Hyperfactored of Reflection Arrangement $\mathcal{A}\left(\boldsymbol{G}_{25}\right)$

Rabeaa G. A. Al-Aleyawee*, Raneen S. H. Al-Muhamadi
Department of Mathematics, College of Science, Mustansiriyah University, IRAQ
*Correspondent author email: dr.rabeea@uomustansiriyah.edu.iq

ArticleInfo

Abstract

The purpose of this paper is to study the hyperfactored of the complex reflection arrangement $\left(G_{25}\right)$. Depending on the lattice of arrangement $\left(G_{25}\right)$, the basis of $\mathcal{A}\left(G_{25}\right)$ has been found and then partitioned. Also, showed that $\left(G_{25}\right)$ is not hyperfactored and is not inductively factored.

Keywords: Complex reflection arrangement, nice partition, Factored arrangement, Inductively Factored.

29/04/2019

Published 15/10/2019

Received

25/03/2019
Accepted
 ($\mathcal{A}\left(G_{25}\right)$

Introduction

In Al-Aleyawee [1] found the lattice of $\mathcal{A}\left(G_{25}\right)$. In this paper the basis of $\left(G_{25}\right)$ has been found by using program. Proved that the arrangement $\left(G_{25}\right)$ is not factored depending on lattice, and proved that $\left(G_{25}\right)$ is not inductively factored depending on triple arrangement. The exponent vector and partition of $\left(G_{25}\right)$ have been computed.
Throughout this paper, V is a finite dimensional complex vector space over field K . A hyperplane H in V is an affine subspace of dimension $n-1$.
A hyperplane arrangement $\mathcal{A}=(\mathcal{A}, \mathrm{V})$ is a finite set of hyperplanes in V . The product $\mathrm{Q}(\mathcal{A})=\prod_{H \in \mathcal{A}^{\alpha_{H}}}$ (where α_{H} is a linear form and $\mathrm{H}=\operatorname{Ker}\left(\alpha_{H}\right)$ is called a defining polynomial of \mathcal{A}. We agree that $\mathrm{Q}\left(\emptyset_{n}\right)=1$ is the defining polynomial of \emptyset_{n}, where \emptyset_{n} is empty 1 -arrangement. A reflection on V is a linear transformation on V of finite order with exactly $\ell-1$ eigenvalues equal to 1 . A reflection group G on V is a finite group generated by reflection on V . The lattice of \mathcal{A} denoted by $L_{\mathcal{A}}=\{\cap \mathrm{H} \mid \mathrm{H} \in \mathcal{A}\}$ with the order being reverse inclusion; that is, $\mathrm{X} \leq Y \leftrightarrow Y \subseteq X$, for each, ϵ $L_{\mathcal{A}}$. A subarrangement of \mathcal{A} is $\mathcal{A}_{X}=\{\mathrm{H} \in \mathcal{A} \mid$
$X \subseteq \mathrm{H}\}$. The restriction arrangement $\mathcal{A}^{X}=\{\mathrm{X} \cap$ $\mathrm{H}: \mathrm{H} \in \mathcal{A}-\mathcal{A}_{X}$ and $\left.\mathrm{X} \cap \mathrm{H} \neq \varnothing\right\}$ is the arrangement within the vector space X . A triple of arrangements $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$; that is, $\mathrm{H} \in \mathcal{A}$, $\mathcal{A}^{\prime}=\mathcal{A}-\left\{H_{0}\right\}$ and $\mathcal{A}^{\prime \prime}=\mathcal{A}^{H_{0}}$ (where H_{0} distinguished hyperplane). The rank function is a function rk: $L_{\mathcal{A}} \rightarrow Z_{+}$defined by $\mathrm{rk}(\mathrm{X})=$ $\operatorname{cod}(\mathrm{X}), \forall \mathrm{X} \in L_{\mathcal{A}}$. The symmetric algebra $\mathrm{S}=$ $\mathrm{S}\left(V^{*}\right)$ (where V^{*} the duel vector space of V), which is isomorphic to the polynomial algebra $\mathrm{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. For more details on hyperplane arrangement see[2].

1: Factored and inductively factored of (G_{25}) Definition (1.1):[2][4]

Let $\pi=\left(\pi_{1}, \ldots, \pi_{s}\right)$ be partition of \mathcal{A}. Then π is called independent, for any choice $H_{i} \in \pi_{\mathrm{i}}$, $1 \leq \mathrm{i} \leq \mathrm{s}$, $\operatorname{rk}\left(\mathrm{H}_{1} \cap \ldots \cap H_{s}\right)=s$.

