
Al-Mustansiriyah Journal of Science  
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 29, Issue 1, 2018 DOI: http://doi.org/10.23851/mjs.v29i1.577 

 

134 

 

 

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons 

Attribution-NonCommercial 4.0 International License. 

 

Research Article  

Two Versions of the Spectral Nonlinear Conjugate Gradient 

Method  

Basim A. Hassan, Haneen A. Alashoor 
Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, IRAQ 

*Correspondent Author Email: basimabas39@gnail.com 

 
A r t i c l e I n f o Abstract 

 

Received 

23/Mar./2017 

 

Accepted 

8/Nov./2017 

 

 

 
 

The nonlinear conjugate gradient method is widely used to solve unconstrained optimization 

problems. In this paper the development of different versions of nonlinear conjugate gradient 

methods with global convergence properties proved. Numerical results indicated that the 

proposed method is very efficient.  
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خلاصـةال  
المختلفة     تستخدم طريقة التدرج المترافق بشكل واسع في حل مسائل الأمثلية غير المقيدة. تم في هذا البحث, تطوير النسخ

كفوءة   لطرق التدرج المترافق غير الخطية بخصائص تقارب شامل تم إثباتها. أشارت النتائج العددية بان الطرق المقترحة

 جدا.

 

Introduction 
 Conjugate gradient methods are a class of very 

important methods for minimizing smooth functions, 

especially when the dimension is large [7]. They are 

considered to be conjugate direction methods which lie 

between the method of steepest descent and Newton's 

method. Their principal advantage is that they don't 

require the storage of any matrices as in Newton's 

method, or as in quasi-Newton methods, and they are 

designed to converge faster than the steepest descent 

method. Conjugate gradient methods converge in at most 

n iterations for unconstrained quadratic optimization 

problems in 
nR  when using exact line searches.In this 

paper, we consider the following unconstrained 

optimization problem: 

minimize 
nR  x,  )( xf  )1(  

where f  is smooth and its gradient g  is available. 

Conjugate gradient methods are very efficient for 

solving large-scale unconstrained optimization problems 

)1( . The iterates of conjugate gradient methods are 

obtained by : 

.......,2,1,0,1  kdxx kkkk   )2(  
where kd  is search direction and k  is a positive scalar 

and called the step length. Line search in the conjugate 

gradient algorithms often is based on the standard Wolfe 

(SW) conditions.  

k
T
kkkkkk dgdxfxf   )()(  )3(  

k
T
kk

T
kkk dgddxg   )(        )4(  

where  0  .More performance profile, is given in 

[4]. 

     The Conjugate gradient method generates a search 

direction that is mutually conjugate to the previous 

search directions, with respect to a given positive 

definite matrix H , and finds the optimal point in that 

direction using a line search technique. Two search 

directions 1id  and 1jd  are said to be mutually 

conjugate with respect to H  if the following condition 

is satisfied: 

011  ji Hdd   , ji   )5(  

In other words, the next search direction is calculated as 

a linear combination of the previous direction and the 

current gradient, in such a way that the minimization 

steps in all previous directions are not interfered with. 

The search direction can be determined as follows : 

kkkk dgd   11  )6(  

where k  is a parameter to be determined so that 1kd  

becomes the 
thk 1  conjugate direction. There are 

various ways for computing k .The most well known 

conjugate gradient methods include the Fletcher-Reeves 

(FR) method [5], the Hestenes-Stiefel (HS) method [6] 

and the Polak-Ribi`ere (PR) method [8]. The update 

parameters of these methods are respectively specified as 

follows : 

http://creativecommons.org/licenses/by-nc/4.0/
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      In [2,3], Basim et al. proposed a new nonlinear 

conjugate gradient methods called the BSQ and BSI 

methods with the parameters k  given by : 
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 where  

kkkkkk

T

kkk vyffdg /,)(2/)( 11

2

1    . )9(  

In fact, utilizing ),6(
BSQ
k  and 

BSI
k  may be rewritten 

as : 

k
T
k

k
T
k

k
dg

dg




  110  . 

)10(  

     Zhang et al. [10] proposed a modified FR method 

(called MFR), in which the direction 1kd  is defined by  

,11 k
FR
kk

MFR
kk dgd     )11(  

where 

k
T
k

k
T
kMFR

k
gg

dy
 . 

)12(  

and kkk ggy  1 . Based on the idea of them, we 

propose a new spectral conjugate gradient method 

without line search.  

     In the next section, we present the spectral BSQ and 

BSI conjugate gradient methods. In section 3, Some 

mild conditions are also given and the global 

convergence will be given. Some numerical results are 

reported in last section. 

