Research Article

Open Access

Hyperfactored of Reflection Arrangement $\mathcal{A}(G_{25})$

Rabeaa G. A. Al-Aleyawee*, Raneen S. H. Al-Muhamadi

Department of Mathematics, College of Science, Mustansiriyah University, IRAQ *Correspondent author email: <u>dr.rabeea@uomustansiriyah.edu.iq</u>

ArticleInfo	Abstract
Received 25/03/2019	The purpose of this paper is to study the hyperfactored of the complex reflection arrangement (G_{25}) . Depending on the lattice of arrangement (G_{25}) , the basis of $\mathcal{A}(G_{25})$ has been found and then partitioned. Also, showed that (G_{25}) is not hyperfactored and is not inductively factored.
Accepted 29/04/2019	Keywords : Complex reflection arrangement, nice partition, Factored arrangement, Inductively Factored.
Published 15/10/2019	الخلاصة الهدف من هذا البحث هو دراسة قابلية التحليل الفوقي للترتيبة الانعكاسية المركبة (G ₂₅). بالاعتمادعلى الشبكية للترتيبة A(G ₂₅) وجد الاساس لهذه الترتيبة ومن ثم التجزئة. وكذلك بر هنت بانها غير قابلة للتحليل الفوقي والتحليل الاستقرائي.

Introduction

In Al-Aleyawee [1] found the lattice of $\mathcal{A}(G_{25})$. In this paper the basis of (G_{25}) has been found by using program. Proved that the arrangement (G_{25}) is not factored depending on lattice, and proved that (G_{25}) is not inductively factored depending on triple arrangement. The exponent vector and partition of (G_{25}) have been computed.

Throughout this paper, V is a finite dimensional complex vector space over field K. A hyperplane H in V is an affine subspace of dimension n - 1.

A hyperplane arrangement $\mathcal{A} = (\mathcal{A}, V)$ is a finite set of hyperplanes in V. The product $Q(\mathcal{A}) = \prod_{H \in \mathcal{A}^{\alpha_H}}$ (where α_H is a linear form and $H = \text{Ker}(\alpha_H)$ is called a defining polynomial of \mathcal{A} . We agree that $Q(\emptyset_n) = 1$ is the defining polynomial of \emptyset_n , where \emptyset_n is empty 1-arrangement. A reflection on V is a linear transformation on V of finite order with exactly ℓ -1 eigenvalues equal to 1. A reflection group G on V is a finite group generated by reflection on V. The lattice of \mathcal{A} denoted by $L_{\mathcal{A}} = \{ \cap H | H \in \mathcal{A} \}$ with the order being reverse inclusion; that is, $X \leq Y \leftrightarrow Y \subseteq X$, for each, \in $L_{\mathcal{A}}$. A subarrangement of \mathcal{A} is $\mathcal{A}_X = \{ H \in \mathcal{A} \}$ $X \subseteq H$. The restriction arrangement $\mathcal{A}^X = \{X \cap$ H: $H \in \mathcal{A} - \mathcal{A}_X$ and $X \cap H \neq \emptyset$ } is the arrangement within the vector space X. A triple of arrangements $(\mathcal{A}, \mathcal{A}', \mathcal{A}'')$; that is, $H \in \mathcal{A}$, $\mathcal{A}' = \mathcal{A} - \{ H_0 \}$ and $\mathcal{A}'' = \mathcal{A}^{H_0}$ (where H_0) distinguished hyperplane). The rank function is a function rk: $L_{\mathcal{A}} \rightarrow Z_+$ defined by rk(X) = cod(X), $\forall X \in L_{\mathcal{A}}$. The symmetric algebra S = S (V^*) (where V^* the duel vector space of V), which is isomorphic to the polynomial algebra $K[x_1, x_2, ..., x_n].$ For more details on hyperplane arrangement see[2].

1: Factored and inductively factored of (G₂₅) Definition (1.1):[2][4]

Let $\pi = (\pi_1, ..., \pi_s)$ be partition of \mathcal{A} . Then π is called independent, for any choice $H_i \in \pi_i$, $1 \le i \le s$, rk $(H_1 \cap ... \cap H_s) = s$.

Definition (1.2): [2]

Let $\pi = (\pi_1, ..., \pi_s)$ be a partition of \mathcal{A} and let $x \in L_{\mathcal{A}}$. The induced partition π_X of \mathcal{A}_X is given by the non- empty block of the form $\pi_i \cap \mathcal{A}_X$.

Copyright © 2019 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Definition (1.3): [2][4]

The partition π of \mathcal{A} is a nice arrangement if π is independent and for each $X \in L_{\mathcal{A}} \setminus \{V\}, \pi_X$ admits a block which is a singleton.

Definition (1.4): [2]

Let $\{e_1, e_2, ..., e_n\} \subset V$ be the dual basis of $\{x_1, x_2, ..., x_n\}$. Then define $D_i = D_{e_i}, 1 \le i \le n$, to be the derivation $\frac{\partial}{\partial x_i}, D_i(f) = \frac{\partial f}{\partial x_i}, f \in S$. Notice that $\{D_1, D_2, ..., D_n\}$ is a basis for $Der_K(S)$ over S.

