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Abstract

In this work, we are concerned with how to find a solution for the nonlinear integral and
integro-differential equations using two methods Laplace transform series decomposition
method (LTSDM) and Sumudu transform series decomposition method (STSDM). In these
methods, the nonlinear part of the equation described in Adomian decomposition series. The
Laplace and Sumudu methods are found to be reliable and accurate. Four examples are
discussed to check the applicability and the simplicity of these methods. Finally, the results
are tabulated and displayed graphically to make comparisons between the approximate and
exact solutions.

Keywords: Nonlinear Intgro-Differential Equation of Second Kind, Adomian Decomposition
Method, Laplace Transform, Sumudu Transform.
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Introduction introduced by Manafianheris, to solve a
For solving nonlinear integral equations, nonlinear Volterra-Fredholm integral and
Adomian  decomposition  method  was integro-differential equation using operational
introduced by George Adomian in 1280,  matrix  with  block-ipulse  function.

Watugalas [4] showed that the Sumudu

Basically, the technique provides an infinite
series solution of the equation and the
nonlinear term is decomposed into an infinite
series of Adomian polynomials .Several linear
and nonlinear ordinary, partial, deterministic
and stochastic differential equations are solved
by Adomian decomposition method. A
comparison was made between Laplace
decomposition method homotopy perturbation
method and wavelet Galerkin method for
solving nonlinear Volterra integro-differential
equations; we show that (LTSDM) and
(STSDM) are used for finding the better
approximate  solution of real valued
function [7]. In [2], the modified form of
Laplace decomposition method has been

transform can be effectively used to solve
ordinary differential equations and engineering
control problems. For more details about
Adomian decomposition method see [8]. In this
work, we focus to solve nonlinear integral and
intgro-differential equation of the secondi kind
by (LTSDM) and (STSDM). In section 2, the
relation between Laplace and Sumudu
transforms given in the Theorem 2.1 [5].

Approximate methods

The nonlinear integral and intgro-differential
equation of the second kind is written as
follows [2]:
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b(x)
u®(x) = g(x) + f K(x,t) G(u(t))dt, i €N

a

)

diu

where u®(x) = ——, 1 =1 and G(u(x)) is
a nonlinear function of wu (x), consider the
kernel K(x,t)of equation (1) as difference
kernel K(x,t) = K(x —t)such as e*7¢t,
sin(x —t) and so on [9]. So the equation (1)
becomes:

b(x)

uD(x) = gx) + f K(x —t) G(u(®))dt

a

@

Now, in [5] consider the following set of
functions:

A={f®)|3IM,ty,and Jort, > 0,|f(t)]| <
Me!'™V7 if t € (=1)) x[0,),j=1, 2}
such that the constant M must be finite, while
7, and 7, need not simultaneously exist. The
next theorem shows, the Sumudu transform is
closely connected with the Laplace transform.

Theorem 2.1 [5]: Let f(t) € Awith Laplace
transform F(s). Then the Sumudu transform
R(r) of f(t) is given by:

1
G ®

R(r) =

where R(r) the Sumudu transform of f(t) , for
example, if f(t) = cos(t), then:

F(s) = LIF(0)} = 5=,
RO) = 670} == L

N

r r2+1

Laplace Adomian Decomposition Method
(LADM) [3][9][10]

A combined form is proposed for solving the
nonlinear integral and intgro-differentiali
equations of the second kind based on Laplace
Adomian decomposition method. Laplace of

the i™ derivatives of the continuous
function u (x), is given by:
Lu®x)] = S'Llu(x)] — S=' u(0) — @)

S$29/(0) — $3u"(0) ...ul=V (0)

Let us take a simple example that illustrates the
equation (4):

65

Llu" ()] = §? Llu@)] = S u(0) —u'(0) (5)

Now, in equation (2) there are two cases:

Case (1): If a =0, b(x) = x (Volterra integral
equation), then applying the Laplace transform
for equation (2) gives:

StL[u(x)] — S u(0) — S2u/© —
S u(0) - uV(0),1 > 1
= L(g(x)) + L(K(x — t)) * L(G (u(x)))

(6)

The important part of equation (6) " L(K(x —
t)) * L(G(u(x)))" was obtained by The
Convolution Theorem for Laplace
Transform [9], which states the following:
Consider two functions f1(x) and f2(x) that
possess the conditions needed for the existence
of Laplace transform for each. Let the Laplace
transforms for the functions f1(x) and f2(x)
be given by:

L{f1(x)} = F1(s)
L{f2(x)} = F2(s)

(1)
®)

The Laplace convolution product of these two
functions is defined by:

(F1 + F2)(0) = jo A - of@d )
or,

(F2 * FOG) = jo Cft - DfI@wd (10
Recall that:

