# On the Embedding of an Arc into Cubic Curves in a Finite Projective Plane of Order Seven 

Najm A. M. AL-Seraji", Raad I. K. AL-Humaidi<br>Department of Mathematics, College of Science, Mustansiriyah University, IRAQ<br>*Correspondent author email: dr.najm@uomustansiriyah.edu.iq

## ArticleInfo

Received
27/06/2018
Accepted
22/11/2018
Published 15/08/2019


#### Abstract

The main aims of this research are to find the stabilizer groups of cubic curves over a finite field of order 7 and studying the properties of their groups and then constructing the arcs of degree 2 which are embedding in cubic curves of even size which are considering as the arcs of degree 3. Also drawing all these arcs.


Keywords: Stabilizer groups, arcs, Cubic curves.

الاهداف الرئيسية لهذا البحث هو ايجاد الزمر المثبتة للمنحنيات المكعبة حول الحقل المنتهي من الرتبة 7 ودراسة الخواص لهذه الزمر وكذللك تثكيل الاقواس من الارجة الثنانية والتي تغمر في المنحنيات اللكعبة ذات الحجم الزوجي والنتي نفسها تعتبر كأقو اس من الدرجة الثانية ـ كذلك رسم كل هذه الأقواس.

## Introduction

The subject of this research depends on themes of Projective geometry over a finite field, Group theory, Field theory, Presentation theory. The strategy to construct the stabilizer groups and also to embedded the arcs is given as following:
Constructing the linear transformations group $P G L(3, q)$ of $P G(2,7)$. Which its elements are considering the non-singular matrices $A_{n}=$ $\left[a_{i j}\right], a_{i, j}$ in $F_{7}, i, j=1,2,3$ for some $n$ in $\mathbb{N}$ and satisfying $K\left(t A_{n}\right)=K$ for all $t$ in $F_{7} \backslash\{0\}$ and $K$ be any arc. Also, we have found the arcs which are embedding in cubic curves which are split into two sets, one of them contains the inflection points and the other does not, the set which does not contain the inflection points is considering the arc of degree two.
The brief history of this theme is shown as follows. In 2010, Najm Al-Seraji [2] has been studied the cubic curves over a finite field of order 17. In 2011, Emad Al-Zangana [3] has been shown the cubic curves over a finite field of order 19. In 2013, Emad Al-Zangana [4] has been described the cubic curves over a
finite field of orders 2, 3, 5, 7. In 2013, Emad Al-Zangana [5] has been classified the cubic curves over a finite field of order 11, 13.
Now, we recall the definitions which are using in this research as follow:

Definition(1.1)[1]: Denote by $S$ and $S^{*}$ two subspaces of $P(n, K)$. A projectivity $\beta: S \rightarrow S^{*}$ is a bijection given by a matrix $T$, necessarily non-singular, where $P\left(X^{*}\right)=P(X) \beta$ if $t X^{*}=X T$, with $t \in K \backslash\{0\}$. Write $\beta=M(T)$; then $\beta=M(\lambda T)$ for any $\lambda$ in $K \backslash\{0\}$. The group of projectivities of $P G(n, K)$ is denoted by $P G L(n+1, K)$.

Definition(1.2)[1]: The stabilizer of $x$ in A set $\Lambda$ under the action of $G$ is the group $G_{x}=\{g \in G \mid x g=x\}$.

Definition(1.3)[1]: An $(n, r)$ arc $K$ or arc of degree $r$ in $P G(k, q)$ with $n \geq r+1$ is a set of points with property that every hyperplane meets $K$ in at most $r$ points of $K$ and there is some hyperplane meeting $K$ in exactly $r$ points.

Definition (1.4) [1]: A non-singular point $P$ of $\mathcal{F}$ is a point of inflexion of $\mathcal{F}$ if $I\left(P, \ell_{p} \cap \mathcal{F}\right) \geq 3$.
Here, $P$ is also called an inflexion; the tangent $\ell_{p}$ at $P$ is the inflexion tangent.

