Research Article

Structural Properties of Nanoparticles TiO2/PVA Polymeric Films

Samara A. Madhloom¹, Mahasin F. Al-Kadhemy¹, Jehan A. Salman²

¹ Department of Physics, College of Science, Mustansiriyah University, IRAQ.
² Department of Biology, College of Science, Mustansiriyah University, IRAQ.
*Correspondent Author Email: samaraabbas1992@gmail.com, drmahasinf@yahoo.com, jehanmmd@yahoo.com

ArticleInfo	Abstract
Received 27/10/2016 Accepted 17/04/2017	In this research, X-ray diffraction of the powder (PVA polymer, titanium dioxide with two particle sizes) and (TiO ₂ (15.7 nm)/PVA and TiO ₂ (45.7 nm)/PVA) films have been studied, the amount of polymer is (0.5) g and (0.01)g from each particle sizes of nanoparticles will be used. Casting method is used to prepare homogeneous films on glass petri dishes. All parameters accounted for the X-ray diffraction; full width half maximum (FWHM), Miller indices (hkl), size of crystalline (D), Specific Surface Area (S) and Dislocation Density (δ). The nature of the structural of materials and films will be investigated. The XRD pattern of PVA polymer has semicrystalline nature and the titanium dioxide with two particle sizes have crystalline structure; anatase type. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVA polymer.
	الخلاصة في هذا البحث, تم دراسة حيود الأشعة السينية لمساحيق (بوليمر PVA ، ثنائي أوكسيد التيتانيوم ذو الحجمين الحبيبين) واغشية (0.01) مم من البوليمر و (0.01) وقد أستخدم نسبة (0.5) غم من البوليمر و (0.01) غم من كلا الحجمين الحبيبين للمادة النانوية. استخدمت طريقة الصب لتحضير اغشية متجانسة على أطباق زجاجية. تم حساب كل معاملات حيود الأشعة السينية ، أقصى منتصف لعرض الحزمة ، معاملات ميلر، الحجم البلوري ، المساحة السطحية المحددة وكثافة الانخلاع. وتم بحث الطبيعة التركيبية للمواد والاغشية. وبينت النتائج أن حيود الاشعة السينية لبوليمر PVA هو ذو تركيب شبة بلوري وأن ثنائي أوكسيد التيتانيوم ذو الحجمين الحبيبين لها تراكيب بلورية; نوع (anatase). بينما المزيج بين هذه المواد أدى الى ظهور بعض الحزم البلورية في نموذج حيود الاشعة السينية لبوليمر PVA

Introduction

The general chemical structure of PolyVinyl Alcohol (PVA) is shown in Fig. (1)[1].

Where R= H orCOCH₃ PVA is a polymer of great interest be-Figure (1): Chemical structure of PVA polymer [1].

Biomedical applications [2]. It has been applied in the industrial, commercial, medical,

and food sectors and has been used to produce many end products, such as lacquers, resins, surgical threads, and food packaging materials that are often in contact with food [3]. PolyVinyl alcohol for food use is an odorless and tasteless, translucent, white or cream colored granular powder. It is most important soluble in water, Dimethyl Sulfoxide (DMSO), Ethylene Glycol (EG), and N-Methyl Pyrrolidone (NMP) [4]. Titanium dioxide belongs to the family of transition metal oxides. There are four commonly known polymorphs of TiO₂ found in nature: anatase (tetragonal), brookite (orthorhombic), rutile (tetragonal), and TiO₂ (B) (monoclinic). Besides these polymorphs,

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licenses.