Thus, any derivation θ of S over K is $\theta = f_1D_1 + \dots + f_nD_n$, where $f_1, \dots, f_n \in S$. Therefore, $Der_K(S)$ is free S-module of rk n.

Definition (1.5): [2]

 $0 \neq \emptyset \in Der_K(S)$ is homogeneous of polynomial degree p if $\theta = \sum_{j=1}^n f_j D_j$ and $f_j \in S_p$ for $1 \le j \le n$, and defined by $p \deg \theta = p$ and $t \deg \theta = p \deg \theta - 1$.

Definition (1.6): [2]

Let \mathcal{A} be an arrangement with defining polynomial $Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H$, a sub module D_S (\mathcal{A}) of $Der_K(S)$ is $D_S(\mathcal{A}) = \{\theta \in Der_K(S) | \theta(Q) \in QS\}$. $D_S(\mathcal{A})$ is called the module of \mathcal{A} derivations.

Definition (1.7): [2]

The class IFAC of inductively factored is the smallest class of pairs (\mathcal{A},π) of \mathcal{A} together with a partition π subject to

1. $(\phi_n, (\phi)) \in IFAC, \forall n \ge 0$, (where ϕ_n is empty n-arrangement).

2. If there exists a partition π of \mathcal{A} and H_0 the restriction map $\sigma = \sigma_{\pi}$,

 $H_0: \mathcal{A} \setminus \pi_1 \to \mathcal{A}''$ is injective and for the induced partition π' of \mathcal{A}' and π'' of \mathcal{A}'' both (\mathcal{A}', π') and $(\mathcal{A}'', \pi'') \in \text{IFAC}$, then (\mathcal{A}, π) .

Definition (1.8): [3]

A real arrangement \mathcal{A} of hyperplane is said to be factored if there exists a partition $\pi = (\pi_1, ..., \pi_n)$ of \mathcal{A} into n disjoint subsets such that Orlik-Solomon algebra of \mathcal{A} factors according to this partition.

Theorem (1.1): [3]

If \mathcal{A} is a nice partition, then an arrangement \mathcal{A} is factored arrangement.

2:The Complex Reflection Arrangement of $\mathcal{A}(G_{25})$

The complex Reflection Group $G_{25}[1]$ Let V is a finite dimensional complex vector space the defining polynomial of \mathcal{A} (G_{25}) is Q (\mathcal{A} (G_{25})) = $xyz \prod_{0 \le i,j \le 2} (x_i \mp x_j) (\beta x_i \mp x_j \mp x_k)$.

The hyperplane arrangement of G_{25} [1]

The hyperplane of (G_{25}) where $H_i = \text{Ker}\alpha_{H_i}$, $1 \le i \le 12$ are:

Table 1 : The hyperplanes of $(G_2$	5).
--	-----

$H_1: x = 0$	$H_7: x + \omega y + z = 0$
$H_2: y = 0$	$H_8: x + \omega y + \omega z = 0$
$H_3: z = 0$	$H_9: x + \omega y + \omega^2 z = 0$
$H_4: x + y + z = 0$	H_{10} : x+ ω^2 y+z=0
$H_5: x+y+\omega z=0$	$H_{11}: x + \omega^2 y + \omega z = 0$
$H_6: x + y + \omega^2 z = 0$	$H_{12}: x + \omega^2 y + \omega^2 z = 0$

Using Program (1) below, that found:

 $D_1(f) = \frac{\partial f}{\partial x}, D_2(f) = \frac{\partial f}{\partial y}, D_3(f) = \frac{\partial f}{\partial z}$ of $\mathcal{A}(G_{25})$ and found degree of $\mathcal{A}(G_{25})$ is {4,7,10}. Thus, the exponent vector of (G_{25}) is {5, 8, 11} and the partition of this arrangement is $\pi = \{\pi_1, \pi_2, \pi_3\}$ where

 $\begin{aligned} \pi_1 &= \{ H_1, H_2, H_3, H_4, H_5 \}, \\ \pi_2 &= \{ H_6, H_7, H_8, H_9, H_{10}, H_{11}H_{12}, H_{13} \}, \\ \pi_3 &= \{ H_{14}, H_{15}, H_{16}, H_{17}, H_{18}, H_{19}, \\ H_{20}, H_{21}, H_{22}, H_{23}, H_{24} \} \end{aligned}$

The \mathcal{A}_{X_i} , for each $X_i \in \text{rk } 2$ has been found.

Theorem (2.1):

i. The induced partition π_X of $\mathcal{A}(G_{25})$ has no singleton.

ii. $\mathcal{A}(G_{25})$) is not factored arrangement.

Proof:

- i. By the intersection of the partitions π_i , i = 1,2,3, with arrangement of rk 2 in Table (2) the result is deduced.
- ii. This part is direct result from Part i.

Table 2: \mathcal{A}_{x_i} , for each $x_i \in \text{rk } 2$.

