The Solvability of the Continuous Classical Boundary Optimal Control of Couple Nonlinear Elliptic Partial Differential Equations with State Constraints

Jamil A. Ali Al-Hawasy ${ }^{*}$, Safaa J. Mohammed Al-Qaisi
Department of Mathematics, Faculty of Science, Mustansiriyah University, IRAQ
*Correspondent author email: jhawassy17@uomustansiriyah.edu.iq

ArticleInfo

Received 19/02/2018

Accepted
12/06/2018
Published 15/08/2019

Abstract

This paper concerns with, the proof of the existence and the uniqueness theorem for the solution of the state vector of couple of nonlinear elliptic partial differential equations by using the Minty-Browder theorem, where the continuous classical boundary control vector is given. Also the existence theorem of a continuous classical boundary optimal control vector governing by the couple of nonlinear elliptic partial differential equation with equality and inequality constraints is proved. The existence of the uniqueness solution of the couple of adjoins equations which are associated with the couple of the state equations with equality and inequality constraints are studied. The necessary and sufficient conditions theorem for optimality of the couple of nonlinear elliptic equations with equality and inequality constraints are proved by using the Kuhn-Tucker-Lagrange multipliers theorems.

Keywords: Classical boundary optimal control, couple of nonlinear elliptic partial differential equations, necessary and sufficient conditions.

الخلاصـة
يتناول هذا البحث مبر هنة وجود وحدانية الحل لمتجه الحالة لزوج من المعادلات التفاضلية الجزئية الغير خطية من النمط الاهليجي باستخدام مبر هنة مينتي- براودر عندما يكون متجه السيطرة الحدودية التقليدية المستمرة ثابنا". ايضا يتناول
 خطية بوجود فيدي التناوي والتباين. تمت دراسة مسالة وجود وحدانية الحل للمعادلة المر افقة لزوج المعادلات التفاضلية الجزئية الغير خطية من النمط الاهليجي بوجود قيدي التساوي والتباين. استخدمت مبرهنتي كان-ناكر -لاكرانج لبر هان

مبر هنتي الشرط الضروري والكافي لوجود السيطرة الامثلية الحدودية النقليدية المستمرة بوجود قيبي التساوي والتباين.

Introduction

The optimal control problems play an important role in many fields in the real life problems, for examples in robotics [1], in an electric power [2], in civil engineering [3], in Aeronautics and Astronautics [4], in medicine [5], in economic [6], in heat conduction [7], in biology [8] and many others fields.
This importance of optimal control problems encouraged many researchers interested to study the optimal control problems of systems are governed either by nonlinear ordinary differential equations as in [9] and [10] or by linear partial differential equations as in [11] or are governed by nonlinear partial differential equations either of a hyperbolic type as in [12]
or of a parabolic type as in [13] or by an elliptic type as in [14], or optimal control problem are governed either by a couple of nonlinear partial differential equations of a hyperbolic type as in [15] or of a parabolic type as in [16] or by an elliptic type as in [17], or of an elliptic type but involve a boundary control as in [18]. While the optimal control problem which, is considered in this work is an optimal boundary (Neumann boundary conditions NBCs) control problem governed by a couple of nonlinear partial differential equations of elliptic type.
This work is concerned at first with, the proof of existence and the uniqueness theorem of the state vector solution of a couple nonlinear
elliptic partial differential equations " CNLEPDEs" for a given continuous classical boundary control vector (CCBCV) using the Minty- Browder theorem. Second the existence theorem of a continuous classical boundary optimal control vector "CCBOCV" which is governing by the considered couple of nonlinear partial differential equation of elliptic type with equality and inequality constraints is proved. The existence and the uniqueness solution of the couple of adjoint vector equations associated with the couple of state equations with equality and inequality constraints are studied. The necessary conditions theorem for optimality and the sufficient conditions theorem for optimality of CNLEPDEs with equality and inequality constraints are proved via the Kuhn-TuckerLagrange multipliers theorems.

