is the largest su. $\widehat{\omega}$ -open set in X contained in H), so $Int_{\widehat{\omega}}^{\mu}(H) \subseteq H$, now to prove $H \subseteq$ $Int_{\widehat{\omega}}^{\mu}(H)$. Let $x \in H \subseteq H$ and since H is su. $\widehat{\omega}$ open set, so $x \in Int_{\widehat{\omega}}^{\mu}(H)$, and since x is arbitrary point in H, so each point in H is su $\widehat{\omega}$ interior point, but $\bigcup_{x \in H} \{x\} = H$, hence $H \subseteq Int_{\widehat{\omega}}^{\mu}(H)$, therefore $Int_{\widehat{\omega}}^{\mu}(H) = H$. Conversely, if $Int_{\widehat{\omega}}^{\mu}(H) = H$, and since $Int_{\widehat{\omega}}^{\mu}(H)$ is su. $\widehat{\omega}$ -open set, therefore H is a su. $\widehat{\omega}$ -open set.

Definition (2.8) [2]: Whenever (X, μ_X) is a su. space and (Y, μ_Y) is a su. sub space of X, then $\mathcal{W} \in \mu_Y$ iff $\mathcal{W} = U \cap Y$ in which $U \in \mu_X$. Proposition (2.9): In case \mathcal{W} is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) set in a su. space (X, μ) , so $\mathcal{W} \cap Y$ is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) set in (Y, μ_Y) whenever Y is a su. sub space of X.

Proof: Consider $x \in W \cap Y \implies x \in W$ and $x \in Y$, so there is $G \in \mu_X$, with $x \in G$ and $G \cdot W$ is countable (resp. finite), but $(G \cdot W) \cap Y \subseteq (G \cdot W) \implies (G \cdot W) \cap Y$ is countable (resp. finite), and $(G \cdot W) \cap Y = (G \cap Y) \cdot (W \cap Y)$ is countable (resp. finite), where $G \cap Y$ is a su. open set in Y (from definition (2.8)), which implies $W \cap Y$ is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) set in Y.

Definition (2.10): The function $f : (X, \mu_X) \rightarrow (Y, \mu_Y)$ is called:-

1- Su*. closed function, if f(V) is su.

closed set in Y, for any su. closed set V in X [9].

2- Su*. open function, if f(V) is su. open set in *Y*, for any su. open set *V* in *X* [5].

3- Su*. $\hat{\omega}$ -closed (resp. su*. $\hat{\omega}$ -open) function, if f(V) is su. $\hat{\omega}$ -closed (resp. su. $\hat{\omega}$ open) set in Y, for any su. closed (resp. su. open) set V in X.

4- Totally su*. $\hat{\omega}$ -closed (resp. totally su*. $\hat{\omega}$ -open) function, if f(V) is su. closed (resp. su. open) set in *Y*, for any su. $\hat{\omega}$ -closed (resp. su. $\hat{\omega}$ -open) set *V* in *X*.

5- Strongly su*. $\hat{\omega}$ -closed (resp. strongly su*. $\hat{\omega}$ -open) function, if f(V) is su. $\hat{\omega}$ -closed (resp. su. $\hat{\omega}$ -open) set in *Y*, for any su. $\hat{\omega}$ -closed (resp. su. $\hat{\omega}$ -open) set *V* in *X*.

6- Su*. $\hat{\eta}$ -closed (resp. su*. $\hat{\eta}$ -open) function, if f(V) is su. $\hat{\eta}$ -closed (resp. su. $\hat{\eta}$ -open) set in *Y*, for any su. closed (resp. su. open) set *V* in *X*.

7- Totally su*. $\hat{\eta}$ -closed (resp. totally su*. $\hat{\eta}$ -open) function, if f(V) is su. closed (resp. su. open) set in *Y*, for any su. $\hat{\eta}$ -closed (resp. su. $\hat{\eta}$ -open) set *V* in *X*.

8- Strongly su*. $\hat{\eta}$ -closed (resp. strongly su*. $\hat{\eta}$ -open) function, if f(V) is su. $\hat{\eta}$ -closed (resp. su. $\hat{\eta}$ -open) set in *Y*, for any su. $\hat{\eta}$ -closed (resp. su. $\hat{\eta}$ -open) set *V* in *X*.

