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The aim of this work is to deal with a new integrable nonlinear equation of wave propagation, 

the combined of the Korteweg-de vries equation and the negative order Korteweg-de vries 

equation (combined KdV-nKdV) equation, which was more recently proposed by Wazwaz. 

Upon using wave reduction variable, it turns out that the reduced combined KdV-nKdV 

equation is alike the reduced (3+1)-dimensional Jimbo Miwa (JM) equation, the reduced 

(3+1)-dimensional Potential Yu-Toda-Sasa-Fukuyama (PYTSF) equation and the reduced (3 

+ 1)dimensional generalized shallow water (GSW) equation in the travelling wave. In fact, the 

four transformed equations belong to the same class of ordinary differential equation. With the 

benefit of well-known general solutions for the reduced equation, we show that subjects to 

some change of parameters, a variety of families of solutions are constructed for the combined 

KdV-nKdV equation which can be expressed in terms of rational functions, exponential 

functions and periodic solutions of trigonometric functions and hyperbolic functions. In 

addition to that the equation admits solitary waves, and double periodic waves in terms of 

special functions such as Jacobian elliptic functions and  Weierstrass elliptic functions  

 

Keywords: Combined KdV-nKdV equation, JM  equation, PYTSF equation, GSW equation, 

travelling wave solutions, Jacobian and Weierstrass elliptic functions  

خلاصـةال  
دي -الموجه, المعادله المركبة لمعادلتي كورتيويغ التعامل مع معادلة جديده غير خطيه من انتشار العمل هذاالهدف من 

المركبة( التي اقترحت مؤخرا من قبل وزواز.   KdV-nKdV دي فريس الرتبة السالبة )معادلة-فريس و كورتيويغ

 (JM) المركبة المحولة تشابة معادلة جيمبو ميوا المحولة KdV-nKdV ةباستخدام متغير خفض الموجة اتضح ان معادل

 المحولة بعد  و معادلة المياة الضحلة المعممة 1+3المحولة في  (PYTSF) بعد, معادلة يوتو ساساسي فوكوياما 1+3في 

(GWS)  فاضلية الاعتيادية الى نفس صنف المعادلة التبعد. في الحقيقة المعادلات الاربعة المحولة تنتمي  1+3في

وبالاستفاده من الحلول العامة المعروفة للمعادلة المحولة, بينا اخذين بنظر االعتبار اخضاع بعض المعاملات للتغيير عائلة 

ا بدلالة دوال نسبية , دوال اسية, هالمركبة والتي يمكن التعبير عن KdV- nKdV ا لمعادلةهمتنوعه من الحلول يمكن تشكيل

ن دوال مثلثية ودوال مثلثية زائدية. بالاضافة الى ذلك المعادلة تملك حلول موجية منعزلة وموجية دورية حلول دورية م

 .لأهليلجيةايلجية ودوال ويرستراس هلثنائية بدلالة  الدوال اليعقوبية الأ

 

Introduction 
Newly, Wawaz [1] introduced the combined 

KdV-nKdV equation, and that by unifying the 

KdV recursion operator and the negative order 

KdV recursion operator to form a new 

equation, this is given by   

   

0246  txxxtxxxxtxxxxxxxxt uuuuuuuuu

(1)  

 

where u is the amplitude of the wave in one 

field x plus time t. Clearly, it is a scalar fourth 

order nonlinear equation and it has three linear 

and three nonlinear terms; the terms 

xxxtxxxx uu ,  and  xtu  represent the linear 

terms while txxxtx uuuu ,  and xxxuu  represent 

the nonlinear terms. The equation is an 

integrable equation in the sense that it passes 

Painlev´e test [1]. The tan /cot, tanh / coth, and 

a modified version of Hirota’s formula were 

used to get solutions for this equation see for 

more details [1].  

The other three equations, we consider in this 

work, are the JM equation in (3 + 1)-

dimensions which was proposed by Jimbo and 

Miwa [2], that is 
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,03233  xzytxyxxxyxxxy uuuuuuu      (2) 

The PYTSF equation in (3 + 1)-dimensions 

was introduced by Yu and his collaborators [3], 

reads    

              

,03244  yyzxxxzxxxxzxt uuuuuuu
     

 (3) 

 

and the GSW equation in (3 + 1)-dimensions 

was given by Tian and Gao [4], this is given by  

   ,033  xzytxyxyxxxy uuuuuu
       

      (4) 

The JM equation (2), the PYTSF equation (3) 

and the GSW equation (4) are all of fourth 

order nonlinear equations they describe waves 

propagate in three spatial dimensions. These 

equations have attracted researchers from many 

fields and many approaches have been used to 

study and analyze the behavior of the solutions 

of these equations see for instances [5-13].  