two additional high-pressure forms have been synthesized from the rutile phase. These are TiO₂ (II) with the α -PbO₂ structure, TiO₂ (H) with hollandite, baddelleyite with ZrO₂, Cotunnite with PdCl₂ [5]. Among these unique properties, nanosized organic and inorganic particles are being producing for use in medical properties. Titanium dioxide (TiO₂) also known as titanium oxide or titanium IV oxide or Titania, is the naturally occurring oxide of titanium. It is a versatile transition-metal oxide and a useful material in various present / future applications related to catalysis, electronics, photonics, sensing, medicine, and controlled drug release [6]. Used chemical spry pyrolysis technique to prepare thin films of titanium dioxide TiO_2 pure and TiO_2 : PVA polymer on glass substrate preheated at (350 °C) for TiO₂pure and at (160 °C) for TiO₂: PVA. With spray rate 3Sec. /1min, and thickness (250 nm). The investigation of (XRD) indicates that the structure of TiO₂ pure and TiO₂: PVA thin films are polycrystalline, and XRD investigation is anatase titanium dioxide. Where intensity of (101) is more than the intensity of (000), (200) and (105) for TiO_2 and TiO_2 : PVA thin films. The optical properties measurement explains the effect of adding PVA on transmittance, absorbance, refractive index, absorption coefficient and electronic transitions of prepared thin films, their results observe that the filling of PVA generally increase optical properties [7]. Explained the effect of TiO_2 (5, 10 and 15 mg) nano-particles on optical, electrical and mechanical properties of poly (vinyl alcohol) (PVA) films. The un-doped (PVA) films show high transmittance in the visible region, and decrease with the increasing of TiO₂ [8]. Studied polyvinyl alcohol (PVA) doped with titanium dioxide nanoparticles at different weight percentage (1.25, 2.5, 5, 7.5, 10 TiO₂/PVA) are prepared using the sonification and casting techniques. The structural properties of those samples are examined by XRD, FTIR, and UV-Visible. The XRD pattern reveals that the amorphous domain in PVA polymer matrix increases with the raising of the TiO_2 content. The complexation of the dopant with the polymer is examined by FTIR studies. The absorption spectra of UV-Visible light shows irregular changes of the absorption for high doping samples in UV range (7.5, 10 TiO₂ /PVA). Absorbance, transmittance and reflectance spectra are used for the determination of the optical constants. The results indicate that the optical band gap is decreased with the increase of TiO_2 content, while the refractive index increases to high value for the composites of high dopant [9].

The aim of this work is to investigate the nature of the structural characteristics of PVA polymer, TiO₂ nanoparticles with two particle sizes (15.7 and 45.7) nm, TiO₂ (15.7 nm)/PVA and TiO₂ (45.7 nm)/PVA films that done by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) measurement.

Materials and Methods

Pure PVA and TiO₂ nanoparticles doped PVA films have been prepared by employing solution casting method. Hot distilled water (~55°C) (10 ml) was used to dissolve (0.5 g) from PVA is a powder with molecular granular weight (M_w=14000 g/mole) obtained from (BHD Chemicals Ltd). This solution was magnetically stirred continuously for (3 hrs.) until mixture became homogeneous viscous solution. Then it poured into glass petri dish with diameter (8 cm) and keeps under room temperature ($\sim 30^{\circ}$ C) for (7 days) to evaporate all solvent slowly. In order to prepare TiO₂ nanoparticles/PVA composite films with two particle sizes for TiO₂ nanoparticles; (15.7 and 45.7 nm) obtained from (Intelligent Materials Pvt. Ltd. United States) and (HIME-DIA), respectively. The amount of powder for each particle size as used (0.01 g) with (10 ml) hot distilled water. (6 ml) of this TiO₂ nanoparticles solution was added to PVA solution to get 15.7 nm TiO₂/PVA an and 45.7 nm TiO₂/PVA films. X-Ray Diffraction (XRD) instrument is from type (SHIMADZU XRD - 6000) made in Japan, with following specifications are Target is CuK_{α} , wavelength is 1.5406 A, Current is 30 (mA) and Voltage is (40 KV) and Scanning Electron Microscopy (SEM) type (INSPECTS50) made in Holland. Mathematical definitions The particle size is calculating by equation (1). The average grain size of all the samples was estimated from X-ray line broadening analysis by Scherer's formula [10]:

$$\boldsymbol{D} = \frac{\boldsymbol{K}\boldsymbol{\lambda}}{\boldsymbol{\beta}\boldsymbol{C}\boldsymbol{o}\boldsymbol{s}\boldsymbol{\Theta}} \tag{1}$$

Where (K) represents a Scherer's factor, normally taken as (0.94). λ is the X-ray wavelength, β is the value of the FWHM in degree unit and transform to radian by multiplying (π /180), θ is the Bragg's angle. Specific Surface Area (S) or (SSA) is the Surface Area (SA) per mass. Mathematically, SSA can be calculated using formula (2) [11]:

$$S = (6x10^3)/(D_{p.}\rho)$$
 (2)

Where SSA & S are the specific surface area, D_p is the size (spherical shaped), and ρ is the density of TiO₂ (3.9 g/cm³) and (4.23 g/cm³) particle sizes (15.7 and 45.7) nm, respectively.