Example (2.11):

1- $X = \{1, 2\}$ and $\mu_X = \{\emptyset, X, \{1\}\}$, and $Y = \{1, 2, 3\}, \mu_Y = \{\emptyset, Y, \{1\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ so $f: (X, \mu_X) \rightarrow (Y, \mu_Y)$ such that f(a) = a for any $a \in X$, is su^{*}. closed and su^{*}. open, su^{*}. $\hat{\omega}$ -closed, su^{*}. $\hat{\omega}$ -closed, and strongly su^{*}. $\hat{\omega}$ -closed, su^{*}. $\hat{\eta}$ -closed, su^{*}. $\hat{\eta}$ -closed, su^{*}. $\hat{\eta}$ -closed, su^{*}. $\hat{\eta}$ -closed, totally su^{*}. $\hat{\omega}$ -closed, and totally su^{*}. $\hat{\eta}$ -closed function, but neither totally su^{*}. $\hat{\eta}$ -open nor totally su^{*}. $\hat{\omega}$ -open function.

2- A function $f: (X, \mu_X) \rightarrow (Y, \mu_Y)$, where $X = \{1, 2\}, \mu_X = \{\emptyset, X, \{1\}\}, Y = \{1, 2, 3, 4\}$ and $\mu_Y = \{\emptyset, Y, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 4\}, \{2, 4\}, \{2, 4\}, \{2, 4\}, \{2, 4\}, \{4, 5\}, \{2, 4\}, \{4, 5\}, \{4,$

3, 4}, $\{3, 4\}$ such that f(1)=1 and f(2)=2, then f satisfies all the definitions in (2.10).

Theorem (2.12): Su. $\widehat{\omega}T_i$ -space (resp. su. $\widehat{\eta}T_i$), i=0, 1, 2 is a hereditary property and a topological property.

Proof: Take Y as a su. sub space of a su. space X and x, y as distinct points in Y, hence x, y are distinct points in X which is a su. $\widehat{\omega}T_0$ -space (resp. $\hat{\eta}T_0$ -space), so there exists a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) subset \mathcal{W} of X, with $x \in \mathcal{W}, y \notin \mathcal{W}$. We have $\mathcal{W} \cap Y$ is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ -open) subset of Y (proposition (2.9)) with $x \in \mathcal{W} \cap Y, y \notin \mathcal{W} \cap Y$ (because $x \in \mathcal{W}$ and $x \in Y$ but $y \notin \mathcal{W}$). Therefore Y is a su. $\widehat{\omega}T_0$ -space (resp. su. $\widehat{\eta}T_0$ -space). Which means su. $\hat{\omega}T_0$ -space (resp. su. $\hat{\eta}T_0$ -space) is a hereditary property. Now to prove su. $\hat{\omega}T_0$ space (resp. $\hat{\eta}T_0$ -space) is a topological property. Suppose $f:(X, \mu_X) \to (Y, \mu_Y)$ is a surjective, strongly su*. $\hat{\omega}$ -open (resp. strongly su*. $\hat{\eta}$ -open) function, in which X is a su. $\hat{\omega}T_0$ space (resp. su. $\hat{\eta}T_0$ -space) and y_1, y_2 are different points in Y, then there are different points x_1, x_2 in X with $f(x_1) = y_1$, $f(x_2) =$ y_2 (since f is a surjective function), so there exists a su. $\widehat{\omega}$ -open (resp. su. $\widehat{\eta}$ -open) subset \mathcal{W} of X with $x_1 \in \mathcal{W}$ and $x_2 \notin \mathcal{W}$ (because X is a su. $\widehat{\omega}T_0$ -space (resp. su. $\widehat{\eta}T_0$ -space) where $f(x_1) = y_1 \in f(\mathcal{W}) \text{ and } f(x_2) = y_2 \notin f(\mathcal{W}),$ in which $f(\mathcal{W})$ is a su. $\hat{\omega}$ -open (resp. su. $\hat{\eta}$ open) subset of Y (because f is strongly su^{*}. $\widehat{\omega}$ -open (resp. strongly su*. $\widehat{\eta}$ -open) function, therefore Y is a su. $\widehat{\omega}T_0$ -space (resp. su. $\widehat{\eta}T_0$ space). Which means the su. $\hat{\omega}T_0$ -space (resp. su. $\hat{\eta}T_0$ -space) is a topological property. By the same way we can prove the rest properties.