## The classification of cubic curves over a finite field of order7:

The polynomial of degree three $g_{4}(x)=x^{3}-$ $x-2$ is primitive in $F_{7}=\{0,1,2,3,4,5,6\}$, since $g_{4}(0)=-2, \quad g_{4}(1)=-2, \quad g_{4}(2)=4$, $g_{4}(3)=1, g_{4}(4)=2, g_{4}(5)=6, g_{4}(6)=5$, also $g_{4}\left(\varepsilon^{284}\right)=0, g_{3}\left(\varepsilon^{236}\right)=0, g_{4}\left(\varepsilon^{278}\right)=$ 0 , this means $\varepsilon^{284}, \varepsilon^{236}, \varepsilon^{278}$ are roots of $g_{4}$ in $F_{7}$.
The companion matrix of $g_{3}(x)=x^{3}-x-2$ in $F_{7}[x]$ generated the points and lines of $P G(2,7)$ as follows:
$P(k)=[1,0,0] C(g)^{k}=[1,0,0]\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0\end{array}\right)^{k}$,
$k=0,1, \ldots, 56$.
With selecting the points in $P G(2,7)$ which are the third coordinate equal to zero, this means belong to $L_{0}=v(z)$, that is $v(z)=t z=z$ for all $t$ in $F_{7} \backslash\{0\}$ and with $P(k)=k$, we obtain $L_{0}=\{0,1,3,13,32,36,43,52\}$, that is
$L_{k=} L_{0} C(g)^{k}=L_{0}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0\end{array}\right)^{k}, k=0,1, \ldots, 56$.
The number of distinct cubic curves in $P G(2,7)$ is 26 see [4], one of them is given as follows:

$$
\begin{equation*}
\beta_{1}=x^{3}+y^{3}+z^{3} \tag{1}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{1}$ in equation (1) are $[5,1,0],[0,5,1],[6,1,0],[0,6,1],[5,0,1]$ , [3,0,1], [3,1,0], [0,3,1], [6,0,1].
After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{1}$ in equation (1) is 216 , and we can not write them, because they are too much. Moreover, the stabilizer group of $\beta_{1}$ in equation (1) which is denoted by $G_{\beta_{1}}$ which contains:

- 9 matrices of order 2 ;
- 80 matrix of order 3;
- 54 matrix of order 4;
- 72 matrix of order 6 ;
- The identity matrix.

Drawing of $\beta_{1}$ in equation (1) is given in Figure 1 as following:


Figure 1: Drawing of $\beta_{1}$.
Another one of cubic curve which is given in [4] is:

$$
\begin{equation*}
\beta_{2}=x y z-2(x+y+z)^{3} \tag{2}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{2}$ in equation (2) are $[4,4,1],[6,1,0],[0,6,1],[1,2,1],[2,1,1]$ ,$[6,0,1]$. To find the stabilizer group of $\beta_{2}$ in equation(2), we are doing calculations by help the computer. Thus
$G_{\beta_{2}} \cong S_{4}=\left\langle\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 6 & 6 & 6\end{array}\right)\right) \cdot \beta_{2}$ in
equation (2) is drawn in Figure 2 below.


Figure 2: Drawing of $\beta_{2}$.
Let $\beta_{2}^{*}=\{[1,2,1],[2,1,1],[6,0,1]\}$ be a subset of $\beta_{2}$ in equation (2) which is forming by partition the $\beta_{2}$ into two sets such that $\beta_{2}^{*}$ does not contains the inflexion points of $\beta_{2}$, so we note that $\beta_{2}^{*}$ represents an arc of degree two. After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{2}^{*}$ is 216 , and we can not write them, because they are too much.

Moreover, the stabilizer group of $\beta_{2}^{*}$ which is denoted by $G_{\beta_{2}^{*}}$ which contains

- 21 matrix of order 2;
- 80 matrix of order 3;
- 18 matrix of order 4 ;
- 60 matrix of order 6 ;
- 36 matrix of order 12 ;
- The identity matrix.

Drawing of $\beta_{2}^{*}$ is given in Figure 3 as following:


Figure 3: Drawing of $\beta_{2}^{*}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{3}=x y z+3(x+y+z)^{3} \tag{3}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{3}$ in equation (3) are $[1,3,1],[6,1,0],[0,6,1],[5,5,1],[3,1,1]$, [6,0,1].

To find the stabilizer group of $\beta_{3}$ in equation(3), we are doing calculations by help the computer. Thus
$G_{\beta_{3}} \cong S_{4}=\left\langle\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 6 \\ 2 & 6 & 4 \\ 6 & 2 & 4\end{array}\right)\right) \cdot \beta_{3}$ in equation (3) is drawn in Figure 4


Figure 4: Drawing of $\beta_{3}$.
Let $\beta_{3}^{*}=\{[0,6,1],[3,1,1],[6,0,1]\}$ be a subset of $\beta_{3}$ in equation (3) which is forming by partition the $\beta_{3}$ into two sets such that $\beta_{3}^{*}$ does not contains the inflection points of $\beta_{3}$, so we note that $\beta_{3}^{*}$ represents an arc of degree two.