(1 * f2)(x) = (f2 * fD(x) (11)

To show that the Laplace transform of the
convolution product (f1 * f2)(x) is given by:

L{FL * F2(0} = L f G - DROE) g,
= F1(s)F2(s)

Case (2): If a and b(x) are constants (Fredholm
integral equation), then applying the Laplace
inverse for equation (2) after calculating the
integral, equation (6) is equivalent to the
following:
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1 1
Llu(x)] = 5 u(0) + S—Zu'(o) + o
+%u“‘” ) + Si L(g(x)) (13)

4L (kG- 0) + L (6(u00)

by putting the linear term in an infinite series
of the following form:

[ee]

w@) = Y uy () (14

n=0

and Adomian decomposition series of the
nonlinear function G(u(x)) is given in the
form:

G(u(x) = Tiodn (),

where
1 dr S
= dpe [G(zﬁ ”i>]ﬁ=0’ (15)

substituting equations (14) and (15) in equation
(13) leads to:

o

1 1
LYt (0] = gu(0) + u'(0) + -

n=0

+%u(i‘1) ) + Si Ho) (16)
1
+FL(K(x — t)) * L <;An (x))

the Adomian decomposition method admits the
use of the following recursive relation:

1 1 1.
Lluy(x)] = §u(0) +S_2ul(0) + N+Fu(l 1) (0)

1
+ g L), an

Uit @] = g L(KGe = D) = L( A (),
fork>=0
Now, applying the Laplace inverse for equation
(17), we get:

e (0) = L7 {L(K (= 0) * L(Ax 00} k2 0

thus;

uapproximate(x) = up(x) + ug (x) + up(x) + -

Sumudu Adomian Decomposition Method
(SADM): [1][4][20]

A combined form is proposed for solving the
nonlinear integral and intgro-differentiali
equations of the second kind based on Sumudu
Adomian decomposition method. Sumudu of
the i™ derivatives of the continuous function
u (x), is given by:

o )0
u”(0) w@=0(0) (18)
T2 - - ,i=20

where & is represent Sumudu transform. Let us
take a simple example that illustrates the
equation (12):

S(u) u(0) w'(0) (19)

r2 r2 r

S[u" (x)] =

Now, in equation (2) there are two cases:

Case (1): If a = 0, b(x) = x (Volterra integral

equation). Then applying the Sumudu
transform for equation (2), we obtain:
Sue) _u® v w'©
ri ri ri-1 pi-2
_uPO (20)

= 8(g(x) +8(K(x—-1)
*§ (G(u(x))),i >1

The important part of equation (20) "&(K (x —
t)) *6(G(u(x)))" was obtained by The
Convolution Theorem for Sumudu
Transform [4].

Case (2): If a and b(x) are constants (Fredholm
integral equation), then applying the Sumudu
inverse for equation (2) after calculating the
integral, equation (20) is equivalent to the
following:

S(u) = u(0) +ruw'® +r2u"(0) + -
+718(g@) +ri[6(K(x - 1)) (1)
* S(G(u(x)))],i >1

by putting the linear term in an infinite series
of the following form:

[ee]

U@ = )ty () 22)

n=0
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and Adomian decomposition series of the
nonlinear function G(u(x)) is given by
equation (15). Substituting equations (22) and
(15) in equation (21) leads to:

) Uy, (x)} =u(0) +ru'(0) +r?u"(0) + -
>

+7ri5(g(x0) + 7t [6(K(x -0) (23)

x4 (i An (X)>
n=0

the Adomiani decomposition method admits
the use of the following recursive relation

=0

Sfug(@)] = u(0) + ru'(0) + r2 u”’(0)
+ ot 78(g () Sty 1 ()] (24)
= 1 [0(K(x—t)) *6(A () ],k =0

Now, by applying the Sumudu inverse for
equation (18), we have:

e (00) = 67 8(K(x = ) * 8( 4 (1))}, k2 0
thus;

uapproximate(x) = uo(x) + ul(x) + uz(x) + o

the Laplace transform series decomposition
method (LTSDM) and the Sumudu transform
series decomposition method (STSDM) are
used to solve nonlinear Integral and intgro-
differential equations of the secondi kind and
we will illustrate this method by using
following illustrative examples.

Illustrative examples
To show the presented method is efficiency
and convenience, four illustrated examples are

given. Notice that in all the examples below we
will calculate which is defined as:

L.S.E.= X% (E; — A)?,
where E;, Aj are exact solution and
approximate solutions respectively.