Theorem (2.13): If $f:(X, \mu_X) \to (Y, \mu_Y)$ is injective function, then the su. space (X, μ_X) is:-

1- A su. T_0 -space, whenever Y is su. T_0 -space and f is perfectly su*. continuous function. 2. A su. $\hat{\omega}T_0$ -space, whenever Y is su. T_0 -space and f is perfectly su*. continuous function. 3- A su. $\hat{\eta}T_0$ -space, whenever Y is su. T_0 -space and f is perfectly su*. continuous function. 4- A su. $\hat{\omega}T_0$ -space, whenever Y is su. T_0 -space and f is totally su*. $\hat{\omega}$ -continuous function. 5- A su. $\hat{\eta}T_0$ -space, whenever *Y* is su. T_0 -space and *f* is totally su^{*}. $\hat{\eta}$ -continuous function.

6- A su. $\widehat{\omega}T_0$ -space, whenever *Y* is su. T_0 -space and *f* is perfectly su^{*}. $\widehat{\omega}$ -continuous function.

7- A su. $\hat{\eta}T_0$ -space, whenever *Y* is su. T_0 -space and *f* is perfectly su*. $\hat{\eta}$ -continuous function.

8- A su. $\widehat{\omega}T_0$ -space, whenever Y is su. $\widehat{\omega}T_0$ -space and f is perfectly su*. $\widehat{\omega}$ -continuous function.

9- A su. $\hat{\eta}T_0$ -space, whenever Y is su. $\hat{\eta}T_0$ -space and f is perfectly su*. $\hat{\eta}$ -continuous function.

10- A su. T_0 -space, whenever Y is su. $\hat{\omega}T_0$ -space and f is perfectly su*. $\hat{\omega}$ -continuous function.

11- A su. T_0 -space, whenever Y is su. $\hat{\eta}T_0$ -space and f is perfectly su*. $\hat{\eta}$ -continuous function.

12- A su. $\widehat{\omega}T_0$ -space, whenever *Y* is su. T_0 -space and *f* is perfectly su*. $\widehat{\omega}$ -irresolute function.

13- A su. $\hat{\eta}T_0$ -space, whenever *Y* is su. T_0 -space and *f* is perfectly su*. $\hat{\eta}$ -irresolute function.

14- A su. $\widehat{\omega}T_0$ -space, whenever *Y* is su. $\widehat{\omega}T_0$ -space and *f* is perfectly su*. $\widehat{\omega}$ -irresolute function.

15- A su. $\hat{\eta}T_0$ -space, whenever *Y* is su. $\hat{\eta}T_0$ -space and *f* is perfectly su*. $\hat{\eta}$ -irresolute function.

Proof: 1- Consider $x_1 \neq x_2$ are any points in X, since f is injective, so $f(x_1) \neq f(x_2)$ in Ywhich is su. T_0 -space. Then there is $U \in \mu_Y$ in which $f(x_1) \in U$ and $f(x_2) \notin U$, hence U^c is su. closed subset of Y, therefore $f^{-1}(U^c) = (f^{-1}(U))^c$ is su. clopen subset of X (because fis perfectly su*. continuous), hence $f^{-1}(U)$ is su. open subset of X where $f^{-1}(f(x_1)) = x_1 \in$ $f^{-1}(U)$ and $f^{-1}(f(x_2)) = x_2 \notin f^{-1}(U)$, therefore X is su. T_0 -space. We can prove the other properties by the same way.

Hint: The previous theorem is true when we replace each T_0 by T_1 or T_2 .

3- Su. ŵ-compact and su. ŷ-compact spaces.

In this part we submitted definitions of new types of su. compact spaces which are su. $\hat{\omega}$ -

92

compact and su. $\hat{\eta}$ -compact spaces, and new types of su*. Homeomorphism functions.

