Research Article **Open Access** # Some Applications of Coding Theory in the Projective Plane of Order Four # Najm A. M. AL-Seraji*, Hamza L. M. Ajaj Department of Mathematics, College of Science, Mustansiriyah University, IRAQ ² Author 2 departments, Faculty name, University of Baghdad, IRAQ *Correspondent author email: dr.najm@uomustansiriyah.edu.iq | ArticleInfo | Abstract | |-------------------------|---| | Received 19/02/2018 | The main aim of this research is to introduce the relationship between the topic of coding theory and the projective plane of order four. The maximum value of size code M over finite field of order four and an incidence matrix with the parameters, n (length of code), d (minimum distance of code) and e (error-correcting of code) have been constructed. Some | | Accepted | examples and theorems have been given. | | 12/06/2018 | Keywords : Projective Plane, Coding Theory, Incidence Matrix. | | Published
15/08/2019 | الخلاصة | | 13/06/2019 | الهدف الرئيسي لهذا البحث هو تقديم العلاقة بين موضوع نظرية الترميز و المستوي الاسقاطي من الرتبة الرابعة . القيمة | | | العظمي لحجم الرمز Mحول الحقل المنتهي من الرتبة الرابعة ومصفوفة الاصابة مع المعلمات n (طول الرمز), d (اقل | | | مسافة الرمن) و و (تصحيح رمن الإخطاء) تم تشكيلها يعض الإمثلة و النظريات اعطيت | # Introduction The subject of this research depends on themes of Projective geometry over a finite field, Group theory, Field theory, Coding theory. The brief history of this theme is shown as follows. All theorems and definitions of the research are taken from James Hirshfeld [1]. In 1986, R. Hill [2] studied A first course in coding theory. In 2010, N. A. M. Al-Seraji [3] showed the arcs in projective plane of order seventeen. In 2011, B. A. Al-Zangana Emad [4] described the arcs in projective plane of order nineteen. In 1998, Hirschfeld, J. W. P [5] classified projective geometries over finite In 2013, N.A.M. Al-Seraji classified the almost maximum distance separable codes. In 2013, N.A.M. Al-Seraji [7] described a generalized of optimal codes. In 2012, N.A.M. Al-Seraji [8] studied the optimal Code. # **Background** The following results are interesting to area of research. # **Theorem (2.1) [1].** A q - ary(n, M, 2e + 1) - code C satisfies: $$M\left\{\binom{n}{0}+\binom{n}{1}(q-1)+\cdots+\binom{n}{e}(q-1)^e\right\}\leq q^n.$$ #### Theorem (2.2) [1]. W is a subspace of a vector space V over a finite $(F, +, \cdot)$ if and only if: - (i) W is a nonempty subset of V (i. e. $\phi \neq C \subseteq X$). - (ii) W is closed under the binary operation + defined on V (i.e. $x + c \in C$). - (iii) W is closed under the scalar multiplication defined on $F \times V$ (i. $e.k \cdot v \in W \ \forall k \in F \ \text{and} \ \forall v \in W$). #### **Definition (2.3) [5]:** Let $f(X) = X^n - a_{n-1}X^{n-1} - \dots - a_0$ be a monic polynomial of degree $n \ge 1$ over F_q . Its companion matrix C(f) is given by the $n \times n$ matrix $$C(f) = \left[\begin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \end{array} \right]$$ # The classification of cubic curves over a finite field of order 4 Let the polynomial $g_1(x) = x^2 + x + 1$ and $F_4 = \frac{F_2[x]}{\langle g_1(x) \rangle}$ which has 4 elements namely $0,1,\theta,\theta^2$ where θ be x plus the ideal $\langle g_1(x) \rangle$ generated by polynomial of degree 2 with coefficients in $F_2 = \{0,1\}$. The polynomial $g_2(x) = x^3 + \theta^2 x^2 + \theta x + \theta^2$ is primitive over F_4 , since $g_2(0) = \theta^2$, $g_2(1) = \theta^2$, $g_2(\theta) = \theta^2$ and $g_2(\theta^2) = \theta$, this means g_2 is irreducible over F_4 , also $g_2(\beta^{11}) = g_2(\beta^{44}) = g_2(\beta^{50}) = 0$, where $\beta^{11}, \beta^{44}, \beta^{50}$ in F_{4^3} , this means g_2 is reducible over F_{64} . The companion matrix of $g_2(x) = x^3 + \theta^2 x^2 + \theta x + \theta^2$ generated the points and lines of PG(2,4) as follows: $$P_{i} = [1,0,0]C(g)^{i} = [1,0,0] \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \theta^{2} & \theta & \theta^{2} \end{pmatrix}^{i}, i$$ $$= 0,1,...,20$$ The points of PG(2,4) are: $$\begin{array}{lll} P_0 = [1,0,0] & P_1 = [0,1,0] \\ P_2 = [0,0,1] & P_3 = [1,\theta^2,1] \\ P_4 = [1,1,0] & P_5 = [0,1,1] \\ P_6 = [\theta,1,1] & P_7 = [\theta,0,1] \\ P_8 = [1,0,1] & P_9 = [1,1,1] \\ P_{10} = [\theta,\theta,1] & P_{11} = [\theta^2,0,1] \\ P_{12} = [1,\theta,1] & P_{13} = [\theta^2,\theta^2,1] \\ P_{14} = [\theta^2,1,0] & P_{15} = [0,\theta^2,1] \\ P_{16} = [\theta,1,0] & P_{17} = [0,\theta,1] \\ P_{18} = [\theta^2,\theta,1] & P_{19} = [\theta^2,1,1] \\ P_{20} = [\theta,\theta^2,1] & P_{19} = [\theta^2,1,1] \end{array}$$ With select the points in PG(2,4) such that the third coordinate equal to zero, this means belong to $\ell_0 = v(z)$ such that v(z) = tz = z for all t in $F_4 \setminus \{0\}$ therefore, and with $P_i = i$, i = 0,1,...,20, we obtain $\ell_0 = \{0,1,4,14,16\}$ Remove this, $$\ell_{i} = \ell_{0}C(g)^{i} = \ell_{0} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \theta^{2} & \theta & \theta^{2} \end{pmatrix}^{i},$$ $$i = 0,1, \dots, 20$$ The lines of PG(2,4) are: | THE IIIIC | 3 01 7 0 | I(2,4) | uc. | | | |-------------|----------|--------|-----|----|----| | ℓ_0 | 0 | 1 | 4 | 14 | 16 | | ℓ_1 | 1 | 2 | 5 | 15 | 17 | | ℓ_2 | 2 | 3 | 6 | 16 | 18 | | ℓ_3 | 3 | 4 | 7 | 17 | 19 | | ℓ_4 | 4 | 5 | 8 | 18 | 20 | | ℓ_5 | 5 | 6 | 9 | 19 | 0 | | ℓ_6 | 6 | 7 | 10 | 20 | 1 | | ℓ_7 | 7 | 8 | 11 | 0 | 2 | | ℓ_8 | 8 | 9 | 12 | 1 | 3 | | ℓ_9 | 9 | 10 | 13 | 2 | 4 | | ℓ_{10} | 10 | 11 | 14 | 3 | 5 | | ℓ_{11} | 11 | 12 | 15 | 4 | 6 | | ℓ_{12} | 12 | 13 | 16 | 5 | 7 | | ℓ_{13} | 13 | 14 | 17 | 6 | 8 | | ℓ_{14} | 14 | 15 | 18 | 7 | 9 | | ℓ_{15} | 15 | 16 | 19 | 8 | 10 | | ℓ_{16} | 16 | 17 | 20 | 9 | 11 | | ℓ_{17} | 17 | 18 | 0 | 10 | 12 | | ℓ_{18} | 18 | 19 | 1 | 11 | 13 | | ℓ_{19} | 19 | 20 | 2 | 12 | 14 | | ℓ_{20} | 20 | 0 | 3 | 13 | 15 | | | | | | | | In the following theorem the parameters n, M, d are constructed. <u>Theorem (3.1).</u> The projective plane of order four is a code C with a parameter $$[n = 21, M \le 4^{17}, d = 5].$$ #### **Proof:** The plane π_4 has an incidence matrix A = (aij), where $$a_{ij} = \begin{cases} 1 & if \quad P_j \in \ell_i, \\ 0 & if \quad P_i \notin \ell_i. \end{cases}$$ | | P_0 | P_1 | P_2 | P_3 | P_4 | P_5 | P_6 | P_7 | P_8 | P_9 | P_{10} | P_{11} | P_{12} | P_{13} | P_{14} | P_{15} | P_{16} | P_{17} | P ₁₈ | P_{19} | P_{20} | |-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|----------|----------| | ℓ_0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | ℓ_1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | ℓ_2 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | | ℓ_3 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | ℓ_4 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | ℓ_5 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | ℓ_6 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | ℓ_7 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ℓ_8 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ℓ_9 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ℓ_{10} | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | ℓ_{11} | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | ℓ_{12} | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | ℓ_{13} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | ℓ_{14} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | | ℓ_{15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | ℓ_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | | ℓ_{17} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | ℓ_{18} | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | ℓ_{19} | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | ℓ_{20} | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | m_0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | |----------| | m_1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | | m_2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | | m_3 