This work is lined up as follows. In section 

two, a wave reduction variable is used to 

reduce the equations in higher dimensions, the 

combined KdV-nKdV, JM, PYTSF and GSW 

equations, to an ordinary differential equation 

in one variable, also in the same section we 

address how these equations are related and the 

relations for the parameters are stated. We 

move next to section three where solutions for 

the combined KdV-nKdV equation are 

established by showing how the solutions are 

built on the solutions of other equations. 

Conclusion is given in the last section. 

 

The connections among the reduced 

combined KdV-nKdV equation                   

and other reduced nonlinear 

equations  

                     The combined KdV-nKdV equation 1, that is 

                      

,0246  txxxtxxxxtxxxxxxxxt uuuuuuuuu       (5)                          

 

where u is a function of one field x  plus time t , 

can be transformed to an ordinary differential 

equation and that by reducing the number of 

independent variables of the equation to only 

one wave reduction variable by taking 

,),(),,,( txUtzyxu               (6) 

where 𝛼 and 𝛿 are arbitrary constants. 

Substituting into equation (5), after using chain 

rule, yields 

  ,024

6

22

343













UUUU

UUUUU
 

Integrating once 

     *

223 )(3)(

cU

UU













   
       (7) 

where 
*c

 

is a constant of integration. 

Rewriting the equation 

,011

2

1  CUBUAU     ,tx    (8) 

where   
)(

,
3

211




 
 BA   and 

   
*

31
)(

1
cC

 
 . 

The equation under reduction (8) by a wave 

reduction variable is similar to the transformed 

J M equation (2) in the travelling wave [5], that 

is 

,022

2

2  CUBUAU   

    
     ,wtczbyax                         (9) 

where  
ba

acbw
B

a
A

322

32
,

3 
       and    

     ,02 C  

although the roles of the parameters are not the 

same. By comparing the coefficients of the 
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equation (8) and the equation (9), one can 

deduce the following relations of the 

parameters 

,a
  and    ,

 3ac 2bw ab

 3ac) a(2bw-




         (10) 

where  a, b, c and w are arbitrary constants. 

Another form for (3+1)-dimensional Jimbo-

Miwa equation can be found in  [14], this is 

given by 

,032

333)(3 1



 

xzyt

yxyxxxxxxyxxxy

uu

uuuuuuuu
(11) 

Putting xvu   the equation becomes 

,032

)(33)(3





xxzxyt

xyxxxxxxxyxxxxxy

vv

vvvvvv
 

integrating once and setting the constant of 

integration to zero yields 

032333  xzytyxxxxxyxxxxy vvvvvvvv . 

Taking )(),( Utxv   and 

et, dzcy x   

where c, d and e are constants, the equation 

transforms 

,0)323(6   UdceUcUcU

integrating once gives 

,)323(3 *2 cUdcecUcU    

where 
*c is a constant of integration.  

Rewriting the equation 

          ,0*

2

*

2

2*

2  CUBUAU   

       
      ,etdzcyx                       (12) 

where  

c

dce
BA

)323(
,3 *

2

*

2


  and 

c

c
C

*
*

2  . 

Comparing equation (12) and the equation (8) 

leads to the relations  

 1   and  .
)332(

)332(
2

3






dcec

dce




    (13)  

The connection of the reduced combined KdV-

nKdV equation (8) and the reduced (3 + 1)-

dimensional PYTSF equation in [9], that is 

 

       ,033

2

3  CUBUAU    

         ,wtczbyax                        (14) 

where  

 
ca

awb
BA

3

2

33

43
,

3 



  and  .03 C  

By comparing the coefficients of the 

equation (8) and the equation (14) leads to 

the relations  

 a   and   
awbac

awba

43

)43(
2

2




           (15) 

where a, b, c, and w are constants.  

The link of the reduced combined KdV-nKdV 

equation (8) and the reduced (3 + 1)-

dimensional GSW equation in [10] this given 

by  

        ,044

2

4  CUBUAU      

         ,Vtzyx                          (16) 

where  

   )1(,3 44  VBA  and  .44 CC   

Comparing the coefficients of the equation 

(8) and the equation (16) gives the relations  

      1  and    ,
2

1






V

V
            (17) 

where V  is a constant.  

In the next section, we shall use these relations 

among these equations to construct solutions 
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for the combined KdV-nKdV equation.  

 Solutions for the combined KdV-

nKdV equation  

This section is dedicated to get solutions for 

the combined KdV-nKdV equation. The 

strategy for obtaining exact solutions is built 

on the links among the reduced combined 

KdV-nKdV equation and the solutions of 

other reduced nonlinear equations in the 

travelling wave.  

According to a transformed rational 

function method which was applied by Wen 

and Jhn [5], and based on the relations of 

the parameters  in (10), we obtain the 

following solutions for the combined KdV-

nKdV equation  

 

Solution I 

      

,
1

,
)exp(1

2
),(

2

3

tx

D
A

txu



















                   

where all the constants are arbitrary. 