The dislocation density is the length of dislocation lines per unit volume of the crystal [12]. The dislocation density (δ) in the sample has been determined using equation (3) [13]:

$$\delta = 1/\mathbf{D}^2 \tag{3}$$

Results and Discussion

The X-ray diffraction of pure PVApowder is shown in Figure (2). The observation of the maximum intensity diffraction peak (331) at $2\theta =$ 19.7167° corresponding d-spacing 4.49908 Å to the (110) reflection a plane which contains the extended planar zig-zag chain direction of the crystallites. That is indicate PVA has semicrystalline nature [14]. Firstly; the peaks at 20 less than (20°) are due to crystalline nature which may be attributed to intermolecular interaction of hydrogen bonding for PVA chains. Secondly; two small peaks at $2\theta = 23.2148°$, 17.3494° corresponding d-spacing 3.82848 Å 5.10727 Å, with intensities (73) and (54), respectively. These results are matching with results obtained from [7] and [9]. The value of particle size is calculated by equation (1) nearly (3.0543 nm). Table (1) illustrated some structural properties for pure PVA powder.

10010 1111		10110110101	11110/1401
2θ(deg)	FWHM (deg)	Intensity (counts)	d (Å)
11.5143	1.45000	19	7.67902
14.5363	0.52000	11	6.08869
15.8327	1.30660	28	5.59294
16.4911	0.0000	41	5.37110
17.3494	0.0000	54	5.10727
19.7167	1.954	331	4.49908
23.2146	1.4934	73	3.82848
40.6984	1.9900	42	2.21516
42.3323	1.1200	17	2.13336

Table 1: XRD Parameters for Pure PVA Powder.

Figure (2): XRD pattern for pure PVA powder.

2θ(deg)	FWHM (deg)	Intensity	d (Å)	hkl	D(nm)	Sx10 ⁶	x10 ⁶
		(counts)				$(m^2. g^{-1})$	(m^{-2})
25.3424	0.54100	285	3.51165	011	15.1	0.1018	4.385
36.9362	0.28000	16	2.43168	013	30.4	0.0505	1.082
37.8804	0.67000	50	2.37321	004	12.6	0.1220	6.298
38.7148	0.50000	12	2.32396	112	16.9	0.0910	3.501
48.0716	0.59500	77	1.89120	020	14.7	0.1046	4.627
53.9815	0.75000	39	1.69727	015	11.9	0.1292	7.061
55.0311	0.73000	39	1.66735	121	12.2	0.1260	6.718
			190				

Table (2a): XRD Parameters for Pure TiO₂ (15.7 nm) Powder.

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licenses.

21	n 1	7
21	L	. /

62.0836	0.40000	12	1.49380	123	23.4	0.0657	1.826
62.7034	0.76000	28	1.48052	024	12.3	0.1250	6.609
68.8616	0.76000	10	1.36237	116	12.7	0.1211	6.200
70.3212	0.64000	12	1.33763	220	15.2	0.1011	4.328
75.0799	0.84000	16	1.26421	125	11.9	0.1292	7.061

Table (2b); VPD Decemptors for Duro TiO (45.7 nm) Douglar

2θ(deg)	FWHM	Intensity	d (Å)	hkl	D(nm)	Sx10 ⁶	x10 ⁵
20(ucg)	(deg)	(counts)	u (11)	IIIXI	D(IIII)	(m^2, g^{-1})	(m ⁻²)
25.3712	0.21100	759	3.50773	011	39.5	0.0358	6.409
37.0077	0.19670	46	2.42715	013	43.0	0.0329	5.408
37.8515	0.2010 0	172	2.37496	004	41.9	0.0338	5.696
38.6286	0.18750	48	2.32895	112	45.9	0.0308	4.746
48.0967	0.19930	253	1.89027	020	44.6	0.0317	5.0272
53.9434	0.20180	159	1.69838	015	44.4	0.0319	5.0726
55.1201	0.21570	147	1.66487	121	42.2	0.0336	5.6153
62.1691	0.17900	25	1.49196	123	52.2	0.0271	3.6699
62.7443	0.20810	119	1.47965	024	45.1	0.0314	4.9163
68.8009	0.21860	45	1.36343	116	44.2	0.0320	5.1186
70.3422	0.19800	55	1.33728	220	49.9	0.0284	4.0160
75.0910	0.214200	85	1.26405	125	47.3	0.0299	4.4696
76.0766	0.186000	25	1.25011	031	55.0	0.0257	3.3057