 

Two versions of the spectral conjugate 

gradient method : 
Conjugate gradient algorithm )1(  and )5(  with exact 

line search always satisfy the condition 
2

11   kk
T
k gdg  which is in a direct connection with 

the sufficient descent condition  
2

11   kk
T
k gwdg  )13(  

for some positive constant 0w . Observe that w  is an 

arbitrary positive constant. 

 In this paper, we take a little modification to the BSQ 

and BSI methods such that the direction generated by the 

modified BSQ and BSI methods is always a descent 

direction. 

 Let the iterative direction 1kd  satisfy the sufficient 

descent condition  ,we only need to guarantee the 

following equality hold :  
2

111   kk
T
k gwdg .  

From above equation and )10( we get : 
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Since  
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T
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T
k dgdgdy  1  )15(  

From )15(  and )14( we get : 
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Since, w  is a constant parameter, let w  be defined by : 

 

)17(  

where is constant and  1,0  .Then, we have : 
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Thus, we obtain the following iterative direction : 

k
BSQ

kk

k

k
T
k

k

k
T
k

k dg
dgdy

d 

















 







 1

1

1

1

1  . 
)19(  

     A similar result holds for the BSI formula. We give 

the specific form of the proposed spectral conjugate 

gradient method as follows :  

k
T
kk

k
T
k

k
T
kk
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T
kEBSI
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dg

vd
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1

1

1 
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




 . 
)20(  

     Then, we can propose the following new spectral 

conjugate gradient methods (EBSQ and EBSI) : 

New Algorithm : 

Step 1. Initialization. Select 
nRx 1  and the parameters 

10 21   .  Compute )( 1xf  and 1g . Consider 

11 gd   and set the initial guess 11 /1 g . 

Step 2. Test for continuation of iterations. 

 If 
6

1 10
 kg , then stop.  

Step 3. Line search. Compute 01 k  satisfy-ying the 

Wolfe line search       condition (4) and (5) and update 

the variables kkkk dxx 1 . 

Step 4. Set  
BSI
k

BSQ
kk or     with  

EBSI
k

EBSQ

k or   

respectively.  

Step 5. Direction computation. Compute 

kkkkk dgd    11 . If the restart criterion of 

Powell 
2

11 2.0   kk
T
k ggg , is satisfied, then set 

1

1




k

k

T

k dg
w


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11   kkk gd    otherwise set  1 kk  and continue with 

step2. 

 

The global Convergence of EBSQ 
    First, we will give the following assumptions on the 

objective function ),(xf  which have been used often in 

literatures to analyze the global convergence of the 

conjugate gradient methods with inexact line searches. 

    We assume that f  is strongly convex and is Lipschitz 

continuous on the level set : 

 )()( 0xfxfRxL n   )21(  

 That is, there exist constants 0  and 0c  such 

that : 
2

)())()(( yxyxyfxf T    )22(  

and  

,)()( yxcyfxf   )23(  

for all x  and y  from 0L  [11]. 

     From the definition of 
EBSI
k

EBSQ
k or  , it is easy to 

prove that the search direction 1kd  satisfy the sufficient 

descent condition holds with w . 

     In the following we state a lemma, often called the 

Zoutendijk condition, is used to prove the global 

convergence of the proposed algorithms. It was 

originally given by Zoutendijk [9,12].      

 Lemma (1) :  

       Suppose that Assumption holds. And kx  is given by 

the Algorithm, then : 
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Theorem (1) :  

 Suppose that assumption hold. Consider any method of 

the form )2( and ),11(  where k computed by )20(  and 

k  satisfied the Wolfe line searches. Then,  

0inflim 


k
k

g . )25(  

Proof : 

    Suppose by contradiction that there exists a positive 

constant ,0  such that : 

,1 kg  )26(  

From (6), we have : 
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From the above equation and )12( , we have : 
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Dividing the both inequalities by 
2

11 )(  k
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Using )32(  recursively and noting that 
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Then we get from )33(  and )27(  that : 

,
)( 2

1

2

2

kd

dg

k

k
T
k 

  
)31(  

which indicates : 

 






 1

2

1

1
2

2)(

kk
k

k

T

k

kd

dg 
 

)32(  

 This contradicts the Zoutendijk condition )25( . 

Therefore the conclusion )26(  holds. Its proof is similar 

to that of EBSI. 

Remark 3.1 

     Global convergence property and descent property of 

SBSI algorithm are similar to those of SBSQ 

Algorithm.. 