Solution II 

      

,
91

27
3

,
)exp(4

24
),(

2

3

2

t
B

B
Bx

DB
CB

B
txu














       

where all the constants are arbitrary. 

Solution III 

        
,

41

4

,)tan(2),(

2

3

tx

Dtxu













 

where all the constants are arbitrary. 

 

Solution IV 

    

,
41

4

,
3

4
)tan(2),(

2

3

tx

Dtxu













  

where all the constants are arbitrary. 

Solution V 

      
,

41

4

,)cot(2),(

2

3

tx

Dtxu













  

where all the constants are arbitrary. 

 

Solution VI 

      

,
41

4

,
3

4
)cot(2),(

2

3

tx

Dtxu













             

where all the constants are arbitrary. 

 

Solution VII 

 

     
,

41

4

,)tan(2),(

2

3

tx

Dtxu













                      

where all the constants are arbitrary. 

Solution VIII 

     

,
41

4

,
3

4
)tan(2),(

2

3

tx

Dtxu













            

where all the constants are arbitrary. 

Solution VIIII 

        𝑢(𝑥, 𝑡) = 2𝛼 coth(𝜁) + 𝐷 ,   

            𝜁 = 𝑎𝑥 − 
4𝛼3

1+4𝛼2
𝑡, 

where all the constants are arbitrary 

Solution IX 

𝑢(𝑥, 𝑡) = 2𝛼 coth(𝜁) −
4

3
𝛼𝜁 + 𝐷 ,       

            𝜁 = 𝑎𝑥 − 
4𝛼3

−1+4𝛼2
𝑡,             

where all the constants are arbitrary.  

 According to a generalization of the  
𝐺′

𝐺
 

expansion method which was used by Zhang 
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[13], and taking into account the relation in 

(10), the solutions for the combined KdV –

nKdV equation  

Solution XI 

𝑢(𝑥, 𝑡) =  𝛼√𝜆2 − 4𝜇tanh (
1

2
√λ2 − 4μζ

+ ln C) −
1

3
α(λ2 − 4μ)ζ + D       

and  

𝑢(𝑥, 𝑡)

=  𝛼√λ2 − 4μ {tanh (√λ2 − 4μζ + ln C) 

± isech (√λ2 − 4μζ + ln C)} −
1

3
α(λ2 − 4μ)ζ

+ D                                                           

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

1−𝛼2(𝜆2−4𝜇)
𝑡  and all the 

constants are arbitrary.  

Solution XII 

𝑢(𝑥, 𝑡) =  𝛼√𝜆2 − 4𝜇 coth (
1

2
√λ2 − 4μζ

+
1

2
ln(−C)) −

1

3
α(λ2 − 4μ)ζ

+ D 

and 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ {tanh (√λ2 − 4μζ

+ ln (−C)) 

± isech (√λ2 − 4μζ

+ ln(−C))}
−1

−
1

3
α(λ2 − 4μ)ζ

+ D 

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

1−𝛼2(𝜆2−4𝜇)
𝑡 , 𝐶 < 0  and all 

the constants are arbitrary.  

solution XIII 

𝑢(𝑥, 𝑡) =  𝛼√𝜆2 − 4𝜇 coth (
1

2
√λ2 − 4μζ)

−
1

3
α(λ2 − 4μ)ζ + D       

and 

𝑢(𝑥, 𝑡)

=  𝛼√λ2 − 4μ {tanth (√λ2 − 4μζ)

± isech (√λ2 − 4μζ)}
−1

   −
1

3
α(λ2 − 4μ)ζ

+ D                                                                        

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

1−𝛼2(𝜆2−4𝜇)
𝑡  and all the 

constants are arbitrary  

Solution XIV 

𝑢(𝑥, 𝑡) =  𝛼√𝜆2 − 4𝜇 tanh (
1

2
√λ2 − 4μζ)

−
1

3
α(λ2 − 4μ)ζ + D,       

and 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ {tanh (√λ2 − 4μζ)

± isech (√λ2 − 4μζ)} 

                                - 
1

3
α(λ2 − 4μ)ζ + D            

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary.  

Solution XV 

𝑢(𝑥, 𝑡) =  −𝛼√4μ − λ2tan {
1

2
 √4μ − λ2ζ

− tan−1(C)} −
1

3
α(λ2 − 4μ)ζ

+ D, 

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary.  

Solution XVI 
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𝑢(𝑥, 𝑡) =  𝛼√4μ − λ2cot {
1

2
 √4μ − λ2ζ +

               tan−1(C)} −
1

3
α(λ2 − 4μ)ζ + D,                        

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

1−𝛼2(𝜆2−4𝜇)
𝑡   and  all the 

constants are arbitrary . 

Solution XVII 

𝑢(𝑥, 𝑡) =  𝛼√𝜆2 − 4𝜇 tanh (
1

2
√λ2 − 4μζ

+
1

2
ln C) + D,    

and 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ {tanh (√λ2 − 4μζ

+ ln C) 

± isech (√λ2 − 4μζ + ln C)}

+ 𝐷,     

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

−1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary.  