Definition (3.1): 1- A class $\varsigma = \{\mathcal{W}_{\alpha} \mid \alpha \in \Lambda\}$ of su. $\widehat{\omega}$ -open subsets \mathcal{W}_{α} of (X, μ) is a su. $\widehat{\omega}$ open cover to a subset *S* of *X* whenever $\subseteq \bigcup_{\alpha \in \Lambda} \mathcal{W}_{\alpha}$, when S = X, then $\{\mathcal{W}_{\alpha} \mid \alpha \in \Lambda\}$ is a su. $\widehat{\omega}$ -open cover to *X*. If \mathcal{W}_{α} is su. $\widehat{\eta}$ -open set, then ς is called a su. $\widehat{\eta}$ -open cover to *S*.

2- A subset S of (X, μ) is a su. $\hat{\omega}$ -compact if any su. $\hat{\omega}$ -open cover for S possesses a finite sub cover, when X = S, then X is a su. $\hat{\omega}$ compact space.

3- A subset S of (X, μ) is a su. $\hat{\eta}$ -compact if any su. $\hat{\eta}$ -open cover for S possesses a finite sub cover, when X = S, then X is a su. $\hat{\eta}$ compact space.

Example (3.2): 1- Let $X = \{1, 2, 3\}, \mu_X = \{\emptyset, X, \{1, 2\}, \{1, 3\}\}$ is su. compact, su. $\hat{\omega}$ -compact and su. $\hat{\eta}$ -compact space.

Remark (3.3): 1- If X is a su. $\hat{\omega}$ -compact space, then it is a su. compact.

2- If X is a su. $\hat{\eta}$ -compact space, then it is a su. compact.

Theorem (3.4) [4]: A su. closed subset of a su. compact space is a su. compact.

Proposition (3.5): 1- A su. $\hat{\omega}$ -closed subset \mathcal{M} of a su. $\hat{\omega}$ -compact space (X, μ_X) , is a su. $\hat{\omega}$ -compact set.

2- A su. $\hat{\eta}$ -closed subset \mathcal{M} of a su. $\hat{\eta}$ -compact space (X, μ_X) , is a su. $\hat{\eta}$ -compact set.

Proof: 1- Consider (X, μ_X) is a su. $\hat{\omega}$ -compact space and \mathcal{M} is a su. $\hat{\omega}$ -closed set in X, let $\{\mathcal{W}_{\alpha}\}_{\alpha\in\wedge}$ be a su. $\hat{\omega}$ -open cover for $\mathcal{M} \Longrightarrow \mathcal{M} \subseteq \bigcup_{\alpha\in\wedge} \mathcal{W}_{\alpha}$, but $X = \mathcal{M} \bigcup \mathcal{M}^{C} \implies X \subseteq \{\bigcup_{\alpha\in\wedge} \mathcal{W}_{\alpha}\} \bigcup \mathcal{M}^{C}$ and since \mathcal{M} is su. $\hat{\omega}$ -closed set in X, then \mathcal{M}^{C} is su. $\hat{\omega}$ -open, this means $\{\mathcal{W}_{\alpha} | \alpha \in \wedge, \mathcal{M}^{C}\}$ is a su. $\hat{\omega}$ -open cover for X, but X is a su. $\hat{\omega}$ -compact, so any su. $\hat{\omega}$ -open cover for X possesses a finite sub cover, hence $X \subseteq (\bigcup_{i=1}^{n} \mathcal{W}_{\alpha_i}) \bigcup \mathcal{M}^{C}$, but $\mathcal{M} \subseteq X \Longrightarrow$ $\mathcal{M} \subseteq (\bigcup_{i=1}^{n} \mathcal{W}_{\alpha_i}) \bigcup \mathcal{M}^{C}$, since $\mathcal{M} \cap \mathcal{M}^{C} =$ $\emptyset \Longrightarrow \mathcal{M} \subseteq \bigcup_{i=1}^{n} \mathcal{W}_{\alpha_i}$, then $\{\mathcal{W}_{\alpha_i}\}_{i=1}^{n}$ is a finite

sub cover of the su. $\hat{\omega}$ -open cover $\{\mathcal{W}_{\alpha}\}_{\alpha \in \Lambda}$ for \mathcal{M} , therefore \mathcal{M} is a su. $\hat{\omega}$ -compact.