Figure (3): XRD Pattern for Pure TiO_2 nanoparticles powder with two particles sizes a-(15.7 nm) b-(45.7 nm).

The X-ray diffraction pattern of pure TiO₂ nanoparticles powder with two particles sizes are shown in Figure (3) (a) (b), respectively. Strong diffraction peaks at 25°, 48° and 37° indicating TiO₂ in the anatase phase, the intensities of XRD peaks of the sample reflects that the formed nanoparticles are crystalline [7,9]. The intensity is increased with decreasing the Particle size, the particle size is nearly (15.7 nm) for Figure 3a and (45.7 nm) for Figure 3-b. Table 2 (a) (b) illustrated some structural properties for pure TiO₂ nanoparticles with two particle sizes, respectively.

We conclude from table (2 A, B) the specific surface area (S) and dislocation density ($_{-}$) are decreased with increasing the particle size of TiO₂ nanoparticles.

The X-ray diffraction pattern for $(6 \text{ ml}) \text{ TiO}_2$ (for two particles sizes (15.7 nm) and (45.7 nm))/PVA films are shown in Figure (4) (a)(b), respectively. From these figs., the effect of TiO₂ nanoparticles with two particles sizes on PVA structure still amorphous behavior with appearing some crystalline peak with addition TiO_2 nanoparticles [7, 9]. The intensity is increase with increasing the particle size of TiO_2 nanoparticles and the particle size found by eq. (1) are nearly (17.0261, 79.4998) nm for TiO_2 (15.7, 45.7) nm/PVA, respectively. Table (4-5) (a) (b) which it emerged adding PVA polymer enhanced the structural properties of TiO_2 thin film.

Table (3a): XRD Parameters for TiO₂ (15.7 nm)/PVA

20	FWHM	Intensi- tv	0	D
(deg)	(deg)	(counts	d (A)	(nm)
)		
13.3140	0.62800	98	6.64479	12.838
14.5000	1.00000	15	6.10385	8.0610
16.1722	0.66200	396	5.47629	12.269
19.1800	2.00000	143	4.62374	39.758
24.8216	0.82330	48	3.58413	9.974
43.7905	0.44760	81	2.06564	19.257

Table (3b): XRD Parameters for TiO₂ (45.7 nm)/PVA

20 (deg)	FWHM (deg)	Intensi- ty (counts)	d (Å)	D (nm)
13.2065	0.61890	172	6.69864	127.53
16.0854	0.61950	595	5.50564	127.81
19.7000	0.00000	53	4.50285	0.0000
20.4000	1.30000	28	4.34989	6.2286
24.8025	0.75500	71	3.58685	10.8405
43.7164	0.41290	85	2.06897	204.59

Figure (4): XRD Pattern for a- TiO_2 (15.7 nm)/PVA and b-TiO₂ (45.7 nm)/PVA Films.

The SEM images of TiO_2 at different magnification are shown in Figure (5) for TiO_2 (15.7 nm) and Figure (6) for TiO_2 (45.7 nm) which confirms that the TiO_2 nanoparticles are pseudo spherical in shape. It has been observed that TiO_2 nanoparticles are agglomerated to from clusters. The effect of increasing particle size of TiO_2 leads to form big agglomerated. This result is matching with [15].

Figures (7, 8) show micrographs of (6ml) TiO_2 nanoparticles with two particles sizes (15.7, 45.7) nm doped with PVA films, respectively. It can be seen that TiO_2 nanoparticles cover the surface of PVA films and emerge PVA particles to form white granule scattered randomly. The SEM image of TiO_2 /PVA films shows the rough

surface with some gathering of TiO₂ nanoparticles in PVA, this result is matching with [8].

cle size (15.7 nm).