Description of the problem

Let $\Omega \subset \mathbb{R}^{2}$, with its boundary $\Gamma=\partial \Omega$ be Lipschitz. Consider the following continuous classical boundary optimal control consisting of CNLEPDEs "state equations" with NBCs

$$
\begin{gather*}
A_{1} y_{1}+a_{0}(x) y_{1}-b(x) y_{2}+f_{1}\left(x, y_{1}\right)= \tag{1}\\
f_{2}(x), \text { in } \Omega
\end{gather*}
$$

$$
\begin{gather*}
A_{2} y_{2}+b_{0}(x) y_{2}+b(x) y_{1}+h_{1}\left(x, y_{2}\right)= \tag{2}\\
h_{2}(x), \text { in } \Omega
\end{gather*}
$$

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j} \frac{\partial y_{1}}{\partial n}=u_{1}, \text { in } \Gamma \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j=1}^{n} b_{i j} \frac{\partial y_{2}}{\partial n}=u_{2}, \text { in } \Gamma \tag{4}
\end{equation*}
$$

With $A_{1} y_{1}=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial y_{1}}{\partial x_{i}}\right)$,

$$
A_{2} y_{2}=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(b_{i j}(x) \frac{\partial y_{2}}{\partial x_{i}}\right)
$$

where $\quad a_{0}(x), b_{0}(x), b(x), a_{i j}(x), b_{i j}(x) \in$ $C^{\infty}(\Omega), \quad$ and $\quad\left(u_{1}, u_{2}\right)=\left(u_{1}(x), u_{2}(x)\right) \in$ $\left(L^{2}(\Gamma)\right)^{2}$ is the classical boundary control vector, $\left(y_{1}, y_{2}\right)=\left(y_{1}(x), y_{2}(x)\right) \in\left(H^{1}(\Omega)\right)^{2}$ is the state vector, corresponding to the control vector, and $\left(f_{1}, h_{1}\right)=\left(f_{1}\left(x, y_{1}\right), h_{1}\left(x, y_{2}\right)\right) \in$ $\left(L^{2}(\Omega)\right)^{2} \quad$ and $\quad\left(f_{2}, h_{2}\right)=\left(f_{2}(x), h_{2}(x)\right) \in$ $\left(L^{2}(\Omega)\right)^{2}$ are a vector of functions.
The constraint on the controls is given by $\vec{u} \in \vec{W}, \vec{W} \subset\left(L^{2}(\Gamma)\right)^{2}$,
where $\vec{u}=\left(u_{1}, u_{2}\right)$ and $\vec{W}=W_{1} \times W_{2}$ with $\vec{W}=\vec{W}_{\vec{U}}=\left\{\vec{w} \in\left(L^{2}(\Gamma)\right)^{2} \mid \vec{w}=\left(w_{1}, w_{2}\right) \in\right.$ \vec{U} a.e. in $\Gamma\}$
where $\vec{U}=U_{1} \times U_{2}$, and $\forall i=1,2, U_{i} \subset \mathbb{R}$ is a convex and compact set, and
The cost functional is

$$
\begin{align*}
G_{0}(\vec{u})= & \iint_{\Omega}\left[g_{01}\left(x, y_{1}\right)+g_{02}\left(x, y_{2}\right)\right] d x_{1} d x_{2} \tag{5}\\
& +\int_{\Gamma}\left[g_{03}\left(x, u_{1}\right)+g_{04}\left(x, u_{2}\right)\right] d \gamma
\end{align*}
$$

The state constraints are

$$
\begin{align*}
& \begin{array}{l}
G_{1}(\vec{u})=\iint_{\Omega}\left[g_{11}\left(x, y_{1}\right)\right. \\
\left.\quad+g_{12}\left(x, y_{2}\right)\right] d x_{1} d x_{2} \\
\quad+\int_{\Gamma}\left[g_{13}\left(x, u_{1}\right)+g_{14}\left(x, u_{2}\right)\right] d \gamma=0
\end{array} \\
& \begin{array}{c}
G_{2}(\vec{u})=\iint_{\Omega}\left[g_{21}\left(x, y_{1}\right)\right. \\
\left.\quad+g_{22}\left(x, y_{2}\right)\right] d x_{1} d x_{2} \\
\quad+\int_{\Gamma}\left[g_{23}\left(x, u_{1}\right)+g_{24}\left(x, u_{2}\right)\right] d \gamma \leq 0
\end{array} \tag{6}
\end{align*}
$$