Theorem (3.6) [7]: The continuous image of su. compact space is su. compact.

Proposition (3.7): If the function $f: (X, \mu_X) \rightarrow (Y, \mu_Y)$ is:-

1- Su*. $\hat{\omega}$ -continuous, so the image of each su. $\hat{\omega}$ -compact set in *X* is a su. compact set in *Y*.

2- Strongly su^{*}. $\hat{\omega}$ -continuous, so the image of each su. compact set in *X* is a su. $\hat{\omega}$ -compact set in *Y*.

3- Su*. $\hat{\omega}$ -irresolute, so the image of each su. $\hat{\omega}$ -compact set in *X* is a su. $\hat{\omega}$ -compact set in *Y*. 4- Su*. $\hat{\eta}$ -continuous, so the image of each su. $\hat{\eta}$ -compact set in *X* is a su. compact set in *Y*.

5- Strongly su*. $\hat{\eta}$ -continuous, so the image of each su. compact set in *X* is a su. $\hat{\eta}$ -compact set in *Y*.

6- Su*. \hat{y} -irresolute, so the image of each su. \hat{y} -compact set in *X* is a su. \hat{y} -compact set in *Y*.

Proof: Let f be a su*. $\hat{\omega}$ -continuous function and \mathcal{W} be a su. $\hat{\omega}$ -compact set in X. Take $\{V_{\alpha}\}_{\alpha \in \Lambda}$ to be a su. open cover to $f(\mathcal{W})$, where each $V_{\alpha} \in \mu_{Y}, \alpha \in \Lambda$., then $f(\mathcal{W}) \subseteq \bigcup_{\alpha \in \Lambda} V_{\alpha}$, but f is su*. $\hat{\omega}$ -continuous, hence $\mathcal{W} \subseteq$ $f^{-1}(f(\mathcal{W})) \subseteq f^{-1}(\bigcup_{\alpha \in \Lambda} V_{\alpha}) =$

 $\bigcup_{\alpha \in \Lambda} (f^{-1}(V_{\alpha})), \text{ then } \{f^{-1}(V_{\alpha})\}_{\alpha \in \Lambda} \text{ is a su. } \widehat{\omega} \text{-open cover for } \mathcal{W}, \text{ since } \mathcal{W} \text{ is su. } \widehat{\omega} \text{-compact,} \text{ so each su. } \widehat{\omega} \text{-open cover to it possesses a finite sub cover, hence } \mathcal{W} \subseteq \bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i}) \text{ and by take the image of both sides we get } f(\mathcal{W}) \subseteq f(\bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i})) = \bigcup_{i=1}^{n} f(f^{-1}(V_{\alpha_i})) \subseteq$

 $\bigcup_{i=1}^{n} V_{\alpha_i} \Longrightarrow f(\mathcal{W}) \subseteq \bigcup_{i=1}^{n} V_{\alpha_i}, \text{ which means}$ that $\{V_{\alpha_i}\}_{i=1}^{n}$ is a finite sub cover for the su. open cover $\{V_{\alpha}\}_{\alpha \in \Lambda}$, so $f(\mathcal{W})$ is a su. compact subset of Y. The rest of the possibilities can be proved by the same way.

Theorem (3.8): Let $f:(X,\mu_X) \to (Y,\mu_Y)$ be a surjective function, if:-

1- X is su. T_1 -space and f is su*. open function, then Y is su. T_1 -space.

2- X is su. T_1 -space and f is su*. open function, then Y is su. $\widehat{\omega}T_1$ -space.

3- X is su. T_1 -space and f is su*. open function, then Y is su. $\hat{\eta}T_1$ -space.

4- X is su. $\widehat{\omega}T_1$ -space and f is totally su*. $\widehat{\omega}$ open function, then Y is su. T_1 -space.

5- X is su. $\hat{\eta}T_1$ -space and f is totally su*. $\hat{\eta}$ -open function, then Y is su. T_1 -space.

6- X is su. $\widehat{\omega}T_1$ -space and f is totally su*. $\widehat{\omega}$ open function, then Y is su. $\widehat{\omega}T_1$ -space.

7- X is su. $\hat{\eta}T_1$ - space and f is totally su*. $\hat{\eta}$ open function, then Y is su. $\hat{\eta}T_1$ -space.