Definition (1.2): [2]

Let $\pi=\left(\pi_{1}, \ldots, \pi_{s}\right)$ be a partition of \mathcal{A} and let $\mathrm{x} \in L_{\mathcal{A}}$. The induced partition π_{X} of \mathcal{A}_{X} is given by the non- empty block of the form $\pi_{i} \cap \mathcal{A}_{X}$.

Definition (1.3): [2][4]
The partition π of \mathcal{A} is a nice arrangement if π is independent and for each $X \in L_{\mathcal{A}} \backslash\{V\}, \pi_{X}$ admits a block which is a singleton.

Definition (1.4): [2]
Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subset \mathrm{V}$ be the dual basis of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then define $D_{i}=D_{e_{i}}, 1 \leq i \leq$ n, to be the derivation $\frac{\partial}{\partial x_{i}}, D_{i}(f)=\frac{\partial f}{\partial x_{i}}, f \in$ S. Notice that $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ is a basis for $\operatorname{Der}_{K}(\mathrm{~S})$ over S .
Thus, any derivation θ of S over K is $\theta=$ $f_{1} D_{1}+\cdots+f_{n} D_{n}$, where $f_{1}, \ldots, f_{n} \in \quad S$. Therefore, $\operatorname{Der}_{K}(\mathrm{~S})$ is free S -module of rk n.

Definition (1.5): [2]

$0 \neq \emptyset \in \operatorname{Der}_{K}(\mathrm{~S}) \quad$ is homogeneous of polynomial degree p if $\theta=\sum_{j=1}^{n} f_{j} D_{j}$ and $f_{j} \in S_{p}$ for $1 \leq j \leq n$, and defined by $p \operatorname{deg} \theta=p$ and $\operatorname{tdeg} \theta=p \operatorname{deg} \theta-1$.

Definition (1.6): [2]
Let \mathcal{A} be an arrangement with defining polynomial $\mathrm{Q}(\mathcal{A})=\prod_{H \in \mathcal{A}} \alpha_{H}$, a sub module D_{S} (\mathcal{A}) of $\operatorname{Der}_{K}(\mathrm{~S})$ is $D_{S}(\mathcal{A})=\left\{\theta \in \operatorname{Der}_{K}(\mathrm{~S}) \mid \theta(\mathrm{Q})\right.$ $\in \mathrm{QS}\}$. $D_{S}(\mathcal{A})$ is called the module of \mathcal{A} derivations.

Definition (1.7): [2]

The class IFAC of inductively factored is the smallest class of pairs (\mathcal{A}, π) of \mathcal{A} together with a partition π subject to

1. $\left(\emptyset_{n},(\varnothing)\right) \in$ IFAC, $\forall \quad n \geq 0$, (where \emptyset_{n} is empty n -arrangement).
2. If there exists a partition π of \mathcal{A} and H_{0} the restriction map $\sigma=\sigma_{\pi}$,
$H_{0}: \mathcal{A} \backslash \pi_{1} \rightarrow \mathcal{A}^{\prime \prime}$ is injective and for the induced partition π^{\prime} of \mathcal{A}^{\prime} and $\pi^{\prime \prime}$ of $\mathcal{A}^{\prime \prime}$ both $\left(\mathcal{A}^{\prime}, \pi^{\prime}\right)$ and $\left(\mathcal{A}^{\prime \prime}, \pi^{\prime \prime}\right) \in \operatorname{IFAC}$, then (\mathcal{A}, π).

Definition (1.8): [3]

A real arrangement \mathcal{A} of hyperplane is said to be factored if there exists a partition $\pi=$ $\left(\pi_{1}, \ldots, \pi_{n}\right)$ of \mathcal{A} into n disjoint subsets such that Orlik-Solomon algebra of \mathcal{A} factors according to this partition.

Theorem (1.1): [3]
If \mathcal{A} is a nice partition, then an arrangement \mathcal{A} is factored arrangement.

2:The Complex Reflection Arrangement of $\mathcal{A}^{(}\left(\boldsymbol{G}_{25}\right)$

The complex Reflection Group $G_{25}[1]$
Let V is a finite dimensional complex vector space the defining polynomial of $\mathcal{A}\left(G_{25}\right)$ is Q $\left(\mathcal{A}\left(G_{25}\right)\right)=x y z \quad \prod_{o \leq i, j \leq 2}\left(x_{i} \mp x_{j}\right)\left(\beta x_{i} \mp x_{j} \mp\right.$ x_{k}).

The hyperplane arrangement of G_{25} [1]

The hyperplane of $\left(G_{25}\right)$ where $H_{i}=\operatorname{Ker} \alpha_{H_{i}}$, $1 \leq i \leq 12$ are:

Table 1: The hyperplanes of $\left(G_{25}\right)$.