After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{3}^{*}$ is 216 , and we can not write them, because they are too much. Moreover, the stabilizer group of $\beta_{3}^{*}$ which is denoted by $G_{\beta_{3}^{*}}$ which contains

- 21 matrix of order 2 ;
- 80 matrix of order 3 ;
- 18 matrix of order 4 ;
- 60 matrix of order 6 ;
- 36 matrix of order 12 ;
- The identity matrix.

Drawing of $\beta_{3}^{*}$ is given in Figure 5 as following:


Figure 5: Drawing of $\beta_{3}^{*}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{4}=x y z-3(x+y+z)^{3} \tag{4}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{4}$ in equation (4)are $[4,6,1],[2,2,1],[6,1,0],[0,6,1],[3,6,1],[4,1,1]$, $[1,4,1],[2,5,1],[6,4,1],[5,2,1],[6,3,1],[6,0,1]$.
To find the stabilizer group of $\beta_{4}$ in equation (4), we are doing calculations by help the computer. Thus
$G_{\beta_{4}} \cong S_{3}=\left\langle\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\right) . \beta_{4}$ in equation (36) is drawn in Figure 6


Figure 6: Drawing of $\beta_{4}$.
Let $\beta_{4}^{*}=\{[3,6,1],[5,2,1],[6,0,1]\}$ be a subset of $\beta_{4}$ in equation (4) which is forming by partition $\beta_{4}$ into two sets such that $\beta_{4}^{*}$ does not
contains the inflection points of $\beta_{4}$, so we note that $\beta_{4}^{*}$ represents an arc of degree two. Also, to find the stabilizer group of $\beta_{4}^{*}$, by some calculation, we obtain
$G_{\beta_{4}^{*}} \cong \boldsymbol{D}_{\mathbf{6}}=\left\langle\left(\begin{array}{lll}0 & 0 & 1 \\ 3 & 3 & 6 \\ 4 & 2 & 6\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\right\rangle$.
Drawing of $\beta_{4}^{*}$ is given in Figure 7


Figure 7: Drawing of $\beta_{4}^{*}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{5}=x y z+(x+y+z)^{3} \tag{5}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{5}$ in equation (5) are $[6,1,0],[0,6,1],[1,6,1],[6,1,1],[1,1,1]$, [6,6,1], [6,0,1].
To find the stabilizer group of $\beta_{5}$ in equation (5), we are doing calculations by help the computer. Thus
$G_{\beta_{5}} \cong S_{3}=\left\langle\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\right) \cdot \beta_{5}$ in equation (5) is drawn in Figure 8


Figure 8: Drawing of $\beta_{5}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{6}=x y(x+y)+3 z^{3} \tag{6}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{6}$ in equation (6) are $[1,0,0],[0,1,0],[6,1,0]$.
After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{6}$ in equation (6) is 1764 , and we can not write them, because they are too much. Moreover, the stabilizer group of $\beta_{6}$ in equation (6) which is denoted by $G_{\beta_{6}}$ which contains

- 91 matrix of order 2;
- 224 matrix of order 3;
- 980 matrix of order 6 ;
- 48 matrix of order 7;
- 252 matrix of order 14 ;
- 168 matrix of order 21 ;
- The identity matrix.

Drawing of $\beta_{6}$ in equation (6) is given in Figure 9 as following:


Figure 9: Drawing of $\beta_{6}$.
From [4], we have:

$$
\begin{equation*}
\beta_{7}=x y(x+y)-2 z^{3} \tag{7}
\end{equation*}
$$

The points of $\operatorname{PG}(2,7)$ on $\beta_{7}$ in equation (7) are $[1,0,0],[0,1,0],[4,4,1],[4,6,1],[2,2,1]$, $[6,1,0],[2,3,1],[1,5,1],[6,4,1],[1,1,1],[5,1,1]$ ,$[3,2,1]$. To find the stabilizer group of $\beta_{7}$ in equation(7), we are doing calculations by help the computer. Thus
$G_{\beta_{7}} \cong \boldsymbol{S}_{\mathbf{3}} \times \boldsymbol{Z}_{\mathbf{3}}=$
$\left\langle\left(\begin{array}{lll}0 & 1 & 0 \\ 6 & 1 & 0 \\ 0 & 0 & 6\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\right| \times\left\langle\left(\begin{array}{lll}0 & 1 & 0 \\ 6 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)\right\rangle$.
$\beta_{7}$ in equation (7) is drawn in Figure 10