8- X is su. $\widehat{\omega}T_1$ -space and f is strongly su*. $\widehat{\omega}$ open function, then Y is $\widehat{\omega}T_1$ - space.

9- X is su. $\hat{\eta}T_1$ -space and f is strongly su*. $\hat{\eta}$ -open function, then Y is $\hat{\eta}T_1$ -space.

10- X is su. T_1 -space and f is strongly su*. $\hat{\omega}$ open function, then Y is $\hat{\omega}T_1$ - space.

11- X is su. T_1 -space and f is strongly su*. $\hat{\eta}$ -open function, then Y is $\hat{\eta}T_1$ -space.

Proof: Suppose *a*, *b* be distinct two points in *Y*. So there are two distinct points *x*, *y* in *X* in which f(x) = a, f(y) = b (because *f* is onto and by definition of functions), since *X* is su. T_1 -space, so there are two su. open sets \mathcal{W}, \mathcal{B} in *X* with $x \in \mathcal{W}, y \notin \mathcal{W}$ and $y \in \mathcal{B}, x \notin \mathcal{B}$, hence, $f(x) = a \in f(\mathcal{W}), f(y) = b \notin$

 $f(\mathcal{W})$ and $f(y) = b \in f(\mathcal{B}), f(x) = a \notin$

 $f(\mathcal{B})$ where $f(\mathcal{W}), f(\mathcal{B})$ are su. open sets in Y (since f is su*. open function), then Y is su. T_1 -space.

Hint: Theorem (3.8) remains true when we replace T_1 by T_0 or T_2 , also it is true if we use the types of su*. closed function instead of the types of su*. open function.

Definition (3.9): A bijective function f from a su. space X into a su. space Y is.

1- Su*. homeomorphism function, if f and f^{-1} are su*. continuous [5].

2- Su*. $\hat{\omega}$ -homeomorphism function, if f and f^{-1} are su*. $\hat{\omega}$ -continuous.

3- Su*. \hat{n} -homeomorphism function, if f and f^{-1} are su*. \hat{n} -continuous.

4- Su*. $\hat{\omega}^*$ -homeomorphism function, if f and f^{-1} are su*. $\hat{\omega}$ -irresolute.

5- Su*. $\hat{\eta}^*$ -homeomorphism function, if f and f^{-1} are su*. $\hat{\eta}$ -irresolute.

6- Su*. $\hat{\omega}^{**}$ -homeomorphism function, if f and f^{-1} are strongly su*. $\hat{\omega}$ -continuous.

7- Su. $\hat{\eta}^{**}$ -homeomorphism function, if f and f^{-1} are strongly su*. $\hat{\eta}$ -continuous.

Definition (3.10): A bijective function f from a su. space X into a su. space Y is:-

1- Su*. homeomorphism function, if it is su*. continuous and su*. open (or su*. closed) function.

2- Su*. $\hat{\omega}$ -homeomorphism function, if it is su*. $\hat{\omega}$ -continuous and su*. $\hat{\omega}$ -open (or su*. $\hat{\omega}$ -closed) function.

3- Su*. $\hat{\eta}$ -homeomorphism function, if it is su*. $\hat{\eta}$ -continuous and su*. $\hat{\eta}$ -open (or su*. $\hat{\eta}$ -closed) function.

4- Su^{*}. $\hat{\omega}^*$ -homeomorphism function, if it is su^{*}. $\hat{\omega}$ -irresolute and strongly su^{*}. $\hat{\omega}$ -open (or strongly su^{*}. $\hat{\omega}$ -closed) function.

5- Su*. $\hat{\eta}^*$ -homeomorphism function, if it is su*. $\hat{\eta}$ -irresolute and strongly su*. $\hat{\eta}$ -open (or strongly su*. $\hat{\eta}$ -closed) function.

6- Su*. $\hat{\omega}^{**}$ -homeomorphism function, if it is strongly su*. $\hat{\omega}$ -continuous and totally su*. $\hat{\omega}$ -open (or totally su*. $\hat{\omega}$ -closed) function.