Example (1) [9]: Consider the following non-
linear Fredholm integral equation of the second
kind:
1
ulx) =x+ fx tu?(t) dt (25)

0

The exact solutionu(x) = 2 x, to get rapidly
convergent to the exact solution, we can
modify (19) as follows:

1

u(x) = 1.9999 x — 0.9999 x + f x tu?(t) dt

(26)
0
n = 2
where n is the number of Adomian
polynomials. In this example, using the

methods LTSDM and STSDM, we get the
same approximate solution:

Ugpprox.(¥) = 1.9999000074996250078 x  (27)

We found the value of equation (27) after we
applied both LTSDM and STSDM 2 times
n = 2).

Table 1: shows the exact and approximate Results and the least square error (L.S.E.) foroExample 1.

. Approximate solution by | Approximate solution by Absolute error of Absolute error of

X ST LTSDM STSDM LTSDM STSDM

0 0 0 0 0 0
0.1 0.2 0.19999000075 0.19999000075 0.00000999925 0.00000999925
0.2 0.4 0.3999800015 0.3999800015 0.00001999850 0.00001999850
0.3 0.6 0.59997000225 0.59997000225 0.00002999775 0.00002999775
0.4 0.8 0.799960003 0.799960003 0.00003999700 0.00003999700
0.5 1.0 0.99995000375 0.99995000375 0.00004999625 0.00004999625
0.6 1.2 1.1999400045 1.1999400045 0.00005999550 0.00005999550
0.7 14 1.39993000525 1.39993000525 0.00006999475 0.00006999475
0.8 1.6 1.599920006 1599920006 0.00007999400 0.00007999400
0.9 1.8 1.79991000675 1.79991000675 0.00008999325 0.00008999325
1.0 2.0 1.9999000075 1.9999000075 0.00009999250 0.00009999250

L.S.E. 3.84942252¢-8 3.84942252¢-8
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Figurel: Comparison of Exact Solution and
Approximate Solution of example (1).

Example (2) [9]: Consider the following non-
linear Volterra integral equation of second
kind:

2 1 1
u(x) = sin(x) + §cos(x) -3 (cos(x))? — =

. 3 (28)
+ f sin(x — t) u?(¢t) dt
0

The exact solution is u(x) = sin(x). In this
example, using the methods LTSDM and
STSDM, we get the same approximate

solution:
x° x7 x> x3
Uapprox.(X) = 355880 5040 T 120 6 T (29)
n=4
where n is the number of Adomian

polynomials.

Table 2: Shows the exact and approximate Results and the least square error (L.S.E.) for Example 2.

. Approximate solution by | Approximate solution by Absolute error of Absolute error of
X 2Euienliier LTSDM STSDM LTSDM STSDM
0 0.0 0.0 0.0 0.0 0.0
0.1 [ 0.0998334166468 0.0998334166468 0.0998334166468 0.0 0.0
0.2 0.198669330795 0.198669330795 0.198669330795 0.0 0.0
0.3 0.295520206661 0.295520206661 0.295520206661 0.0 0.0
0.4 0.389418342309 0.38941834231 0.38941834231 1.0496847e-12 1.0496847e-12
0.5 0.479425538604 0.479425538616 0.479425538616 1.221289479¢-11 1.221289479¢-11
0.6 0.564642473395 0.564642473486 0.564642473486 9.067892851e-11 9.067892851e-11
0.7 0.644217687238 0.644217687732 0.644217687732 4.9380971793e-10 4.9380971793e-10
0.8 0.7173560909 0.717356093043 0.717356093043 2.14315801438¢-9 2.14315801438¢-9
0.9 0.783326909627 0.783326917448 0.783326917448 7.82095411154¢e-9 7.82095411154¢-9
1.0 0.841470984808 0.8414710097 0.8414710097 2.48922798602¢-8 2.48922798602¢-8
LSE. 6.85624616e-16 6.85624616¢-16
1 T T T T " 1 .
0841 u"(x) =-1- 3 (sin(x) + sin(2x)) + 2 cos(x)
) 08k ] x (30)
' +.-*"+ + j sin(x — t) u?(¢t) dt
o 0
A
ua(x) 0.6 e .
— - where u(0) = —1, u'(0) = 1.
ue(x o . . .
+$+)o.4— A . The exact solution is u(x) = sin(x) — cos(x).
T By using LTSDM, we get the following
o2r A& 7 approximate solution:
0 A
N L L L L 9 8 7
0 X X X
0 0.2 04 06 08 u x) = - -
appmx'( ) 362880 40320 5040
0 X 1 x6 x5 x* x3 x?
Figure2: Comparison of Exact Solution and ot ——————+=— (31
. . 720 120 24 6 2
Approximate Solution of example (2). +x—1, n=3