Figure 10: Drawing of $\beta_{7}$.
Let
$\beta_{7}^{*}=$
$\{[2,2,1],[2,3,1],[1,5,1],[1,1,1],[5,1,1],[3,2,1]\}$ be a subset of $\beta_{7}$ in equation (7) which is forming by partition $\beta_{7}$ into two sets such that $\beta_{7}^{*}$ does not contains the inflection points of $\beta_{7}$, so we note that $\beta_{7}^{*}$ represents an arc of degree
two. Also, to find the stabilizer group of $\beta_{7}^{*}$, by some calculation, we obtain $G_{\beta_{7}^{*}}$ contains

- 9 matrices of order 2;
- 8 matrices of order 3;
- 18 matrix of order 4 ;
- The identity matrix.

Drawing of $\beta_{7}^{*}$ is given in Figure 11 as following:


Figure 11: Drawing of $\beta_{7}^{*}$.
From [4], we have:

$$
\begin{equation*}
\beta_{8}=y z^{2}+x^{3}-3 x y^{2}-y^{3} \tag{8}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{8}$ in equation (8) are $[0,0,1],[0,6,1],[2,3,1],[5,4,1],[0,1,1]$. To find the stabilizer group of $\beta_{8}$ in equation (8), we are doing calculations by help the computer. Thus
$G_{\beta_{8}} \cong \boldsymbol{D}_{4}=\left\langle\left(\begin{array}{lll}1 & 4 & 0 \\ 4 & 6 & 0 \\ 0 & 0 & 2\end{array}\right),\left(\begin{array}{lll}1 & 3 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 1\end{array}\right)\right|$.
$\beta_{8}$ in equation (8) is drawn in Figure 12


Figure 12: Drawing of $\beta_{8}$.
From [4], we have:

$$
\begin{equation*}
\beta_{9}=y z^{2}+x^{3}-3 x y^{2}+y^{3} \tag{9}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{9}$ in equation (9) are $[0,0,1],[4,3,1],[2,6,1],[1,4,1],[3,4,1]$, $[1,5,1],[1,1,1],[6,3,1],[5,1,1],[6,6,1],[6,2,1]$.

To find the stabilizer group of $\beta_{9}$ in equation (9), we are doing calculations by help the computer. Thus
$G_{\beta_{9}} \cong Z_{2}=\left\langle\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6\end{array}\right)\right\rangle$.
$\beta_{9}$ in equation (9) is drawn in Figure 13.


Figure 13: Drawing of $\beta_{9}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{10}=y z^{2}+x^{3}+x y^{2} \tag{10}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{10}$ in equation (10) are $[0,1,0],[0,0,1],[6,5,1],[1,4,1],[2,5,1]$
, [1,2,1], $[5,2,1],[6,3,1]$. To find the stabilizer group of $\beta_{10}$ in equation (10), we are doing calculations by help the computer. Thus

$$
G_{\beta_{10}} \cong Z_{2}=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)\right\rangle .
$$

$\beta_{10}$ in equation (10) is drawn in Figure 14.


Figure 14: Drawing of $\beta_{10}$.
Let $\beta_{10}^{*}=\{[1,4,1],[1,2,1],[5,2,1],[6,3,1]\}$ be a subset of $\beta_{10}$ in equation (10) which is forming by partition $\beta_{10}$ into two sets such that $\beta_{10}^{*}$ does not contains the inflection points of $\beta_{10}$, so we note that $\beta_{10}^{*}$ represents an arc of degree two. Also, to find the stabilizer group of $\beta_{10}^{*}$, by some calculation, we obtain

$$
G_{\beta_{10}^{*}} \cong S_{4}=\left\langle\left(\begin{array}{lll}
1 & 0 & 5 \\
4 & 6 & 3 \\
6 & 1 & 6
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 3 & 2 \\
6 & 3 & 4
\end{array}\right)\right\rangle .
$$

Drawing of $\beta_{10}^{*}$ is given in Figure 15.