Solution XVII 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ coth {
1

2
 √λ2 − 4μζ +

                    
1

2
ln(−C)} + D,   

and 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ {tanth (√λ2 − 4μζ

+ ln (−C)) 

± isech (√λ2 − 4μζ

+ ln(−C))}
−1

+  D   

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

−1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary . 

Solution XIX 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ coth {
1

2
 √λ2 − 4μζ}

+ D ,                                           

and 

𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ {tanh (√λ2 − 4μζ)

± isech (√λ2 − 4μζ)}
−1

+ D  ,                   

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

−1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary . 

Solution XX 

 𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ 𝑡𝑎𝑛ℎ {
1

2
 √λ2 − 4μζ} 

  +D,    

and 

 𝑢(𝑥, 𝑡) =  𝛼√λ2 − 4μ {tanh (√λ2 − 4μζ)

± isech (√λ2 − 4μζ)}

+ 𝐷,                      

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

−1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary.  

Solution XXI 

  𝑢(𝑥, 𝑡) = − 𝛼√4μ − λ2 𝑡𝑎𝑛 {
1

2
 √4μ − λ2ζ −

                      tan−1(C)} + D,               

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

−1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary.  

Solution XXII 

   𝑢(𝑥, 𝑡) =  𝛼√4μ − λ2 𝑐𝑜𝑡 {
1

2
 √4μ − λ2ζ −

                                            tan−1(C)} + D,   

where  𝜁 = 𝛼𝑥 + 
𝛼3(𝜆2−4𝜇)

−1−𝛼2(𝜆2−4𝜇)
𝑡 and all the 

constants are arbitrary.  

According to [9] and based on the relations of 

the parameters in (15), the solutions for the 

combined KdV – nKdV equation  

Solution XXII 
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    𝑢(𝑥, 𝑡) =  
−2𝛼

1+2𝐷∗ exp(𝜁)
+ 𝐷, 

      𝜁 = 𝛼𝑥 − 
𝛼3

1 + 𝛼2
𝑡,          

where all the constants are arbitrary . 

Solution XXIV 

     𝑢(𝑥, 𝑡) =
−24𝐴∗2

4𝐴∗−𝐵∗ exp(𝜁)
+ 𝐴∗𝜁 + 𝐷,  

𝜁 = −3𝐴∗𝑥 +
27𝐴∗3

−1 + 9𝐴∗2
𝑡,         

where all the constants are arbitrary . 

Solution XXV 

       𝑢(𝑥, 𝑡) = 2𝛼√−𝜎 tanh(√−𝜎𝜁) + 𝐷, 𝜁

= 𝛼𝑥 −
4𝛼3𝜎

−1 + 4𝛼2𝜎
𝑡, 𝜎 < 0,  

where all the constants are arbitrary . 

Solution XXVI 

 𝑢(𝑥, 𝑡) = 2𝛼√−𝜎 coth(√−𝜎𝜁) + 𝐷,  

          𝜁 = 𝛼𝑥 −
4𝛼3𝜎

−1 + 4𝛼2𝜎
𝑡 , 𝜎 < 0             

where all the constants are arbitrary . 

Solution XXVII 

𝑢(𝑥, 𝑡) = 2𝛼√−𝜎 tanh(√−𝜎𝜁)

+ 2𝛼√−𝜎 coth(√−𝜎𝜁) + 𝐷, 

Where   𝜁 = 𝛼𝑥 −
16𝛼3𝜎

−1+16𝛼2𝜎
𝑡 , 𝜎 < 0    and  all 

the constants are arbitrary . 

Solution XXVIII 

𝑢(𝑥, 𝑡) = 2𝛼√−𝜎 tanh(√−𝜎𝜁) +
4

3
𝛼𝜎𝜁 + 𝐷, 

                 𝜁 = 𝛼𝑥 −
4𝛼3𝜎

1+4𝛼2𝜎
𝑡 , 𝜎 < 0     

where all the constants are arbitrary . 

Solution XXIX 

𝑢(𝑥, 𝑡) = 2𝛼√−𝜎 coth(√−𝜎𝜁) +
4

3
𝛼𝜎 + 𝐷, 

𝜁 = 𝛼𝑥 −
4𝛼3𝜎

1 + 4𝛼2𝜎
𝑡 , 𝜎 < 0    

where all the constants are arbitrary . 

Solution XXX 

𝑢(𝑥, 𝑡) = 2𝛼√−𝜎 tanh(√−𝜎𝜁)

+ 2𝛼√−𝜎 coth(√−𝜎𝜁)

+
16

3
𝛼𝜎𝜁 + 𝐷,                

where 𝜁 = 𝛼𝑥 −
16𝛼3𝜎

1+16𝛼2𝜎
𝑡 , 𝜎 < 0            all the 

constants are arbitrary . 