7- Su*. $\hat{\eta}^{**}$ -homeomorphism function, if it is strongly su*. $\hat{\eta}$ -continuous and totally su*. $\hat{\eta}$ open (or totally su*. $\hat{\eta}$ -closed) function. *Proposition (3.11):*

1- Each su. topology finer than su. T_0 is also su. T_0 .

2- Each su. topology finer than su. $\widehat{\omega}T_0$ is also su. $\widehat{\omega}T_0$.

3- Each su. topology finer than su. T_1 is also su. T_1 .

4- Each su. topology finer than su. $\hat{\omega}T_1$ is also su. $\hat{\omega}T_1$.

Proof: Let $a \neq b$ be two elements in a su. space X and μ, μ^* are two su. topologies defined on X, where μ^* is finer than μ , and μ is a su. T_0 -topology on X, so there is $U \in \mu$ containing a but not b, since $\mu \subseteq \mu^*$, hence $U \in \mu^*$ too, then μ^* is a su. T_0 -topology on X. By the same way we can prove the rest properties.

Theorem (3.12) [6]: A space X is a su. T_1 -space, iff for any $x \in X$, $\{x\}$ is su. closed set.

Corollary (3.13): A space X is su. $\hat{\omega}T_1$ -

space iff any singleton subset $\{x\}$ of X is su. $\hat{\omega}$ -closed.

Proof: Suppose any singleton $\{x\}$ is a su. $\widehat{\omega}$ -closed subset of X, and let $d \neq e \in X$, so $\{d\}^c, \{e\}^c$ are su. $\widehat{\omega}$ -open sets containing e, d respectively, which lead us to X is su. $\widehat{\omega}T_1$ -space. Conversely, let X be a su. $\widehat{\omega}T_1$ -space, let $e \in X$, and $e \in \{d\}^c$, so $d \neq e$ and there exists a su. $\widehat{\omega}$ -open set \mathcal{W} in X with $e \in \mathcal{W}, d \notin \mathcal{W}$,

Copyright © 2019 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

so $e \in \mathcal{W} \subseteq \{d\}^c$, thus $\{d\}^c$ is su. $\widehat{\omega}$ -open set (by proposition (2.7)), therefore $\{d\}$ is su. $\widehat{\omega}$ closed, but d is arbitrary element in X, that means every singleton subset in X is su. $\widehat{\omega}$ closed.

Definition (3.14): The su. space X is called su. $\widehat{\omega}$ -space, if each su. $\widehat{\omega}$ -open subset from X, is su. open.

Theorem (3.15): A su. space X is su. $\widehat{\omega}T_0$ -space iff $cl^{\mu}_{\widehat{\omega}}(x) \neq cl^{\mu}_{\widehat{\omega}}(y)$ for each non-equal points x, y in X.

Proof: Suppose $cl_{\hat{\omega}}^{\mu}(x) \neq cl_{\hat{\omega}}^{\mu}(y)$ for each distinct points x, y in X, so there is at least one element in one of them and not in the other, say $a \in cl_{\hat{\omega}}^{\mu}(x), a \notin cl_{\hat{\omega}}^{\mu}(y)$, and suppose $x \notin cl_{\hat{\omega}}^{\mu}(y)$, because if $x \in cl_{\hat{\omega}}^{\mu}(y)$ then $cl_{\hat{\omega}}^{\mu}(x) \subseteq cl_{\hat{\omega}}^{\mu}(cl_{\hat{\omega}}^{\mu}(y)) = cl_{\hat{\omega}}^{\mu}(y) \Rightarrow a \in cl_{\hat{\omega}}^{\mu}(x) \subseteq cl_{\hat{\omega}}^{\mu}(x)$

 $cl_{\widehat{\omega}}^{\mu}(y)$ and that is a contradiction, therefore $x \in X - cl_{\widehat{\omega}}^{\mu}(y)$, Now $X - cl_{\widehat{\omega}}^{\mu}(y)$ is su. $\widehat{\omega}$ open set containing x but not y, that implies Xis su. $\widehat{\omega}T_0$ -space. Conversely, If X is su. $\widehat{\omega}T_0$ space and $x \neq y$ are arbitrary elements in X, so
there is a su. $\widehat{\omega}$ -open set U of X with $x \in U$ and $y \notin U$, then X - U is su. $\widehat{\omega}$ -closed set contains y but not x, from definition of $cl_{\widehat{\omega}}^{\mu}(y)$ we get $cl_{\widehat{\omega}}^{\mu}(y) \subseteq X - U$, which means $x \notin cl_{\widehat{\omega}}^{\mu}(y)$.

