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The main aim of this research is to introduce the relationship between the topic of coding

Received theory and the projective plane of order four. The maximum value of size code M over finite
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field of order four and an incidence matrix with the parameters, n (length of code), d
(minimum distance of code) and e (error-correcting of code) have been constructed. Some

A

Accepted examples and theorems have been given.
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Introduction

The subject of this research depends on
themes of Projective geometry over a finite
field, Group theory, Field theory, Coding
theory.

The brief history of this theme is shown as
follows. All theorems and definitions of the
research are taken from James Hirshfeld [1].
In 1986, R. Hill [2] studied A first course in
coding theory. In 2010, N. A. M. Al-Seraji [3]
showed the arcs in projective plane of order
seventeen. In 2011, B. A. Al-Zangana Emad
[4] described the arcs in projective plane of
order nineteen. In 1998, Hirschfeld, J. W. P
[5] classified projective geometries over finite
fields. In 2013, N.A.M. Al-Seraji [6]
classified the almost maximum distance
separable codes. In 2013, N.A.M. Al-Seraji
[7] described a generalized of optimal codes.
In 2012, N.A.M. Al-Seraji [8] studied the
optimal Code.

Background

The following results are interesting to area of
research.

Theorem (2.1) [1].

Aq—ary(n,M,2e + 1) —code C

satisfies:

M{E) + (D@D +-+ () -1} <q™

Theorem (2.2) [1].

W is a subspace of a vector space V over a

finite (F, +,-) if and only if:

(i) W is a nonempty subset of V

(i.,e.¢p #C S X).

(it) W is closed under the binary operation +
definedonV (i.e.x + ¢ € C).

(ii1) W is closed under the scalar
multiplication defined on F X V
(i.e.k-v eW Vk€E€FandVveW).

Definition (2.3) [5]:

Let f(X)=X"—qa, X" 11— —q,

be a monic polynomial of degreen > 1 over
F,. Its companion matrix C(f) is given by
the n X n matrix

@ @ Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4. 0 International Licenses.


http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:dr.najm@uomustansiriyah.edu.iq

Al-Seraji et al. Some Applications of Coding Theory in the Projective Plane of Order Four 2019
0 0 0 0 0 _ P
cH=: : i : i=40C(g)' =40 0 1],
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The classification of cubic curves

over a finite field of order 4
Let the polynomial g,(x) =x%+ x + 1 and

_ Blx] .
+ = G which has 4 elements namely
0,1,0,0% where @be x plus the ideal

(g1(x)) generated by polynomial of degree 2
with  coefficients in F, ={0,1}. The
polynomial g,(x) = x3 + 6%x? + Ox + 0% is
primitive over F,, since g,(0) = 62, g,(1) =
02, g,(0) = 6% and g,(6?%) = 0, this means
g, is irreducible over F,, also g,(B'1) =
g2(B**) = g,(B>°) = 0, where p**, p**, B5°
in F,s , this means g, is reducible over Fg,.
The companion matrix

of g,(x) = x>+ 6%x% + 0x + 6% generated
the points and lines of PG (2,4) as follows:

_ 0 1 0\
P; =[1,0,0]C(g)* = [1,0,0]<0 0 1) Ll

0% 0 6?2
=0,1,..,20
The points of PG(2,4) are:
P, = [1,0,0] P, =1[0,1,0]
P, =[0,0,1] P; =1[1,6%1]
P, =[1,1,0] P; =[0,1,1]
P, =16,1,1] P, =16,0,1]
Py =[1,0,1] Py =[1,1,1]
P, =16,0,1] P, =[6%0,1]
P, =1[1,6,1] P; =1[6%6%1]
P, =[6%1,0] P =[0,60%1]
Pic = [6,1,0] P,; =10,6,1]
Ps =1[6%6,1] Py = [6% 1,1]
Py, = [6,6%,1]

With select the points in PG(2,4) such that
the third coordinate equal to zero, this
means belong to ¢, =v(z) such that
v(z) =tz =z for all t in F,\{0} therefore,
andwith P, =i,i = 0,1, ...,20, we obtain

¢, = {0,1,4,14,16}

Remove this,

153

i=01,..,
The lines of PG(2,4) are:

>
ST
R [ I
R B
I [ B N

In the following theorem the parameters

n, M, d are constructed.

Theorem (3.1). The projective plane of order

four is a code C with a parameter

[n=21,M < 4'7,d = 5].

Proof:

The plane m,
= (aij),where

has an incidence matrix

(1 if PEd¥,
al-,-—{o if P g¢.
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m The goal of the following theorem is to show
m that the code C is closed under the operation of
I e
wt) =
L doep-21 I dww -5 ] Theorem (3.2). The code C =[n=21,M <
ooty sie) | dpupte ] #7.d=5] which is derived from th
projective plane of order four is linear; that is,
d(z0z)=51%) the sum modulo 2 of any two elements of C is
S S P inC.
Proof: _ Here s the geometry with P =i
where { = 0,...,20,
Then ¢; + t; = a;,wherei,j =0, ..., 20. Such
that
: :
m a, = 1 < B, lies on precisely one of, £;, ¢;,
a, = 0 & PB. lies on the third line through
bn e,
Here ¢; + ¢, €; +u, €, +w, £, +y, £, + my,
e — WAL
T —— AR R AR
T — A

v+, v tu, v +w, v+ y, v+ 2 inC
zi+2z,z+uz+w,z+yinC.

Such thato = @. The remain vectors of code

Care constructed by combination of  Theorem (3.3). The code C = [n=21,M <
a,u,w,y,t;,m;,v;, z;, where i = 0,1, ...,20. 417,d = 5] is a subspace of the vector space
((F)?L, +, -) over afinite field(F,, +,, -,).
Note that d(l;l;) = number of points on
exactly one of [;or [;. Then:
If we su_bst_itute thg values of n = 21,d =5, C#*o.
e=2,in mequallty of theorem (2.1), we get VX = (X, %, %1), Y = (V1 Yoo ) Va1) €
M < 4'7. Hence C is a (21, M, 5)-code. C. From Theorem (3.2), we get X + Y € C.

Proof: The vector a =0,0,---,0 € C. Thus

21—-time
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Vk € F,and X € C, we have
k-X=k(x;,xp,,%p1) =

(k5 xy, k-5 x5,+, k5 xp1) €C.Thus, by
Theorem (2.2), C is a subspace of ((F,)?1,+,")
over (F,,+,, *5).
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