The set of admissible control is

$$
\begin{equation*}
\vec{W}_{A}=\left\{\vec{u} \in \vec{W} \mid G_{1}(\vec{u})=0, G_{2}(\vec{u}) \leq 0\right\} \tag{8}
\end{equation*}
$$

The CCBOCP is to find the minimum of (5) such that "s.t." the state constraints (6) and (7), i.e. to find \vec{u}
$\vec{u} \in \vec{W}_{A}$ and $G_{0}(\vec{u})=\min _{\vec{w} \in \vec{W}_{A}} G_{0}(\vec{w})$.
Let $\vec{V}=V \times V=H^{1}(\Omega) \times H^{1}(\Omega)$. We denote to the $(v, v)_{\Omega}\left((v, v)_{\Gamma}\right)$ and $\|v\|_{L^{2}(\Omega)}\left(\|v\|_{L^{2}(\Gamma)}\right)$ to be the inner product and the norm in $L^{2}(\Omega)\left(L^{2}(\Gamma)\right)$, by (v, v) and $\|v\|_{H^{1}(\Omega)}$ the inner product and the norm in $H^{1}(\Omega)$, by $(\vec{v}, \vec{v})_{\Omega}=$ $\sum_{i=1}^{2}\left(v_{i}, v_{i}\right)$ and $\|\vec{v}\|_{\left(L^{2}(\Omega)\right)^{2}}=\sum_{i=1}^{2}\left\|v_{i}\right\|_{L^{2}(\Omega)}$ the inner product and the norm in $L^{2}(\Omega) \times$ $L^{2}(\Omega), \quad$ by $\quad(\vec{v}, \vec{v})=\sum_{i=1}^{2}\left(v_{i}, v_{i}\right) \quad$ and $\|\vec{v}\|_{\left(H^{1}(\Omega)\right)^{2}}=\sum_{i=1}^{2}\left\|v_{i}\right\|_{H^{1}(\Omega)}$ the inner product and the norm in \vec{V} and \vec{V}^{*} is the dual of \vec{V}.

Weak Formulation of the State
 Equations

The weak form (WF) of problem (1-4) is obtained by multiplying both sides of (1-2) by $v_{1} \in V$ and $v_{2} \in V$ respectively, integrating both sides and then by using the generalize Green's theorem (in Hilbert Space) for the terms which have the $2^{\text {nd }}$ derivatives, once get.

$$
\begin{gather*}
a_{1}\left(y_{1}, v_{1}\right)+\left(a_{0} y_{1}, v_{1}\right)_{\Omega}-\left(b y_{2}, v_{1}\right)_{\Omega} \\
+\left(f_{1}\left(y_{1}\right), v_{1}\right)_{\Omega} \tag{9}\\
=\left(f_{2}, v_{1}\right)_{\Omega}+\left(u_{1}, v_{1}\right)_{\Gamma}, \forall v_{1} \in V
\end{gather*}
$$

And

$$
\begin{gather*}
a_{2}\left(y_{2}, v_{2}\right)+\left(b_{0} y_{2}, v_{2}\right)_{\Omega}+\left(b y_{1}, v_{2}\right)_{\Omega} \\
+\left(h_{1}\left(y_{2}\right), v_{2}\right)_{\Omega} \tag{10}\\
=\left(h_{2}, v_{2}\right)_{\Omega}+\left(u_{2}, v_{2}\right)_{\Gamma}, \forall v_{2} \in V
\end{gather*}
$$