Example (3) [9]: Consider the following non-
linear Volterra integro-differential equation of
secondi kind:

and by using STSDM, we get the following
approximate solution:
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_ sin(2x)  sin(x) x where n is the number of Adomiani
uappmx.(x) = T + T -2 COS(.X') + E I R I
2 (32) polynomials.
- —=+1, n=2
2
Table 3: shows the exact and approximate Results and the least square error (L.S.E.) for Example 3.
Exact solution Approximate solution by | Approximate solution by Absolute error of Absolute error of
LTSDM STSDM LTSDM STSDM
-1.0 -1.0 -1.0 0.0 0.0
0.1 -0.895170748631 -0.895170748631 -0.895174747441 0.0 0.00000399881
0.2 -0.781397247046 -0.781397247046 -0.781458516892 0.0 0.00006126985
0.3 -0.659816282464 -0.659816282466 -0.660112703248 1.58176975e-12 0.00029642078
0.4 -0.531642651694 -0.531642651722 -0.532536199661 2.781126425e-11 0.00089354797
0.5 -0.398157023286 -0.398157023543 -0.400234028845 2.563925637e-10 0.00207700556
0.6 -0.260693141515 -0.260693143086 -0.26478714819 1.57107134567e-9 0.00409400668
0.7 -0.120624500047 -0.120624507308 -0.127824334657 7.26163241137e-9 0.00719983461
0.8 0.0206493815524 0.020649354249 0.009003078526 2.73033273583e-8 0.01164630303
0.9 0.161716941357 0.161716853678 0.144043002574 8.76784707177e-8 0.01767393878
1.0 0.30116867894 0.301168430335 0.275660502102 2.48604659787e-7 0.02550817684
L.S.E. 7.029278571656e-14 0.001172474096409
0.5 T T T T 1
11 19 1
0.301 u"(x =2+—x+—x2+—f 242
A (x) 15 35 5 | (et + x*t?) (33)
e (w(® - w(©) de
- u(t) — u=(t t
ue(x) ok A -
- Py
uL(x) . where u(0) = 1, u'(0) =1.
voe 7 The exact solution isu(x) =1+ x + x2.
US(X) _ o g & . By using LTSDM, we get the following
s approximate solution:
nﬁl
L = _19x* | 11x® | 1882452191x?
-1 0'2 0'_4 OI.6 OI.8 Uapprox.(¥) = 55 9r(]J_3 2043241200 TX T 1 (34)
0 X 1

Figure3: Comparison of Exact Solution and

[Approximate Solution by using LTSDM uL(x) and by

using STSDM uS(x)] of example (3).

Example (4) [9]: Consider the following non-

and by using STSDM, we get the following

approximate solution:

linear Fredholm integro-differential equation of
second kind:

_ 25574111x* 87539x° 1
Uapprox.(X) = 5 eou2ea00 ;7144200+x Tt (35)
, =
where n is the number of Adomiani
polynomials.

Table 4: shows the exact and approximate Results and the least square error (L.S.E.) for Example 4.

. Approximate solution by | Approximate solution by Absolute error of Absolute error of

X S LTSDM STSDM LTSDM STSDM

0 1.0 1.0 1.0 0.0 0.0
0.1 111 1.1093398149 1.1099972385 0.000660185090 0.000002761521
0.2 1.24 1.2379024342 1.2400538409 0.002097565758 0.000053840918
0.3 1.39 1.3865840485 1.3904379873 0.003415951526 0.000437987258
0.4 1.56 1.5563894195 1.5616456567 0.003610580491 0.001645656695
0.5 1.75 1.7484318807 1.7544006277 0.001568119319 0.004400627677
0.6 1.96 1.9639333368 1.9696544779 0.003933336751 0.009654477908
0.7 2.19 2.2042242639 2.2085865843 0.014224263912 0.018586584344
0.8 244 2.4707437098 2.4726041232 0.030743709780 0.032604123194
0.9 2.71 2.7650392934 2.7633420699 0.055039293405 0.053342069921
1.0 3.0 3.0887672053 3.0826631992 0.088767205262 0.082663199243

L.S.E. 0.0121039167024 0.0112025482923
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Figure 4. Comparison of Exact Solution and
[Approximate Solution by using LTSDM uL(x) and by
using STSDM uS(x)] of example (4).

Remark: In the above examples, the interval

[-1, 1] can be chosen because the error value is
very small and the error is too small in all
partial intervals of [-1, 1], for example [0, 1]
was too small as shown in the previous graphs.

Conclusion

ADM has main advantages such as simplicity,
high accuracy and the solution when it exists is
found in a rapidly convergent series form. A
combined from of the Adomian decomposition
method with the Laplace transform and with
the Sumudu transform are effectively used to
solve nonlinear integral and integro-differential
equations.
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