Figure 15: Drawing of $\beta_{10}^{*}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{11}=y z^{2}+x^{3}+3 x y^{2} \tag{11}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{11}$ in equation (11) are $[0,1,0],[0,0,1],[5,1,0],[4,3,1],[3,6,1]$ $,[4,1,1],[3,4,1],[2,1,0]$. To find the stabilizer group of $\beta_{11}$ in equation(11), we are doing calculations by help the computer. Thus

$$
G_{\beta_{11}} \cong Z_{2}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)\right\rangle
$$

$\beta_{11}$ in equation (11) is drawn in Figure 16


Figure 16: Drawing of $\beta_{11}$.
Let $\beta_{11}^{*}=\{[4,3,1],[3,6,1],[4,1,1],[3,4,1]\}$ be a subset of $\beta_{11}$ in equation (11) which is forming by partition $\beta_{11}$ into two sets such that $\beta_{11}^{*}$ does not contains the inflection points of $\beta_{11}$, so we note that $\beta_{11}^{*}$ represents an arc of degree two. Also, to find the stabilizer group of $\beta_{11}^{*}$, by some calculation, we obtain

$$
G_{\beta_{11}^{*}} \cong S_{4}=\left\langle\left(\begin{array}{lll}
0 & 1 & 3 \\
0 & 5 & 0 \\
1 & 4 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 0 \\
5 & 6 & 0 \\
0 & 0 & 3
\end{array}\right)\right\rangle .
$$

Drawing of $\beta_{11}^{*}$ is given in Figure 17.


Figure17: Drawing of $\beta_{11}^{*}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{12}=y z^{2}+x^{3}-3 x y^{2}+3 y^{3} \tag{12}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{12}$ in equation (12) are $[0,0,1],[3,6,1],[4,1,1],[3,5,1],[2,5,1]$, [3,1,0], $[0,3,1],[5,2,1],[4,2,1],[0,4,1]$.To find the stabilizer group of $\beta_{12}$ in equation (12), we are doing calculations by help the computer. Thus:

$$
G_{\beta_{12}} \cong Z_{2}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)\right\rangle .
$$

$\beta_{12}$ in equation (12) is drawn in Figure 18.


Figure 18: Drawing of $\beta_{12}$.
Let
$\beta_{12}^{*}=\{[2,5,1],[0,3,1],[5,2,1],[4,2,1],[0,4,1]\}$ be a subset of $\beta_{12}$ in equation (12) which is forming by partition $\beta_{12}$ into two sets such that $\beta_{12}^{*}$ does not contains the inflection points of $\beta_{12}$, so we note that $\beta_{12}^{*}$ represents an arc of degree two. Also, to find the stabilizer group of $\beta_{12}^{*}$, by some calculation, we obtain

$$
G_{\beta_{12}^{*}} \cong S_{3}=\left\langle\left(\begin{array}{lll}
1 & 3 & 2 \\
2 & 4 & 6 \\
6 & 4 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 6 \\
6 & 6 & 3 \\
2 & 6 & 3
\end{array}\right)\right\rangle .
$$

Drawing of $\beta_{12}^{*}$ is given in Figure 19.


Figure 19: Drawing of $\beta_{12}^{*}$.

From [4], we have:

$$
\begin{equation*}
\beta_{13}=y z^{2}+x^{3}-2 x y^{2}+2 y^{3} \tag{13}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{13}$ in equation (13) are $[0,0,1],[4,3,1],[3,4,1],[4,5,1],[5,6,1]$, [2,1,1], $[3,2,1]$. To find the stabilizer group of $\beta_{13}$ in equation (13), we are doing calculations by help the computer. Thus

$$
\begin{gathered}
G_{\beta_{13}} \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)\right\rangle \times \\
\left|\left(\begin{array}{lll}
1 & 5 & 0 \\
3 & 6 & 0 \\
0 & 0 & 3
\end{array}\right)\right|
\end{gathered}
$$

$\beta_{13}$ in equation (13) is drawn in Figure 20.


Figure 20: Drawing of $\beta_{13}$.
From [4], we have:

$$
\begin{equation*}
\beta_{14}=y z^{2}+x^{3}-2 x y^{2}+y^{3} \tag{14}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{14}$ in equation (14) are $[0,0,1],[3,5,1],[1,1,0],[4,2,1]$. To find the stabilizer group of $\beta_{14}$ in equation (14), we are doing calculations by help the computer. Thus $G_{\beta_{14}}$ contains

- 7 matrices of order 2;
- 8 matrices of order 3;
- 20 matrix of order 6 ;
- The identity matrix.

Drawing of $\beta_{14}$ in equation (14) is given in figure 21 as following:


Figure 21: Drawing of $\beta_{14}$.