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | | m_4 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | | m_5 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | m_6 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | m_7 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | m_8 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | m_9 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | m_{10} | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | m_{11} | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | | m_{12} | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | | m_{13} | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | | m_{14} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | m_{15} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | | m_{16} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | m_{17} | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | |----------| | m_{18} | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | | m_{19} | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | m_{20} | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | Let $v_i = w + \ell_i$ That is, | That is | , |----------|----------------| | v_0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | | v_1 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | | v_2 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | | v_3 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | | v_4 | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | | v_5 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | | v_6 | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | | v_7 | °2 | 0 | °2 | 0 | 0 | 0 | 0 | °2 | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | v_8 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | °2 | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | v_9 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | v_{10} | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | | v_{11} | 0 | o | 0 | o | o ² | 0 | o ² | 0 | o | 0 | o | o ² | o ² | 0 | 0 | o ² | o | o | 0 | o | 0 | | v_{12} | 0 | 0 | 0 | 0 | 0 | °2 | 0 | °2 | 0 | 0 | 0 | 0 | o ² | °2 | 0 | 0 | o ² | 0 | 0 | 0 | ٥ | | v_{13} | 0 | 0 | o | 0 | 0 | o | o ² | o | o ² | o | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | 0 | | v_{14} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | °2 | 0 | °2 | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | 0 | | v_{15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | 0 | | v_{16} | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | o | o ² | 0 | o ² | o | 0 | 0 | 0 | o ² | o ² | 0 | 0 | o ² | | v_{17} | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | 0 | | v_{18} | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | 0 | | v_{19} | 0 | 0 | °2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | o ² | | v_{20} | o ² | 0 | 0 | o ² | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o ² | 0 | o ² | 0 | 0 | 0 | 0 | o ² | Let $z_i = y + \ell_i$ That is, | mat is, |---------|----------------| | z_0 | 0 | 0 | o ² | o ² | 0 | o ² 0 | o ² | 0 | o ² | o ² | o ² | o ² | | Z_1 | o ² | 0 | 0 | o ² | o ² | 0 | o ² 0 | o ² | 0 | o ² | o ² | o ² | | Z_2 | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² 0 | o ² | 0 | o ² | o ² | | Z_3 | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² 0 | o ² | 0 | o ² | | Z_4 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² 0 | o ² | 0 | | Z_5 | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² 0 | o ² | | Z_6 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² 0 | | Z_7 | 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | Z_8 | o ² | o | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | z_9 | o ² | o ² | 0 | o ² | 0 | o ² | o ² | o ² | \circ^2 | 0 | o | o ² | \circ^2 | o | \circ^2 | o ² | \circ^2 | o ² | o ² | o ² | o ² | |-----------------| | Z ₁₀ | o ² | o ² | o ² | 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | | Z_{11} | o ² | o ² | o ² | o ² | 0 | o ² | 0 | o ² | o ² | o ² | o ² | o | 0 | o ² | o ² | 0 | o ² | | Z ₁₂ | o ² | 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | o ² | o ² | o ² | | z ₁₃ | o ² | 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | o ² | o ² | | Z ₁₄ | o ² 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | o ² | | Z ₁₅ | o ² 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | o ² | | Z ₁₆ | o ² 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | 0 | | Z ₁₇ | 0 | o ² | o ² | o | o ² | o ² | o ² | o ² | 0 | 0 | o ² | o ² | | Z ₁₈ | o ² | 0 | o ² | o ² | o | o ² | o ² | o ² | o ² | 0 | 0 | o ² | | Z ₁₉ | o ² | o ² | 0 | o ² 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | 0 | | Z_{20} | 0 | o ² | o ² | 0 | o ² 0 | o ² | 0 | o ² | o ² | o ² | o ² | 0 | | $d(a, \ell_i) = 5$ | $d(a, v_i) = 21$ | |-----------------------------------|---------------------------------| | $d(u, \ell_i) = 16$ | $d(v_i, v_j) = 8, i \neq j$ | | $d(w, \ell_i) = 21$ | $d(u, v_i) = 21$ | | $d(y, \ell_i) = 21$ | $d(w, v_i) = 5$ | | $d(\ell_i, \ell_j) = 8, i \neq j$ | $d(y, v_i) = 16$ | | $d(\ell_i, m_i) = 21$ | $d(a, z_i) = 21$ | | d(a,u)=21 | $d(z_i, z_j) = 8, i \neq j$ | | d(a,w)=21 | $d(u, z_i) = 21$ | | d(a,y)=21 | $d(w, z_i) = 16$ | | d(u,w)=21 | $d(y, z_i) = 5$ | | d(u,y)=21 | $d(v_i, m_j) = 21, i \neq j$ | | d(w,y)=21 | $d(z_i, m_j) = 21, i \neq j$ | | $d(u,m_i)=5$ | $d(z_i, \ell_j) = 21, i \neq j$ | | $d(a,m_i)=16$ | $d(v_i, \ell_j) = 21, i \neq j$ | | $d(\ell_i, m_j) = 13, i \neq j$ | $d(v_i, z_j) = 13, i \neq j$ | | $d(m_i, m_j) = 8, i \neq j$ | | | $d(w, m_i) = 21$ | | | $d(y, m_i) = 21$ | | Such that $\circ = \theta$. The remain vectors of code C are constructed by combination of $a, u, w, y, \ell_i, m_i, v_i, z_i$, where i = 0, 1, ..., 20. Note that $d(l_i, l_j)$ = number of points on exactly one of l_i or l_i . Then: If we substitute the values of n = 21, d = 5, e = 2, in inequality of theorem (2.1), we get $M \le 4^{17}$. Hence C is a (21, M, 5)-code. The goal of the following theorem is to show that the code C is closed under the operation of addition modulo 4: Theorem (3.2). The code $C = [n = 21, M \le 4^{17}, d = 5]$ which is derived from the projective plane of order four is linear; that is, the sum modulo 2 of any two elements of C is in C. **Proof:** Here is the geometry with $P_i = i$, where i = 0, ..., 20. Then $\ell_i + \ell_j = a_i$, where i, j = 0, ..., 20. Such that $a_r = 1 \Leftrightarrow P_r$ lies on precisely one of, ℓ_i , ℓ_j , $a_r = 0 \Leftrightarrow P_r$ lies on the third line through $\ell_i \cap \ell_j$. Here $\ell_i + \ell_j$, $\ell_i + u$, $\ell_i + w$, $\ell_i + y$, $\ell_i + m_i$, $\ell_i + v_i$, $\ell_i + z_i$ in C. $m_i + m_j$, $m_i + u$, $m_i + w$, $m_i + y$, $m_i + v_i$, $m_i + z_i$ in C. $v_i + v_j$, $v_i + u$, $v_i + w$, $v_i + y$, $v_i + z_i$ in C. $z_i + z_i$, $z_i + u$, $z_i + w$, $z_i + y$ in C. **Theorem** (3.3). The code $C = [n = 21, M \le 4^{17}, d = 5]$ is a subspace of the vector space $((F_4)^{21}, +, \cdot)$ over a finite field $(F_4, +_2, \cdot_2)$. **Proof:** The vector $a = \underbrace{0,0,\cdots,0}_{21-time} \in C$. Thus $C \neq \phi$. $\forall X = (x_1, x_2, \dots, x_{21}), Y = (y_1, y_2, \dots, y_{21}) \in C$. From Theorem (3.2), we get $X + Y \in C$. $\forall k \in F_4 \text{ and } X \in C, \text{ we have } k \cdot X = k(x_1, x_2, \dots, x_{21}) = (k \cdot_2 x_1, k \cdot_2 x_2, \dots, k \cdot_2 x_{21}) \in C. \text{ Thus, by }$ Theorem (2.2), C is a subspace of $((F_4)^{21}, +, \cdot)$ over $(F_4, +_2, \cdot_2)$. ### **References:** - [1] J.W.P. Hirschfeld, "Coding Theory" Lectures, Sussex University, UK, 2014. - [2] R. Hill, "A first course in coding theory", Clarendon Press, Oxford, 1986. - [3] N.A.M. Al-Seraji, "The Geometry of The Plane of order Seventeen and its Application to Error-correcting Codes", Ph.D. Thesis, University of Sussex, UK, 2010. - [4] E. M. Al-Zangana, "The Geometry of The Plane of order Nineteen and its Application to Errorcorrecting Codes" Ph.D. Thesis, University of Sussex, UK, 2011.