Figure (6): SEM micrographs for TiO₂ Powder with particle size (45.7 nm).

Figure (7): SEM micrographs for TiO₂ (15.7 nm)/PVA Films.

Figure (8): SEM micrographs for TiO₂ (45.7 nm)/PVA Films.

Conclusions

XRD parameters of materials and films calculated and have known the nature of the structural of materials and films. In spite of crystalline materials TiO_2 nanoparticles, the polymer still amorphous behavior with appearing some crystalline peak from these materials in it, the specific surface area (S) and dislocation density () are decreased with increasing the particle size of TiO_2 nanoparticles. The SEM showed crystalline structure of TiO_2 nanoparticles and matching with XRD results, The SEM image of TiO_2/PVA films showed rough surface with some gathering of PVA polymer.

References

- S. K. Saxena, (2004), Polyvinyl Alcohol (PVA), Chemical and Technical Assessment 61st JECFA,1-3.
- [2] C. M. Hassan, N. A. Peppas, (2000), Structure and Applications of Poly (vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods, Adv. Polym. Sci., 153, 37-65.
- [3] C. C Demerlis, D. R. Schoneker, (2003), Review of the oral toxicity of polyvinyl alcohol (PVA), Food Chem. Toxicol, 41, 319–326.
- [4] J. C. J. F Tacx, H. M. Schoffeleers, A. G. M. Brands, L. Teuwen, (2000), Dissolution

Behavior and Solution Properties of Polyvinylalcohol as Determined by Viscometry and Light Scattering in DMSO, Ethylene Glycol and Water, Polymer, 41, 947-957.

- [5] J. F. Banfield, A. Navrotsky, (2001), Nanoparticles and the Environment, Mineralogical Society of America, Washington, D. C.
- [6] A. Kumar, S. P. Hsun Lo and S. M Chen, (2008), Electrochemical synthesis and characterization of TiO₂ nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis, Nanotechnology, 19, 255501-255507.
- [7] A. F. Saleh, A. M. Jaffar, N. A. Samoom and M. W. Mahmmod, (2014), Effect Adding PVA Polymer on Structural and Optical Properties of TiO₂ Thin Films, Journal of Al-Nahrain University, 17 (2), 116-121.
- [8] M. Vishwas, K. N. Rao, D. N. Priya, A. M. Raichur, R. P. S. Chakradhar and K. V. Warlu, (2014), Effect of TiO₂ nanoparticles on Optical, electrical and Mechanical Properties of Poly (vinyl Alcohol) Films, Procedia Materials Science, 5, 247-254.
- [9] A. M. Shehap and D. S. Akil, (2016), Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films, Int. J. Nanoelectronics and Materials, 9, 17-36.

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licenses.

- [10] Jia-Guo Yu, Xiu-Jian Zhao, Huo-Gen Yu, Bei Cheng, Wing-Kei Ho, (2003), physical chemistry, The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition, B 107 (50), 13871-13879.
- [11] L. C. Nehru, V. Swaminathan, C. Sanjeeviraja, (2012), Photoluminescence Studies on Nanocrystalline Tin Oxide Powder for Optoelectronic Devices, American. J. Mat. Sci., 2(2): 6-10.
- [12] D. B. Sirdeshmukh, L. Sirdeshmukh, K. G. Subhadra, (2006), Micro- and Macro-Properties of solids: Thermal, Mechanical and Dielectric properties, Springer, NewYork.
- [13] Y. P. V. Subbaiah, P. Prathap, K. T. R. Reddy, (2006), Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl. Surf. Sci., 253(5): 2409-2415.
- [14] M. S. Jalil, (2015), Physical Properties, Antibacterial and antibiofilm Activities of PVA Polymer with Safranin Dye and Biosurfactant, Ph. D Thesis, College of Science, Al-Mustansiriyah University.
- [15] K. K. Senapati, Ch. Borgohain and P. Phukan, (2012), CoFe₂O₂-ZnS nanocomposite: a magnetically recyclable photocatalyst, Electronic Supplementary Material (ESI) for Catalysis Science and Technology.