$\mathrm{H}_{1}: x=0$	$\mathrm{H}_{7}: \mathrm{x}+\omega \mathrm{y}+\mathrm{z}=0$
$\mathrm{H}_{2}: y=0$	$\mathrm{H}_{8}: \mathrm{x}+\omega \mathrm{y}+\omega \mathrm{z}=0$
$\mathrm{H}_{3}: z=0$	$\mathrm{H}_{9}: \mathrm{x}+\omega \mathrm{y}+\omega^{2} \mathrm{z}=0$
$\mathrm{H}_{4}: x+y+z=0$	$\mathrm{H}_{10}: \mathrm{x}+\omega^{2} \mathrm{y}+\mathrm{z}=0$
$\mathrm{H}_{5}: \mathrm{x}+\mathrm{y}+\omega \mathrm{z}=0$	$\mathrm{H}_{11}: \mathrm{x}+\omega^{2} \mathrm{y}+\omega \mathrm{z}=0$
$\mathrm{H}_{6}: \mathrm{x}+\mathrm{y}+\omega^{2} \mathrm{z}=0$	$\mathrm{H}_{12}: \mathrm{x}+\omega^{2} \mathrm{y}+\omega^{2} \mathrm{z}=0$

Using Program (1) below, that found:
$D_{1}(f)=\frac{\partial f}{\partial x}, D_{2}(f)=\frac{\partial f}{\partial y}, D_{3}(f)=\frac{\partial f}{\partial z}$
of $\mathcal{A}\left(G_{25}\right)$ and found degree of $\mathcal{A}\left(G_{25}\right)$ is $\{4,7,10\}$. Thus, the exponent vector of $\left(G_{25}\right)$ is $\{5,8,11\}$ and the partition of this arrangement is $\pi=\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$ where

$$
\begin{aligned}
\pi_{1}= & \left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, H_{4}, H_{5}\right\}, \\
\pi_{2}= & \left\{\mathrm{H}_{6}, \mathrm{H}_{7}, \mathrm{H}_{8}, \mathrm{H}_{9}, \mathrm{H}_{10}, H_{11} \mathrm{H}_{12}, H_{13}\right\}, \\
\pi_{3}= & \left\{\mathrm{H}_{14}, \mathrm{H}_{15}, \mathrm{H}_{16}, \mathrm{H}_{17}, \mathrm{H}_{18}, \mathrm{H}_{19},\right. \\
& \left.\mathrm{H}_{20}, \mathrm{H}_{21}, \mathrm{H}_{22}, \mathrm{H}_{23}, \mathrm{H}_{24}\right\}
\end{aligned}
$$

The $\mathcal{A}_{X_{i}}$, for each $X_{i} \in \mathrm{rk} 2$ has been found.
Theorem (2.1):
i. The induced partition π_{X} of $\mathcal{A}\left(G_{25}\right)$ has no singleton.
ii. $\left.\mathcal{A}\left(G_{25}\right)\right)$ is not factored arrangement.

Proof:

i. By the intersection of the partitions $\pi_{i}, i=$ 1,2,3, with arrangement of rk 2 in Table (2) the result is deduced.
ii. This part is direct result from Part i.

Table 2: $\mathcal{A}_{x_{i}}$, for each $x_{i} \in$ rk 2.

$\mathcal{A}_{X_{1}}=\left\{H_{1}, H_{4}, H_{8}, H_{12}\right\}$	$\mathcal{A}_{X_{12}}=\left\{H_{2}, H_{3}\right\}$
$\mathcal{A}_{X_{2}}=\left\{H_{1}, H_{5}, H_{9}, H_{10}\right\}$	$\mathcal{A}_{X_{13}}=\left\{H_{4}, H_{9}\right\}$
$\mathcal{A}_{X_{3}}=\left\{H_{1}, H_{6}, H_{7}, H_{11}\right\}$	$\mathcal{A}_{X_{14}}=\left\{H_{4}, H_{11}\right\}$
$\mathcal{A}_{X_{4}}=\left\{H_{2}, H_{4}, H_{7}, H_{10}\right\}$	$\mathcal{A}_{X_{15}}=\left\{H_{5}, H_{7}\right\}$
$\mathcal{A}_{X_{5}}=\left\{H_{2}, H_{5}, H_{8}, H_{11}\right\}$	$\mathcal{A}_{X_{16}}=\left\{H_{5}, H_{12}\right\}$
$\mathcal{A}_{X_{6}}=\left\{H_{2}, H_{6}, H_{9}, H_{12}\right\}$	$\mathcal{A}_{X_{17}}=\left\{H_{6}, H_{8}\right\}$
$\mathcal{A}_{X_{7}}=\left\{H_{3}, H_{4}, H_{5}, H_{6}\right\}$	$\mathcal{A}_{X_{18}}=\left\{H_{6}, H_{10}\right\}$
$\mathcal{A}_{X_{8}}=\left\{H_{3}, H_{7}, H_{8}, H_{9}\right\}$	$\mathcal{A}_{X_{19}}=\left\{H_{7}, H_{12}\right\}$
$\mathcal{A}_{X_{9}}=\left\{H_{3}, H_{10}, H_{11}, H_{12}\right\}$	$\mathcal{A}_{X_{20}}=\left\{H_{8}, H_{10}\right\}$
$\mathcal{A}_{X_{10}}=\left\{H_{1}, H_{2}\right\}$	$\mathcal{A}_{X_{21}}=\left\{H_{9}, H_{11}\right\}$
$\mathcal{A}_{X_{11}}=\left\{H_{1}, H_{3}\right\}$	