 

Numerical Results  
This section reports some numerical experiments. The 

test problems with the given initial points can be found 

at which were collected by Neculai Andrei. Some of the 

test problems are from the CUTE collection established 

by Bongartz, Conn, Gould and Toint [1].  

 The stop criterion is as follows : the program is stopped 

if the inequality 
6

1 10
 kg  is satisfied. All codes 

were written in Fortran 90. 

 All these algorithms are implemented   with the 

standard Wolfe line search  conditions with 001.01   

and 9.02  .    We tested the conjugate gradient 

algorithms with the following k  : 

 

1. FR : The Fletcher-Reeves method 

2. BSQ with EBSQ : The 
BSQ
k  with 

EBSQ
k . 

3. BSI with EBSI  : The 
BSI
k  with 

EBSI
k . 

Our numerical results are listed in the form NOI / IRS, 

where NOI denotes the number of iterations, and the 

number of restart IRS. 

 From Tables 1, and 2, we draw a conclusion that new 

Algorithms performs better than the FR method for the 

most    tested problems under only Wolfe line   search. 

Therefore, the proposed method is promising and 
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comparable to the FR method and comparable to the FR method. 

Table 1 :  Comparison of methods for n= 100 

Test problems 
FR algorithm EBSI EBSQ 

NOI IRS NOI IRS NOI IRS 

Extended Three Expo Terms 15 6 20 11 20 11 

Quadratic Diagonal Perturbed 124 41 52 8 51 8 

Extended Powell 180 60 77 26 74 24 

Extended Tridiagonal  2 40 18 35 11 35 11 

Raydan 1 102 52 98 36 94 34 

Partial Perturbed Quadratic 74 21 85 26 85 26 

DIXMAANE (CUTE) 121 65 83 27 83 27 

EDENSCH (CUTE) 69 50 49 33 40 24 

STAIRCASE  S1 671 338 559 162 470 135 

Perturbed Quadratic 95 33 98 32 98 32 

Extended Cliff F F 9 7 7 6 

Extended Maratos 89 32 70 37 70 37 

NONDIA (CUTE) 13 7 15 8 13 7 

Extended Block-Diagonal BD2 122 62 13 8 13 8 

ENGVAL1 (CUTE) 34 16 27 10 45 27 

Total 1749 801 1281 435 1191 411 

Table 2:  Comparison of methods for n= 1000 

Test problems 
FR algorithm EBSI EBSQ 

NOI IRS NOI IRS NOI IRS 

Extended Three Expo Terms 127 117 78 74 14 9 

Quadratic Diagonal Perturbed 445 196 183 31 158 34 

Extended Powell F F 96 30 89 27 

Extended Tridiagonal  2 43 23 50 29 41 19 

Raydan 1 F F 385 237 F F 

Partial Perturbed Quadratic 370 88 251 63 257 65 

DIXMAANE (CUTE) 345 169 273 80 231 70 

EDENSCH (CUTE) 98 82 150 135 98 82 

STAIRCASE  S1 F F F F F F 

Perturbed Quadratic 349 95 384 112 341 98 

Extended Cliff 60 31 12 9 10 8 

Extended Maratos 107 40 69 34 65 32 

NONDIA (CUTE) 15 7 12 7 18 10 

Extended Block-Diagonal BD2 130 66 10 7 10 7 

ENGVAL1 (CUTE) 142 126 131 119 76 63 

Total 2231 1040 1603 700 1319 497 
F : The algorithm fail to converge. 

 

Conclusion 
In this paper, we have derived a new spectral nonlinear 

conjugate gradient methods based on our sufficient 

descent condition. Some numerical results have been 

reported, which showed the effectiveness of our method 

with the parameter 


.  

Moreover, we would like to find optimal values of 

parameter 


 in theory and in practical computation. 

 Table 1 and 2 gives a comparison  between the a class 

of new descent gradient methods and the Fletcher–

Reeves (FR) method taking nonlinear test function with 

n=100,1000. This table indicates that the new descent- 

type methods saves (27-36) % NOI and (38-50) % IRS, 

especially for our selected test problems. The Percentage 

Performance of the improvements of the Table 1 and 

Table 2 are given by the following Table 3. Relative 

Efficiency of the Different Methods Discussed in the 

Paper. 

Table 3: Relative efficiency of the new Algorithm 

Tools NOI IRS 

Fletcher–Reeves 

(FR) method 100   % 100  % 



Al-Mustansiriyah Journal of Science  
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 29, Issue 1, 2018 DOI: http://doi.org/10.23851/mjs.v29i1.577 

 

138 

EBSQ   method 63.06 % 49.26 % 

EBSI   method 72.46 % 61.65 % 
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