Solution XXXI 

      𝑢(𝑥, 𝑡) = −2𝛼√𝜎 tan(√𝜎𝜁) + 𝐷, 

         𝜁 = 𝛼𝑥 −
4𝛼3𝜎

1+4𝛼2𝜎
𝑡 , 𝜎 > 0                 

Where all the constants are arbitrary . 

Solution XXXII 

       𝑢(𝑥, 𝑡) = 2𝛼√𝜎 cot(√𝜎𝜁) + 𝐷, 

𝜁 = 𝛼𝑥 −
4𝛼3𝜎

−1 + 4𝛼2𝜎
𝑡 , 𝜎 > 0        

where all the constants are arbitrary . 

Solution  XXXIII 

𝑢(𝑥, 𝑡) = −2𝛼√𝜎 tan(√𝜎𝜁)

+ 2𝛼√𝜎 cot(√𝜎𝜁)

+ 𝐷,                                             

where 𝜁 = 𝛼𝑥 −
16𝛼3𝜎

−1+16𝛼2𝜎
𝑡 , 𝜎 > 0     and  all 

the constants are arbitrary . 

Solution XXXIV 
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𝑢(𝑥, 𝑡) = −2𝛼√𝜎 tan(√𝜎𝜁) +
4

3
𝛼𝜎𝜁 + 𝐷, 

𝜁 = 𝛼𝑥 −
4𝛼3𝜎

1 + 4𝛼2𝜎
𝑡 , 𝜎 > 0    

where all the constants are arbitrary . 

Solution XXXV 

𝑢(𝑥, 𝑡) = 2𝛼√𝜎 cot(√𝜎𝜁) +
4

3
𝛼𝜎𝜁 + 𝐷, 

𝜁 = 𝛼𝑥 −
4𝛼3𝜎

1 + 4𝛼2𝜎
𝑡 , 𝜎 > 0   

where all the constants are arbitrary . 

Solution XXXVI 

𝑢(𝑥, 𝑡) = −2𝛼√𝜎 tanh(√𝜎𝜁)

+ 2𝛼√𝜎 coth(√𝜎𝜁) +
16

3
𝛼𝜎𝜁

+ 𝐷,    

where 𝜁 = 𝛼𝑥 −
4𝛼3𝜎

1+4𝛼2𝜎
𝑡 , 𝜎 > 0    and   all the 

constants are arbitrary . 

Solution XXXVII 

𝑢(𝑥, 𝑡) =  −2𝛼𝑠2∫ sn2(ζ1, s)dζ1

𝜁

0

−
2

3
α (−1 − s2

±√(s4 − s2 + 1)) ζ + D,    

                        ζ = αx +
2𝛼3√1+26𝑠2+𝑠4

−1+4α2√1+26𝑠2+𝑠4
t, 

where all the constants are arbitrary . 

Solution XXXVIII 

  𝑢(𝑥, 𝑡)

=  −2𝛼∫

(𝑠2sn2(ζ1, s) + ns
2(ζ1, s))dζ1

−
2

3
α(

−1 − s2

±√(s4 − s2 + 1)
) ζ 

  +D,         

𝜁

0

 

  

ζ = αx +
2𝛼3√1 + 11𝑠2 + 𝑠4

−1 + 4α2√1 + 11𝑠2 + 𝑠4
t, 

where all the constants are arbitrary . 

Solution XXXVIX 

𝑢(𝑥, 𝑡) =  −𝛼s∫ (𝑠sn2(ζ1, s)
𝜁

0

± cn(ζ1, s)dn(ζ1, s))dζ1

−
1

6
α (−1 − s2

± √(s4 + 14s2 + 1)) ζ + D,    

                 ζ = αx +
2𝛼3√1+26𝑠2+𝑠4

−1+4α2√1+26𝑠2+𝑠4
t, 

where all the constants are arbitrary . 

Solution XL 

𝑢(𝑥, 𝑡)

=  −𝛼∫ (s2sn2(ζ1, s) + ns
2(ζ1, s)

𝜁

0

± scn(ζ1, s)dn(ζ1, s) ± cs(ζ1, s)ds(ζ1, s))dζ1

−
1

6
α (−1 − s2 ± 6s

± √(s4 ± 60s(1 + s2) + 134s2 + 1)) ζ

+ D,       

      ζ = αx +
√1+60𝑠+134𝑠2+60𝑠3+𝑠4

−1+4α2√1+60𝑠+134𝑠2+60𝑠3+𝑠4
t, 

where all the constants are arbitrary . 

According to [8] and by applying  the relations 

of the parameters in (15), the solutions for 

combined KdV – nKdV equation 

Solution XLI 

     𝑢(𝑥, 𝑡) =  
−4√Aexp (±2√Aζ)

±16√AB∓exp±2√Aζ
+ α0,         

where 𝜁 = 𝑥 −
4𝐴

1+4𝐴
𝑡  and  all the constants are 

arbitrary . 

