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A modified spectral methods for solving unconstrained optimization problems based on the 

formulae are derived which are given in [4, 5]. The proposed methods satisfied the descent 

condition. Moreover, we prove that the new spectral methods are globally convergent. The 

Numerical results show that the proposed methods effective by comparing with the FR- meth-

od. 
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خلاصـةال  
الطرائق الطيفية [4,5]. الذي معطى في اشتقاق الطرائق الطيفية المطورة لحل مسائل الامثلية غير المقيدة معتمدة على صيغ

شرط الانحدار .بالإضافة الى ذلك تم أثبات التقارب الشامل للطرق الطيفية الجديدة. وقد أظهرت النتائج المقترحة تحقق 

 .FR -بطريقة  مقارنة   العددية فعالية الطرق المقترحة

 

Introduction 
Unconstrained optimization problems have ex-

tensive applications, for example, in petroleum 

exploration, transportation, and other domains. 

However, the amount of necessary calculation 

also grows exponentially with the increasing 

scale of the problem. Therefore, it is required 

to develop new methods to solve the large-

scale unconstrained optimization problems. For 

solving large - scale unconstrained optimiza-

tion problems: 

minimize 
nR  x,  )( xf  )1(  

where RRf n :  is a continuously differentiable 

function, bounded from below, of the most ele-

gant and probably the simplest methods are the 

conjugate gradient methods. For solving such 

problems, staring from an initial guess 

,0
nRx   a nonlinear conjugate gradient meth-

od, generates a sequence  kx  as :  

.......,2,1,0,1  kdxx kkkk   )2(  

where k  is a positive scalar and called the 

step length which is determined by some line 

search, and kd  are generated as :  

kkkk dgd   11  
)3(  

where k  is a parameter such that when ap-

plied to minimize a strictly convex quadratic 

function, the directions 1kd  and kd
 are conju-

gate with respective to the Hessian of the ob-

jective function. Different conjugate gradient 

algorithms corresponds to different choices for 

the scalar parameter k . Line search in the 

conjugate gradient algorithms often is based on 

the Standard Wolfe (SW) conditions. 

k
T
kkkkkk dgdxfxf   )()(  

)4(  

k
T
kk

T
kkk dgddxg   )(        

)5(  

where kd  is supposed to be a descent direction 

and with  0  and More performance pro-

file, is given in [6]. 

   The Fletcher–Reeves (FR) method is a well-

known conjugate gradient method. In the FR 

method, the parameter k  is specified by : 
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)6(  

More details can be found in [7]. Zoutendijk 

[10] proved that the FR method with exact line 

search is globally convergent. Under the strong 

Wolfe line search, Al-Baali [2] proved the 

global convergence of the FR method. 

Birgin and Martinez [3] proposed another kind 

of conjugate gradient method, called spectral 

conjugate gradient method. Let kkk ggy  1  and 

kkk xxv  1 . Then, the direction in this method 

was defined by : 

kkkkk dgd    11  
)7(  

where k
T
kk

T
kk vyvv /  is the spectral gradient,

k
T
kk

T
kkkk ydgvy /)(   .  

   Zhang et al. [9] proposed a modified FR 

method (called MFR), in which the direction 

1kd  is defined by  

,11 k
FR
kk

MFR
kk dgd     

)8(  

where 

k
T
k

k
T
kMFR

k
gg

dy


. 

)9(  

which is a descent direction independent of the 

line search. 

In this paper, we are going to develop a modi-

fied spectral method. The search direction, 

generated by the method at each iteration, satis-

fies the descent condition. We are also going to 

establish the global convergence of the pro-

posed algorithm with the Wolfe line search. 

A new modified methods  
In mid of 2016, Basim and Haneen proposed a 

modified nonlinear conjugate gradient formu-

lae which is simple and easy to be used. These 

formula are called the BSQ and BSI and are 

given by : 

 
k

T

kk

k

T

kBSI

k

k

k

T

kBSQ

k
vd

gggg

1

11

1

11 ,






 





  
)10(  

 where  

kkkkkk

T

kkk vyffdg /,)(2/)( 11

2

1   
. 