Corollary (3.16): A su. space X is su. ωT_0 space iff $x \notin cl^{\mu}_{\omega}(y)$ or $y \notin cl^{\mu}_{\omega}(x)$ for each distinct points x, y in X.

Theorem (3.17): The composition between:-

1- Perfectly su*. continuous function and Perfectly su*. $\hat{\omega}$ -continuous function is Perfectly su*. $\hat{\omega}$ -continuous function.

2- Perfectly su*. continuous function and perfectly su*. $\hat{\eta}$ -continuous function is perfectly su*. $\hat{\eta}$ -continuous function.

3- Totally su*. $\hat{\omega}$ -continuous function and perfectly su*. $\hat{\omega}$ -continuous function is perfectly su*. $\hat{\omega}$ -irresolute function. *Proof:*

1- Take $f: (X, \mu_X) \to (Y, \mu_Y)$ as perfectly su*. continuous, $g: (Y, \mu_Y) \to (Z, \mu_Z)$ as perfectly su*. $\hat{\omega}$ -continuous and \mathcal{M} is su. $\hat{\omega}$ -closed set in Z, so $g^{-1}(\mathcal{M})$ is su. clopen set in Y, then $f^{-1}(g^{-1}(\mathcal{M})) = (g \circ f)^{-1}(\mathcal{M})$ is su. clopen set in X, thus $g \circ f$ is perfectly su*. $\hat{\omega}$ continuous function.

3- Take $f: (X, \mu_X) \to (Y, \mu_Y)$ as totally su*. $\hat{\omega}$ continuous, $g: (Y, \mu_Y) \to (Z, \mu_Z)$ as perfectly su* $\hat{\omega}$ -continuous and \mathcal{M} is su. $\hat{\omega}$ -closed set in Z, so $g^{-1}(\mathcal{M})$ is su. clopen set in Y, then $f^{-1}(g^{-1}(\mathcal{M})) = (g \circ f)^{-1}(\mathcal{M})$ is su. $\hat{\omega}$ clopen set in X, thus $g \circ f$ is perfectly su*. $\hat{\omega}$ irresolute function.

The rest of properties can be proved in the same way.

References

- T. M. Al-Shami, "Supra Semi- Compactness Via Supra Topological Spaces, Vol. 12, Journal of Taibah University for Science, 2018, p. 338-343.
- [2] T. M. Al-Shami, "Some results related to supra topological spaces, 7(4), Journal of Advanced Studies in Topology, 2016, p.283-294.
- [3] N. Chandramathi, K. Bhuvaneswari, and S. Bharathi, "On ω^μ-Closed Sets and Continuous Functions In Supra Topologicsal Space, Vol. 3, International Journal of Mathematical Archive, 2012, p.712-721
- [4] T. H. Jassim, "On supra compactness in supratopologicol spaces, Vol. 14(3), Tikrit Journal of Pure Science, 2009, p. 57-69.
- [5] T. H. Jassim, R. B. Yasseen and Nabeel E. Arif, "On Some Separation Axioms of Supra Topological Spaces, Vol. 13, Tikrit Journal of Pure Science, 2008, p. 59-62.
- [6] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, "On Supra Topological Spaces, Indian Journal of Pure and Applied Mathematics, 1983 April 14, p. 502-510.
- [7] J. Thomas and S. Jacob John. "μ-Compactness in Generalized Topological spaces, Vol. 3, Journal of advanced studies in Topology, 2012, p. 18-22.
- [8] P. M. Trinita, and I. Arockiarani, "Some Stronger Forms of $g^{\mu}b$ -continuous Functions, Vol. 1, IOSR Journal of Engineering (IOSRJEN), 2011, p. 111-117.
- [9] L. Vidyarani, and M. Vigneshwaran, "Some forms of N-closed maps in supra Topological spaces, Vol. 6, IOSR Journal of Mathematics, 2013, p. 13-17.