Solution XLII 
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𝑢(𝑥, 𝑡)

=  

−4√𝐴 {
−2cosh(√𝐴𝜁) sinh(√𝐴𝜁)

+2𝑐𝑜𝑠ℎ2(√𝐴𝜁) − 1
}

2𝑐𝑜𝑠ℎ2(√𝐴𝜁) − 2 cosh(√𝐴𝜁) sinh(√𝐴𝜁)

−3
+ 𝐵,   

where 𝜁 = 𝑥 −
4𝐴

1+4𝐴
𝑡     and all the constants 

are arbitrary . 

According to [7] and by calling  the relations 

in (15), the solutions for combined KdV – 

nKdV equation 

Solution XLIII 

𝑢(𝑥, 𝑡) =  𝐴 + 2√−𝜇(1 + 𝜇𝜆2) 

(
tanh(𝐵 + √−𝜇𝜁)

1 + 𝜆√−𝜇 tanh(𝐵 + √−𝜇𝜁)
) ,  

and 

𝑢(𝑥, 𝑡)
=  𝐴

+ 2√−𝜇(1

+ 𝜇𝜆2) (
coth(𝐵 + √−𝜇𝜁)

1 + 𝜆√−𝜇 coth(𝐵 + √−𝜇𝜁)
),     

where𝜁 = 𝑥 −
4𝜇

−1+4𝜇
𝑡,    𝜇 < 0           and  all 

the constants are arbitrary . 

Solution XLIV 

𝑢(𝑥, 𝑡) =  𝐴 + √−𝜇(tanh(𝐵 + √−𝜇𝜁)

± 𝑖𝑠𝑒𝑐ℎ(𝐵 + √−𝜇𝜁))  ,               

and 

𝑢(𝑥, 𝑡) =  𝐴 + √−𝜇(coth(𝐵 + √−𝜇𝜁)

± 𝑐𝑠𝑐ℎ(𝐵 + √−𝜇𝜁)),                  

where 𝜁 = 𝑥 −
𝜇

−1+𝜇
𝑡, 𝜇 < 0     and  all the 

constants are arbitrary . 

Solution XLV 

  𝑢(𝑥, 𝑡) =  𝐴 + 2√−𝜇(𝜆√−𝜇 + coth(𝐵

+ √−𝜇𝜁)) ,                          

and 

       𝑢(𝑥, 𝑡) =  𝐴

+ 2√−𝜇(𝜆√−𝜇 + tanh(𝐵

+ √−𝜇𝜁)),                                 

where 𝜁 = 𝑥 −
4𝜇

−1+4𝜇
𝑡, 𝜇 < 0   and    all the 

constants are arbitrary . 

Solution XLVI 

𝑢(𝑥, 𝑡) =  𝐴 + 2√−𝜇(tanh(𝐵 + √−𝜇𝜁)

+ coth(𝐵 + √−𝜇𝜁)),                  

where 𝜁 = 𝑥 −
16𝜇

−1+16𝜇
𝑡, 𝜇 < 0     and   all the 

constants are arbitrary . 

Solution XLVII 

𝑢(𝑥, 𝑡) =  𝐴 + √−𝜇(tanh(𝐵 + √−𝜇𝜁)

± 𝑖𝑠𝑒𝑐ℎ(𝐵 + √−𝜇𝜁))

+ 𝜆√−𝜇         

and 

𝑢(𝑥, 𝑡) =  𝐴 + √−𝜇(coth(𝐵 + √−𝜇𝜁)

± 𝑐𝑠𝑐ℎ(𝐵 + √−𝜇𝜁))

+ 𝜆√−𝜇 ,              

where 𝜁 = 𝑥 −
𝜇

−1+𝜇
𝑡, 𝜇 < 0  and  all the 

constants are arbitrary . 

Solution XLVIII 

𝑢(𝑥, 𝑡) =  𝐴 + 2√𝜇(1 + 𝜇𝜆2) 

                 (
tan(𝐵−√𝜇𝜁)

1+𝜆√𝜇 tan(𝐵−√𝜇𝜁)
)                

   and 

𝑢(𝑥, 𝑡) =  𝐴 + 2√𝜇(1 + 𝜇𝜆2) 
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               (
cot(𝐵 + √𝜇𝜁)

1 + 𝜆√𝜇 cot(𝐵 + √𝜇𝜁)
)  

Where 𝜁 = 𝑥 −
4𝜇

−1+4𝜇
𝑡, 𝜇 < 0       and  all the 

constants are arbitrary . 

Solution XLIX 

𝑢(𝑥, 𝑡) =  𝐴 + √𝜇(tan(𝐵 − √𝜇𝜁) ± 𝑠𝑒𝑐(𝐵

− √𝜇𝜁))          

and 

𝑢(𝑥, 𝑡) =  𝐴 + √𝜇(cot(𝐵 + √𝜇𝜁) ± 𝑐𝑠𝑐(𝐵

+ √𝜇𝜁))         

where  , 𝜁 = 𝑥 −
𝜇

−1+𝜇
𝑡  and all the constants 

are arbitrary . 