)11(  

  In process of studying the BSQ and BSI 

methods, Basim and Haneen [4,5] established 

some convergence results applicable to any 

methods for which k  can be expressed as a 

ratio : 

k
T
k

k
T
k

k
dg

dg




  110 

. 
)12(  

Our idea originates from )12( : 
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k
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)13(  

Since  

k
T
kk

T
kk

T
k dgdgdy  1  

)14(  

From )13(  and )14( we get: 
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)15(  

Hence  

k
T
k

k

k
T
k

k
T
k

SBSQ
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T
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ggdg 1

1
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)16(  

where  

1


k

k
T
kSBSQ

k

dy




. 
)17(  

Then the search direction can be written as : 

k

k

k
T
k

k
SBSQ
kk d

gg
gd

1

11
11




 




. 
)18(  

A similar result holds for the BSI formula. We 

give the specific form of the proposed spectral 

conjugate gradient method as follows:  

k
T
kk

k
T
kSBSI

vd

dy

1






. 
)19(  

New Algorithm and Descent property 
In this section, we give the specific form of the 

proposed scaled conjugate gradient algorithm 

as follows and prove its descent property. 

Now we present the outline of the modified 

proposed algorithm as follows: 
 

 

Outline of the SBSQ and SBSI Algorithms: 

Step 0: Given ,0
nRx   )1,0(,0001.0 1  

and )2/1,0(2  . 

Step 1: Computing kg  ; if kg , then stop ; 

else continue. 
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Step 2 : Set BSI
k

BSQ
kk or    with SBSI

k
SBSQ
k or   

respectively.  

Step 3 : Set ,1 kkkk dxx  (Use SW-conditions 

to compute k ). 

Step 4 : Compute ,11 kkkkk dgd     

Step 5 : Go to Step 1 with new values of 1kx  

and 1kg .   The following theorem shows that 

the modified Algorithms 3.1 possesses descent 

property. 

 

Theorem 1. 

Suppose the direction 1kd  is obtained by (9), 

then we have 
2

111   kk

T

k gcdg  
)20(  

holds for all 1k . 

Proof : 

  Since 00 gd   we have 0
2

000  gdgT . 

Suppose that 
2

1 kk
T
k gcdg   for all nk  . 

Multiplying )18(  by ,1kg  we have : 

k
T
k

k

k
T
k
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T
k
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T
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1
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Since 
2

1 kk
T
k gcdg  , then we have : 

2

1

1

2

111 



  k

k

k

k
T
k g

g
cdg


. 

 

where 
1

2

1




k

kg
cc


. Since 11, kc   and 

2

kg are 

positive values, then c  is also positive value.  
2

111   kk

T

k gcdg . 
)23(  

Global convergence 
   In order to prove the global convergence of 

algorithm (3.1), we assume that the objective 

function satisfied the following assumptions 1.  

Assumption 1 

  i- The level set  )()( 0xfxfRxL n   is 

bounded.          

  ii- In some neighborhood U  and )(, xfL  is 

continuously differentiable and the gradient is 

Lipschitz continuous, namely, there exists a 

constant 01   such that : 

Uxxxxxgxg kkkkkk   ,,)()( 1111   )24(  

More details can be found in [8].   

The conclusion of the following lemma, often 

called the Zoutendijk condition, is used to 

prove the global convergence of the proposed 

algorithms. It was originally given by 

Zoutendijk [10].  

 

Lemma 

Suppose that Assumption 1 holds. Consider 

any method of the form )3()1(  , where 1kd  is 

a descent search direction and k  satisfies the 

Wolfe line search. Then : 




1
2

2)(

k k

k
T
k

d

dg
. )25(  

   The following theorem establishes the global 

convergence of the proposed methods. More 

performance profile, is given in [10]. 

 

Theorem 2 

Suppose that Assumption 1 holds. Let the se-

quences  1kg  and  1kd  be generated by Al-

gorithm 3.1, and let the k  be determined by 

the Wolfe line search )4(  and )5( . Then :  

0inflim 


k
k

g . )26(  

Proof :  

According to the given conditions, Lemma 4.1 

all hold. In the following, we will obtain the 

conclusion )26(  by contradiction. Suppose by 

contradiction that there exists a positive con-

stant 01   such that : 

,11 kg  )27(  

From equation )18( , we get : 

,11 k

BSQ

kk

SBSQ

kk dgd     )28(  

and squaring both side of it, we get : 
22

11

2

1

22

1 )(2)( k

BSQ

kk

T

k

SBSQ

kk

SBSQ

kk dgdgd   

 

)29(
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from )29( , we get : 
2

1

2

11

222

1 )(2)(   k

SBSQ

kk

T

k

SBSQ

kk
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kk ggddd 

 

)30(

 

From the above equation and )12( , we have : 

2

1

2
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2

2

112

1 )(2 



 
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Dividing the both inequality by 2
11 )(  k

T
k dg , we 

have: 
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Using )32(  recursively and noting that 

,
2

111

2

1 gdgd T  we get : 







k

i ik
T
k

k
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d

1
22

11

2

1 1

)(
. 