$\begin{aligned} \mathcal{A}_{X_1} = & \{H_1, H_4, H_8, H_{12}\} \\ \mathcal{A}_{X_2} = & \{H_1, H_5, H_9, H_{10}\} \\ \mathcal{A}_{X_3} = & \{H_1, H_6, H_7, H_{11}\} \\ \mathcal{A}_{X_4} = & \{H_2, H_4, H_7, H_{10}\} \\ \mathcal{A}_{X_5} = & \{H_2, H_5, H_8, H_{11}\} \\ \mathcal{A}_{X_6} = & \{H_2, H_6, H_9, H_{12}\} \\ \mathcal{A}_{X_7} = & \{H_3, H_4, H_5, H_6\} \\ \mathcal{A}_{X_8} = & \{H_3, H_7, H_8, H_9\} \\ \mathcal{A}_{X_9} = & \{H_3, H_{10}, H_{11}, H_{12}\} \\ \mathcal{A}_{X_{10}} = & \{H_1, H_2\} \end{aligned}$	$\mathcal{A}_{X_{12}} = \{H_2, H_3\}$ $\mathcal{A}_{X_{13}} = \{H_4, H_9\}$ $\mathcal{A}_{X_{14}} = \{H_4, H_{11}\}$ $\mathcal{A}_{X_{15}} = \{H_5, H_7\}$ $\mathcal{A}_{X_{16}} = \{H_5, H_{12}\}$ $\mathcal{A}_{X_{17}} = \{H_6, H_8\}$ $\mathcal{A}_{X_{18}} = \{H_6, H_{10}\}$ $\mathcal{A}_{X_{19}} = \{H_7, H_{12}\}$ $\mathcal{A}_{X_{20}} = \{H_8, H_{10}\}$
$\mathcal{A}_{X_{10}} = \{H_1, H_2\}$ $\mathcal{A}_{X_{11}} = \{H_1, H_3\}$	$\mathcal{A}_{X_{21}} = \{H_9, H_{11}\}$

3. Inductively Factored of (G_{25})

Let $\pi = \{\pi_1, \pi_2, \pi_3\}$. Let H_1 distinguished hyperplane then =

 $\pi'(\mathcal{A}'(G_{25}))$

 $\{H_2, H_3, H_4, H_5, H_6, H_7, H_8, H_9, H_{10}, H_{11}, H_{12}\},\$ $\pi''(\mathcal{A}''(G_{25})) = \{y_1, y_2, y_3, y_4, y_5\}.$

To show that $\delta: \mathcal{A}' \setminus \pi'_1 \to \mathcal{A}''$ is injective. Let H_6 distinguished hyperplane then by Definition (2.7) δ is not injective since $\exists \alpha, \beta \in \mathcal{A}' \setminus$ π'_1 such that $\delta(\alpha) = \delta(\beta)$ and $\alpha \neq \beta$. Thus, \mathcal{A} (G_{25}) is not inductively factored.

Theorem (3.1)

Every factored arrangement is a nice partition.

Proof:

Suppose that \mathcal{A} is factored arrangement. Then $\exists \pi = (\pi_1, ..., \pi_n)$ of \mathcal{A} such that $\pi = \bigoplus \pi_i$, i = 1, ..., n. Thus, π is independent. Without loss of generality let $\pi_1 = \{H_i\}, i = 1, ..., n$. Then $\pi_{\mathbf{x}} = \pi_1 \cap \mathcal{A}_{\mathbf{x}_k}$ is singleton $\forall \mathcal{A}_{\mathbf{x}_k} \in L_{\mathcal{A}}$, where x_k of rank two. Therefore, By Definition $(1.3) \mathcal{A}$ is nice arrangement.

Program (1)

```
syms x1 x2 x3 B
h1=x1
h2=x2
h3=x3
h4=x1+x2
h5=x1+x3
h6=x2+x3
h7=x1-x2
h8=x1-x3
h9=x2-x3
h10=B*x1+x2+x3
h11=B*x1-x2+x3
h12=B*x1+x2-x3
h13=B*x1+-x2-x3
h14=B*x2+x1+x3
h15=B*x2-x1-x3
h16=B*x2-x1+x3
h17=B*x2+x1-x3
h18=B*x3+x1+x2
h19=B*x3-x1-x3
h20=B*x3-x1+x2
h21=B*x3+x1-x2
H=h1*h2*h3*h4*h5*h6*h7*h8*h9*h10*h11*h12*h13
*h14*h15*h16*h17*h18*h19*h20*h21
L1=diff(H,x1)
L2=diff(H,x2)
L3=diff(H,x3)
L1=simplify(L1)
L2=simplify(L2)
L3=simplify(L2)
```

References

- [1] R. Al-Alevawee, Hypersolvable Free and Arrangements. Ph.D. Thesis, College of science, Mustansiriyah University, (2005).
- [2] P. Orlik and H. Terao, Arrangement of Hyperplanes. Grundlehren Math. Wiss. vol.300, Springer-Verlag Berlin, (1992).
- [3] M. Jambu and L. Paris, Combinatorics of Inductively Factored Arrangements. Euroup. J. Combinatorics, 16, 267-292, (1995).
- [4] T. Hoge and G. Rohle, Nice Reflection Arrangements. Math.GR, (2015).