Solution L  

𝑢(𝑥, 𝑡) =  𝐴 + 2√𝜇(𝜆√𝜇 + cot(𝐵

+ √𝜇𝜁))          

and 

𝑢(𝑥, 𝑡) =  𝐴 + 2√𝜇(𝜆√𝜇 + tan(𝐵

− √𝜇𝜁)) ,         

where 𝜁 = 𝑥 −
4𝜇

−1+4𝜇
𝑡  and all the constants 

are arbitrary . 

Solution LI 

𝑢(𝑥, 𝑡) =  𝐴 + 2√𝜇(tan(𝐵 − √𝜇𝜁)

− cot(𝐵 − √𝜇𝜁)),         

Where  𝜁 = 𝑥 −
16𝜇

−1+16𝜇
𝑡        and     all the 

constants are arbitrary . 

Solution LII 

𝑢(𝑥, 𝑡) =  𝐴 − √𝜇(tan(𝐵 + √𝜇𝜁)

± 𝑠𝑒𝑐(𝐵 + √𝜇𝜁))

+ 𝜆√𝜇         (84) 

and 

𝑢(𝑥, 𝑡) =  𝐴 − √𝜇(cot(𝐵 − √𝜇𝜁)

± 𝑐𝑠𝑐(𝐵 + √𝜇𝜁)) + 𝜆√𝜇          

where      𝜁 = 𝑥 −
𝜇

−1+𝜇
𝑡     and   all the 

constants are arbitrary . 

According to [10] and based on the relations in 

(17), we have the following for solutions for 

the combined KdV – nKdV equation 

Solution LII, when   𝜆2 − 4𝜇 > 0 

𝑢(𝑥, 𝑡) =

−√𝜆2 − 4𝜇 {
−𝐴∗𝑐𝑜𝑠ℎ (

1

2
√𝜆2−4𝜇𝜁)+𝐵∗𝑠𝑖𝑛ℎ(

1

2
√𝜆2−4𝜇𝜁)

𝐴∗𝑠𝑖𝑛ℎ (
1

2
√𝜆2−4𝜇𝜁)+𝐵∗𝑐𝑜𝑠ℎ(

1

2
√𝜆2−4𝜇𝜁)

} +

+𝜆,   

where  𝜁 = 𝛼𝑥 −
𝝀𝟐−𝟒𝝁

𝝀𝟐−𝟒𝝁+1
𝑡, 𝛼 = −1   and all 

the constants are arbitrary. 

Solution LIII, when 𝜆2 − 4𝜇 < 0 

𝑢(𝑥, 𝑡)

=  −√4μ − λ2

{
  
 

  
 −𝐴

∗ sin (
1
2√4μ − λ

2𝜁)

+𝐵∗𝑐𝑜𝑠 (
1
2√4μ − λ

2𝜁)

𝐴∗ cos (
1
2√4μ − λ

2𝜁)

+𝐵∗𝑠𝑖𝑛 (
1
2√4μ − λ

2𝜁)}
  
 

  
 

  

+ 𝛼0  + 𝜆,   

where  𝜁 = 𝛼𝑥 −
𝝀𝟐−𝟒𝝁

𝝀𝟐−𝟒𝝁+1
𝑡, 𝛼 = −1   and all 

the constants are arbitrary . 

According to modification of Fan sub– 

equation method which was applied by Zhang 

and Peng  [6] ,the  solutions for the combined 

KdV – nKdV equation 

Solution LIV  

𝑢(𝑥, 𝑡)

=  
2𝛼𝑘2𝑠

2

𝑠2 + 1
∫ 𝑐𝑛2(√

𝑘2
2𝑠2 − 1

𝜁

0

𝜁1, 𝑠)𝑑𝜁1−
2

3
(𝛼𝑘2

±√𝛼2𝑘2
2 − 3𝛼2𝑘0𝑘4)𝜁 + 𝐷,  
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ζ = 𝛼𝑥 −
4𝛼2√−𝛼2(−𝑘2

2 + 3𝑘0𝑘4)

±1 + 4𝛼√−𝛼2(−𝑘2
2 + 3𝑘0𝑘4)

𝑡, 

where 𝑘0 = 𝛼𝑥 −
1−𝑠2

(2𝑠2−1)2
 , 𝑘4 < 0, 𝑘2 > 0  

and all the constants are arbitrary . 