)33(  

Then we get from )33(  and )27(  that : 

,
)( 2

1

2

2

kd

dg

k

k
T
k 

  
)34(  

which indicates : 

 






 1

2
1

1
2

2)(

kk k

k
T
k
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)35(  

This contradicts the Zoutendijk condition )25( . 

Therefore the conclusion )26(  holds. 

Remark  
Global convergence property and descent 

property of SBSI algorithm are similar to those 

of SBSQ Algorithm  

Numerical Results  
This section presents the performance of 

FORTRAN 90 implementation to the algorithm 

FR by using a set of well-known unconstrained 

optimization test functions, for each function 

we have considered numerical experiments 

with the number of variables n = 100 and 1000. 

Test problems are from [1]. We compared the 

perform acne of the algorithm FR with famous 

formula FR, which they defined in )6( .All 

these algorithms are implemented with the 

standard Wolfe line search conditions with 

001.01   and 9.02  , the stopping condition 

defined by 6
1 10
 kg . The comparison in-

cludes the following :  

NOI : number of iterations . 

IRS : number of restart . 

From Tables 1, and 2, we draw a conclusion 

that Algorithms 3.1 performs better than the FR 

method for the most tested problems under on-

ly Wolfe line search. Therefore, the proposed 

method is promising and comparable to the FR 

method. 

 
Table 1 : Comparison of methods for n= 100 

Test problems 

 

FR algorithm SBSI SBSQ 

NOI IRS NOI IRS NOI IRS 

Extended Three Expo Terms 15 6 17 10 17 10 

Quadratic Diagonal Perturbed 124 41 49 10 45 7 

Extended Powell 180 60 88 29 78 26 

Extended Tridiagonal 2 40 18 38 14 38 15 

Raydan 1 102 52 74 27 73 26 

Partial Perturbed Quadratic 74 21 87 24 87 24 

DIXMAANE (CUTE) 121 65 85 26 86 27 

EDENSCH (CUTE) 69 50 26 10 63 47 
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STAIRCASE S1 671 338 399 107 509 134 

Perturbed Quadratic 95 33 83 29 83 29 

Extended Cliff F F 11 9 11 9 

Extended Maratos 89 32 78 39 75 37 

NONDIA (CUTE) 13 7 17 9 13 7 

Extended Block-Diagonal BD2 122 62 12 8 12 8 

ENGVAL1 (CUTE) 34 16 24 7 24 7 

Total 1749 801 1077 349 1203 404 

Table 2:  Comparison of methods for n= 1000 

Test problems 

 

FR algorithm SBSI SBSQ 

NOI IRS NOI IRS NOI IRS 

Extended Three Expo Terms 127 117 11 7 21 17 

Quadratic Diagonal Perturbed 445 196 177 37 187 36 

Extended Powell F F 86 26 89 29 

Extended Tridiagonal 2 43 23 38 14 48 26 

Raydan 1 F F 457 265 F F 

Partial Perturbed Quadratic 370 88 253 60 260 65 

DIXMAANE (CUTE) 345 169 230 69 233 69 

EDENSCH (CUTE) 98 82 76 62 29 13 

STAIRCASE S1 F F F F F F 

Perturbed Quadratic 349 95 347 93 334 86 

Extended Cliff 60 31 16 11 17 12 

Extended Maratos 107 40 166 111 70 34 

NONDIA (CUTE) 15 7 15 7 15 8 

Extended Block-Diagonal BD2 130 66 12 7 12 7 

ENGVAL1 (CUTE) 142 126 88 75 109 96 

Total 2231 1040 1429 553 1335 469 

F : The algorithm fail to converge. 

 

Conclusion 
Through this relation which is defined in )12( , 

we have been presented a new spectral meth-

ods that estimates spectral conjugate gradient. 

Our scheme is simple and able to enhance the 

performance of the gradient-type methods with 

minimal storage. SBSQ and SBSI methods 

gives the best results. SBSQ method give 

worse results than SBSI method. 
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Table 1 and 2 gives a comparison between the 

a new spectral methods and the Fletcher–

Reeves (FR) method with the number of varia-

ble n=100, 1000. This table indicates that the 

new spectral methods saves (36 – 37) % NOI 

and (51 - 52) % IRS, especially for our selected 

test problems. The Percentage Performance of 

the improvements of the Table 1 and Table 2 

are given by the following Table 3.  Relative 

efficiency of the different methods is discussed 

in the paper. 

Table 3: Relative efficiency of the new Algorithm 

Tools NOI IRS 

Fletcher–Reeves 

(FR) method 
100   % 100  % 

SBSO   method 63.76 % 47.41 % 

SBSI   method 62.96 % 48.99 % 
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