Let $\beta_{14}^{*}=\{[1,1,0],[4,2,1]\}$ be a subset of $\beta_{14}$ in equation (14) which is forming by partition the $\beta_{14}$ into two sets such that $\beta_{14}^{*}$ does not contains the inflection points of $\beta_{14}$, so we note that $\beta_{14}^{*}$ represents an arc of degree two. After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{14}^{*}$ is 3528 , and we cannot write them, because they are too much. Moreover, the stabilizer group of $\beta_{14}^{*}$ which is denoted by $G_{\beta_{14}^{*}}$ which contains

- 103 matrix of order 2;
- 222 matrix of order 3;
- 292 matrix of order 4;
- 1602 matrix of order 6 ;
- 588 matrix of order 12 ;
- 336 matrix of order 14;
- 168 matrix of order 21 ;
- 168 matrix of order 42 ;
- The identity matrix.

Drawing of $\beta_{14}^{*}$ is given in Figure 22 as following:


Figure 22: Drawing of $\beta_{14}^{*}$.
From [4], we have:

$$
\begin{equation*}
\beta_{15}=y z^{2}+x^{3}-2 x y^{2}+3 y^{3} \tag{15}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{15}$ in equation (15) are $[0,0,1],[2,6,1],[2,4,1],[2,3,1],[5,4,1]$, [2,1,0], $[0,3,1],[5,1,1],[5,3,1],[0,4,1]$.To find the stabilizer group of $\beta_{15}$ in equation (15), we are doing calculations by help the computer. Thus:

$$
G_{\beta_{15}} \cong Z_{2}=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)\right\rangle .
$$

$\beta_{15}$ in equation (15) is drawn in Figure 23.


Figure 23: Drawing of $\beta_{15}$.
Let
$\beta_{15}^{*}=\{[2,4,1],[0,3,1],[5,1,1],[5,3,1],[0,4,1]\}$ be a subset of $\beta_{15}$ in equation (15) which is forming by partition $\beta_{15}$ into two sets such that $\beta_{15}^{*}$ does not contains the inflection points of $\beta_{15}$, so we note that $\beta_{15}^{*}$ represents an arc of degree two. Also, to find the stabilizer group of $\beta_{15}^{*}$, by some calculation, we obtain
$G_{\beta_{15}^{*}} \cong \boldsymbol{S}_{3}=\left\langle\left(\begin{array}{lll}0 & 0 & 1 \\ 2 & 0 & 5 \\ 6 & 3 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 5 \\ 0 & 2 & 0 \\ 2 & 5 & 6\end{array}\right)\right\rangle$.
Drawing of $\beta_{15}^{*}$ is given in Figure 24.


Figure 24: Drawing of $\beta_{15}^{*}$.
From [4], we have:

$$
\begin{equation*}
\beta_{16}=y z^{2}+x^{3}-3 y^{3} \tag{16}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{16}$ in equation (16) are $[0,0,1],[1,3,1],[4,3,1],[2,2,1],[6,5,1]$, [2,3,1], [5,5,1], [3,4,1], [5,4,1], [3,5,1], [1,2,1], $[6,4,1],[4,2,1]$. To find the stabilizer group of $\beta_{16}$ in equation (16), we are doing calculations by help the computer. Thus

$$
G_{\beta_{16}} \cong Z_{6}=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right)\right\rangle
$$

$\beta_{16}$ in equation (16) is drawn in Figure 25.


Figure 25: Drawing of $\beta_{16}$.

$$
\begin{equation*}
\beta_{17}=y z^{2}+x^{3}+y^{3} \tag{17}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{17}$ in equation (17) are $[0,0,1],[5,1,0],[6,1,0],[3,1,0]$. To find the stabilizer group of $\beta_{17}$ in equation (17), we are doing calculations by help the computer. Thus $G_{\beta_{17}}$ contains

- 7 matrices of order 2;
- 8 matrices of order 3;
- 20 matrix of order 6 ;
- The identity matrix.

Drawing of $\beta_{17}$ in equation (17) is given in Figure 26 as following:


Figure 26: Drawing of $\beta_{17}$.
Let $\beta_{17}^{*}=\{[6,1,0],[3,1,0]\}$ be a subset of $\beta_{17}$ in equation (17) which is forming by partition the $\beta_{17}$ into two sets such that $\beta_{17}^{*}$ does not contains the inflection points of $\beta_{17}$, so we note that $\beta_{17}^{*}$ represents an arc of degree two. After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{17}^{*}$ is 3528 , and we can not write them, because they are too much. Moreover, the stabilizer group of $\beta_{17}^{*}$ which is denoted by $G_{\beta_{17}^{*}}$ which contains

- 103 matrix of order 2;
- 222 matrix of order 3;
- 292 matrix of order 4;
- 1602 matrix of order 6 ;
- 588 matrix of order 12 ;
- 336 matrix of order 14;
- 168 matrix of order 21 ;
- 168 matrix of order 42 ;
- The identity matrix.