3. Inductively Factored of (\boldsymbol{G}_{25})

Let $\pi=\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$. Let H_{1} distinguished hyperplane then
$\pi^{\prime}\left(\mathcal{A}^{\prime}\left(G_{25}\right)\right)=$
$\left\{H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}, H_{8}, H_{9}, H_{10}, H_{11}, H_{12}\right\}$, $\pi^{\prime \prime}\left(\mathcal{A}^{\prime \prime}\left(G_{25}\right)\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$.
To show that $\delta: \mathcal{A}^{\prime} \backslash \pi^{\prime}{ }_{1} \rightarrow \mathcal{A}^{\prime \prime}$ is injective. Let H_{6} distinguished hyperplane then by Definition (2.7) δ is not injective since $\exists \alpha, \beta \in \mathcal{A}^{\prime} \backslash$ $\pi^{\prime}{ }_{1}$ such that $\delta(\alpha)=\delta(\beta)$ and $\alpha \neq \beta$. Thus, \mathcal{A} $\left(G_{25}\right)$ is not inductively factored.

Theorem (3.1)
Every factored arrangement is a nice partition.

Proof:

Suppose that \mathcal{A} is factored arrangement. Then $\exists \pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of \mathcal{A} such that $\pi=\oplus \pi_{i}$, $i=1, \ldots, n$. Thus, π is independent. Without loss of generality let $\pi_{1}=\left\{H_{i}\right\}, i=1, \ldots, n$. Then $\pi_{\mathrm{x}}=\pi_{1} \cap \mathcal{A}_{\mathrm{x}_{k}}$ is singleton $\forall \mathcal{A}_{\mathrm{x}_{k}} \in L_{\mathcal{A}}$, where x_{k} of rank two. Therefore, By Definition (1.3) \mathcal{A} is nice arrangement.

Program (1)

syms x1 x2 x3 B
h1=x1
h2 $=x 2$
h3 $=x 3$
h4 $=\mathrm{x} 1+\mathrm{x} 2$
h5 =x $1+x 3$
h6 $=x 2+x 3$
h7=x1-x2
h8=x1-x3
h9 $=x 2-x 3$
h10 $=B^{*} \times 1+x 2+x 3$
h11 $=B^{*} \times 1-x 2+x 3$
h12=B*x1+x2-x3
h13=B*x $1+-x 2-x 3$
h14 $=$ B $^{*} x 2+\mathrm{x} 1+\mathrm{x} 3$
h15=B*x2-x1-x3
h16=B*x2-x1+x3
h17=B*x2+x1-x3
h18 $=B^{*} \times 3+x 1+x 2$
h19=B*x3-x1-x3
h20 2 B* $x 3-x 1+x 2$
h21 $=B^{*} \times 3+x 1-x 2$
H=h1*h2*h3*h4*h5*h6*h7*h8*h9*h10*h11*h12*h13
*h14*h15*h16*h17*h18*h19*h20*h21
L1 $=\operatorname{diff}(\mathrm{H}, \mathrm{x} 1)$
L2 $=\operatorname{diff}(\mathrm{H}, \mathrm{x} 2)$
L3 $=\operatorname{diff}(\mathrm{H}, \mathrm{x} 3)$
L1=simplify(L1)
L2=simplify(L2)
L3=simplify(L2)

References

[1] R. Al-Aleyawee, Hypersolvable and Free Arrangements. Ph.D. Thesis, College of science, Mustansiriyah University, (2005).
[2] P. Orlik and H. Terao, Arrangement of Hyperplanes. Grundlehren Math. Wiss. vol.300, Springer-Verlag Berlin, (1992).
[3] M. Jambu and L. Paris, Combinatorics of Inductively Factored Arrangements. Euroup. J. Combinatorics, 16, 267-292, (1995).
[4] T. Hoge and G. Rohle, Nice Reflection Arrangements. Math.GR, (2015).