Solution LV 

𝑢(𝑥, 𝑡) =  
2𝛼𝑘2𝑠

2

𝑠2 + 1
∫ 𝑠𝑛2(√

−𝑘2
2𝑠2 − 1

𝜁

0

𝜁1, 𝑠)𝑑𝜁1

−
2

3
(𝛼𝑘2

±√𝛼2𝑘2
2 − 3𝛼2𝑘0𝑘4)𝜁 + 𝐷,  

ζ = 𝛼𝑥 −
4𝛼2√−𝛼2(−𝑘2

2 + 3𝑘0𝑘4)

±1 + 4𝛼√−𝛼2(−𝑘2
2 + 3𝑘0𝑘4)

𝑡, 

where 𝑘0 =
𝒌𝟐
𝟐𝒔𝟐

2𝑘4(𝑠2+1)
 , 𝑘4 < 0, 𝑘2 > 0 and all 

the constants are arbitrary . 

Now , going back to the reduced combined 

KdV – nKdV equation (7), that is 

     𝛼3(𝛼 + 𝛿)𝑈𝜁𝜁𝜁 + 3𝛼
2(𝛼 + 𝛿)𝑈𝜁

2 

                            +𝛼𝛿𝑈𝜁 = 𝑐∗.       

Taking  𝑈𝜁 = 𝑉 the equation becomes the equation becomes  𝑈𝜁 = 𝑉 Taking     

𝛼3(𝛼 + 𝛿)𝑉𝜁𝜁 + 3𝛼
2(𝛼 + 𝛿)𝑉2 + 𝛼𝛿𝑉 = 𝑐∗, 

multiplying by 𝑉𝜁  yields 

𝛼3(𝛼 + 𝛿)𝑉𝜁𝑉𝜁𝜁 + 3𝛼
2(𝛼 + 𝛿)𝑉𝜁𝑉

2 + 𝛼𝛿𝑉𝜁𝑉

= 𝑐∗𝑉𝜁 , 

integrating once  

1

2
𝛼3(𝛼 + 𝛿)𝑉𝜁

2 + 𝛼2(𝛼 + 𝛿)𝑉3 +
1

2
𝛼𝛿𝑉2

= 𝑐∗𝑉 + 𝑐∗∗, 

where   𝑐∗∗  is a constant of integration. 

Rewriting the equation  

  𝑉𝜁
2 = −

2

𝛼
𝑉3 −

𝛿

𝛼2(𝛼+𝛿)
𝑉2 +

2𝑐∗

𝛼3(𝛼+𝛿)
𝑉 +

                                                              
2𝑐∗∗

 𝛼3(𝛼+𝛿)
 .     

The solution for the last equation is well known 

in the literature see for instance the classic 

book of Whittaker and Watson [15], and can be 

given in terms of Weierstrass double periodic 

waves in the following form  

𝑉(𝜁) = −2𝛼℘(𝜁; 𝑔2, 𝑔3) −
𝛿

6𝛼(𝛼 + 𝛿)
, 

where Weierstrass elliptic function  ℘  satisfies 

the differential equation  

               ℘𝜁
2 = 4℘3 − 𝑔2℘− 𝑔3 

and the invariants of the Weierstrass function 

are given by  

𝑔2 =

18𝛼2𝛿3 + 18𝛼3𝛿2 + 432𝑐∗𝛼3𝛿 +
216𝑐∗𝛼2𝛿2 + 216𝑐∗𝛼4

54𝛼4(𝛼 + 𝛿)3
 

and  

𝑔3 =

−218𝑐∗∗𝛼2𝛿 − 108𝑐∗∗𝛼𝛿2 + 𝛿3

+18𝑐∗𝛿2 − 108𝑐∗∗𝛼3 + 18𝑐∗𝛼
54𝛼4(𝛼 + 𝛿)3

, 

where all the constants are arbitrary. As a result 

the solutions in terms of Weierstrass double 

periodic waves for the combined KdV-nKdV 

equation are established. 

 

Conclusions 
To sum up, families of solutions for the 

combined KdV-nKdV equation have been 

found. The results were built on the 

connections to some nonlinear equations in 

higher dimensions. We have shown that the 

solutions of the new integrable nonlinear 

equation, the combined KdV-nKdV equation, 

can be obtained by some analogues of solutions 

of the JM , PYTSF and GSW equations. These 

nonlinear equations actually are related to each 

other in the travelling wave; they belong to the 
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same class of nonlinear ordinary differential 

equation. The exact solutions for combined 

KdV-nKdV equation are represented in terms 

of solitary wave, periodic wave solutions by 

means of trigonometric functions and 

hyperbolic functions, and double periodic wave 

solutions by means of Jacobian elliptic 

functions and Weierstrass elliptic functions, 

although the solutions in terms of elliptic 

functions were not given in  simple forms.  

One may notice that each method that have 

been used in solving the nonlinear equations 

provide variety types of solutions, and by 

examining these approaches one may recognize 

the efficiency and reliability of such methods; 

however some methods give more general 

solutions than others. Finally we should say 

that some solutions may repeated or looked the 

same after using some equivalent relations, but 

we have written them to show the similarities 

and differences of the methods that have been 

used to solve these types of equations.  
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