Drawing of $\beta_{17}^{*}$ is given in Figure 27 as
following:

From [4], we obtain:


Figure 27: Drawing of $\beta_{17}^{*}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{18}=y z^{2}+x^{3}+2 y^{3} \tag{18}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{18}$ in equation (18) are $[0,0,1],[4,4,1],[3,3,1],[2,4,1],[1,4,1]$, $[6,3,1],[5,3,1]$. To find the stabilizer group of $\beta_{18}$ in equation (18), we are doing calculations by help the computer. Thus

$$
G_{\beta_{18}} \cong Z_{6}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right)\right\rangle
$$

$\beta_{18}$ in equation (18) is drawn in Figure 28.


Figure 28: Drawing of $\beta_{18}$.
From [4], we obtain:

$$
\begin{align*}
& \beta_{19}=x y^{2}+x^{2} z+3 y z^{2}- \\
& \left(x^{3}+3 y^{3}+2 z^{3}-2 x y z\right) \tag{19}
\end{align*}
$$

The points of $P G(2,7)$ on $\beta_{19}$ in equation (19) are $[5,5,1],[2,1,1],[4,1,0],[0,4,1],[3,2,1]$, $[6,0,1]$. To find the stabilizer group of $\beta_{19}$ in equation (19), we are doing calculations by help the computer. Thus

$$
G_{\beta_{19}} \cong Z_{\mathbf{3}}=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
3 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\right\rangle
$$

$\beta_{19}$ in equation (19) is drawn in Figure 29.


Figure 29: Drawing of $\beta_{19}$.
From [4], we have:

$$
\begin{align*}
& \beta_{20}=x y^{2}+x^{2} z-2 y z^{2}- \\
& \left(x^{3}-2 y^{3}-3 z^{3}-x y z\right) \tag{20}
\end{align*}
$$

The points of $P G(2,7)$ on $\beta_{20}$ in equation (20) are $[1,3,1],[3,5,1],[1,5,1],[1,2,1],[6,4,1]$, $[4,5,1]$. To find the stabilizer group of $\beta_{20}$ in equation (20), we are doing calculations by help the computer. Thus

$$
G_{\beta_{20}} \cong Z_{3}=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
5 & 0 & 0 \\
0 & 5 & 0
\end{array}\right)\right\rangle .
$$

$\beta_{20}$ in equation (20) is drawn in Figure 30.


Figure 30: Drawing of $\beta_{20}$.
From [4], we have:

$$
\begin{gather*}
\beta_{21}=x y^{2}+x^{2} z-2 y z^{2}-3\left(x^{3}-\right.  \tag{21}\\
\left.2 y^{3}-3 z^{3}-x y z\right)
\end{gather*}
$$

The points of $P G(2,7)$ on $\beta_{21}$ in equation (21) are $[5,1,0],[0,5,1],[3,3,1],[1,0,1],[4,1,1]$, $[5,4,1],[3,0,1],[4,0,1],[0,4,1]$. To find the stabilizer group of $\beta_{21}$ in equation (21), we are doing calculations by help the computer. Thus

$$
G_{\beta_{21}} \cong Z_{3}=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
5 & 0 & 0 \\
0 & 5 & 0
\end{array}\right)\right\rangle .
$$

$\beta_{21}$ in equation (21) is drawn in Figure 31.


Figure 31: Drawing of $\beta_{21}$.
From [4], we have:

$$
\begin{gather*}
\beta_{22}=x y^{2}+x^{2} z+3 y z^{2}-  \tag{22}\\
3\left(x^{3}+3 y^{3}+2 z^{3}-2 x y z\right)
\end{gather*}
$$

The points of $P G(2,7)$ on $\beta_{22}$ in equation (22) are $[4,3,1],[3,3,1],[4,6,1],[6,1,0],[0,6,1]$, [1,4,1], [3,1,1], [1,6,1], [1,1,1], [4,0,1], [5,3,1], [6,2,1]. To find the stabilizer group of $\beta_{22}$ in equation (22), we are doing calculations by help the computer. Thus

$$
G_{\beta_{22}} \cong Z_{3}=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
3 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\right\rangle
$$

$\beta_{22}$ in equation (22) is drawn in Figure 32.


Figure 32: Drawing of $\beta_{22}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{23}=x y^{2}+x^{2} z+3 y z^{2} \tag{23}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{23}$ in equation (23) are $[1,0,0],[0,1,0],[0,0,1]$.
After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{23}$ in equation (23) is 216, and we can not write them, because they are too much. Moreover, the stabilizer group of $\beta_{23}$ in equation (23) which is denoted by $G_{\beta_{23}}$ which contains

- 21 matrix of order 2;
- 80 matrix of order 3;
- 18 matrix of order 4 ;
- 60 matrix of order 6 ;
- 36 matrix of order 12 ;
- The identity matrix.

Drawing of $\beta_{23}$ in equation (23) is given in Figure 33 as following:


Figure 33: Drawing of $\beta_{23}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{24}=x y^{2}+x^{2} z-2 y z^{2} \tag{24}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{24}$ in equation (24) are $[1,0,0],[0,1,0],[0,0,1],[2,4,1],[3,6,1]$, [5,5,1], [3,4,1], [1,1,1], [6,3,1], [5,1,1]
$,[4,2,1],[6,2,1]$. To find the stabilizer group of $\beta_{24}$ in equation (24), we are doing calculations by help the computer. Thus

$$
\begin{gathered}
G_{\beta_{24}} \cong Z_{3} \times Z_{3}=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
3 & 0 & 0 \\
0 & 6 & 0
\end{array}\right)\right\rangle \times \\
\left(\left(\begin{array}{lll}
0 & 0 & 1 \\
5 & 0 & 0 \\
0 & 5 & 0
\end{array}\right)\right)
\end{gathered}
$$

$\beta_{24}$ in equation (24) is drawn in Figure 34.


Figure 34: Drawing of $\beta_{24}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{25}=x^{3}+3 y^{3}+2 z^{3}-3 x y z \tag{25}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{25}$ in equation (25) are $[4,4,1],[3,6,1],[5,5,1],[5,4,1],[1,2,1]$, [6,1,1], $[6,3,1],[2,1,1],[3,2,1]$. To find the stabilizer group of $\beta_{25}$ in equation (25), we are doing calculations by help the computer. Thus

$$
\begin{gathered}
G_{\beta_{25}} \cong \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{3}=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
3 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\right\rangle \times \\
\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
5 & 0 & 0 \\
0 & 6 & 0
\end{array}\right)\right| .
\end{gathered}
$$

$\beta_{25}$ in equation (25) is drawn in Figure 35.


Figure 35: Drawing of $\beta_{25}$.
From [4], we obtain:

$$
\begin{equation*}
\beta_{26}=x^{3}+3 y^{3}+2 z^{3} \tag{26}
\end{equation*}
$$

The points of $P G(2,7)$ on $\beta_{26}$ in equation (26) are $[1,3,1],[4,3,1],[4,6,1],[2,6,1],[2,3,1]$, [1,5,1], [1,6,1], [2,5,1], [4,5,1].

After the calculation and help the computer, we are obtained that the number of matrices which are stabilizing of $\beta_{26}$ in equation (26) is 54 , and we cannot write them, because they are too much. Moreover, the stabilizer group of $\beta_{26}$ in equation (26) which is denoted by $G_{\beta_{26}}$ which contains

- 9 matrices of order 2;
- 26 matrix of order 3;
- 18 matrix of order 6 ;
- The identity matrix.

Drawing of $\beta_{26}$ in equation (26) is given in Figure 36 as following:


Figure 36: Drawing of $\beta_{26}$.

## References

[1] J. W. P. Hirschfeld, "Projective geometries over finite fields", 2nd Edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1980.
[2] N. A. M. Al-Seraji, "The Geometry of The Plane of order Seventeen and its Application to Error-correcting codes", Ph.D. Thesis, University of Sussex , UK, 2010.
[3] E. M. Al-Zangana, "The Geometry of The Plane of order nineteen and its application to errorcorrecting codes", Ph. D. Thesis, University of Sussex, United Kingdom, 2011.
[4] E. M. Al-Zangana, "On Non-Singular Plane Cubic Curves over $F_{q}, q=2,3,5,7$ " College of education J.No.1, 2013.
[5] E. M. Al-Zangana, "Complete and Incomplete Elliptic curves over the finite field of order 11 and 13", Al-Mustansiriyah J.Sci.Vol. 24 ,No 1, 2013.
[6] A. D. Thomas and G. V. Wood,"Group tables", Shiva Mathematics Series, Series 2, Devon print Group, Exeter, Devon , UK, 1980.