Adding (9) with (10), get that

$$
\begin{gather*}
a(\vec{y}, \vec{v})+\left(f_{1}\left(y_{1}\right), v_{1}\right)_{\Omega}+\left(h_{1}\left(y_{2}\right), v_{2}\right)_{\Omega}= \\
\left(f_{2}, v_{1}\right)_{\Omega}+\left(u_{1}, v_{1}\right)_{\Gamma}+\left(h_{2}, v_{2}\right)_{\Omega}+\left(u_{2}, v_{2}\right)_{\Gamma} \tag{11}\\
\\
\forall\left(v_{1}, v_{2}\right) \in \vec{V}
\end{gather*}
$$

where $a(\vec{y}, \vec{v})=$

$$
\begin{aligned}
a_{1}\left(y_{1}, v_{1}\right)+ & \left(a_{0} y_{1}, v_{1}\right)_{\Omega}-\left(b y_{2}, v_{1}\right)_{\Omega} \\
& +a_{2}\left(y_{2}, v_{2}\right)+\left(b_{0} y_{2}, v_{2}\right)_{\Omega} \\
& +\left(b y_{1}, v_{2}\right)_{\Omega}
\end{aligned}
$$

with $a_{1}\left(y_{1}, v_{1}\right)=\sum_{i, j=1}^{n} a_{i j} \frac{\partial y_{1}}{\partial x_{i}} \cdot \frac{\partial v_{1}}{\partial x_{j}}$,
$a_{2}\left(y_{2}, v_{2}\right)=\sum_{i, j=1}^{n} b_{i j} \frac{\partial y_{2}}{\partial x_{i}} \cdot \frac{\partial v_{2}}{\partial x_{j}}$,
$a_{i}\left(y_{i}, y_{i}\right) \geq c_{i}\left\|y_{i}\right\|_{H^{1}(\Omega)}^{2}$, where $c_{i}>0, i=1,2$
$\left|a_{i}\left(y_{i}, v_{i}\right)\right| \leq \bar{c}_{i}\left\|y_{i}\right\|_{H^{1}(\Omega)}\left\|v_{i}\right\|_{H^{1}(\Omega)}$,
where $\bar{c}_{i}>0, i=1,2$.
The following assumptions are useful to prove the existence theorem of a unique solution of the weak form (11).
Assumptions (A):
a) $a(\vec{y}, \vec{v})$ is coercive,
i.e. $\frac{a(\vec{y}, \vec{y})}{\|\vec{y}\|_{\left(H^{1}(\Omega)\right)^{2}}} \geq c\|\vec{y}\|_{\left(H^{1}(\Omega)\right)^{2}}>0, \forall \vec{y} \in \vec{V}$
b) $|a(\vec{y}, \vec{v})| \leq \ell_{1}\|\vec{y}\|_{\left(H^{1}(\Omega)\right)^{2}}\|\vec{v}\|_{\left(H^{1}(\Omega)\right)^{2}}, \ell_{1}>0$, $\forall \vec{y}, \vec{v} \in \vec{V}$
c) f_{1} and h_{1} are of Carathéodory type " C.T." on $\Omega \times \mathbb{R}$ and satisfy the following conditions with respect to " w.r.t. " y_{1} and y_{2} respectively, i.e. for $\phi_{1}(x), \phi_{2}(x) \in L^{2}(\Omega)$, and $\bar{c}_{1}, \bar{c}_{2} \geq 0$:
$\left|f_{1}\right| \leq \phi_{1}+\bar{c}_{1}\left|y_{1}\right|, \forall\left(x, y_{1}\right) \in \Omega \times \mathbb{R}$
$\left|h_{1}\right| \leq \phi_{2}+\bar{c}_{2}\left|y_{2}\right|, \forall\left(x, y_{2}\right) \in \Omega \times \mathbb{R}$
d) f_{1} and h_{1} are monotone for each $x \in \Omega$ w.r.t. y_{1} and y_{2} respectively, and
$(x, 0)=0, h_{1}(x, 0)=0, \forall x \in \Omega$.
e) f_{2} and h_{2} are of C.T. on Ω and satisfy for $\phi_{3}(x), \phi_{4}(x) \in L^{2}(\Omega)$
$\left|f_{2}\right| \leq \phi_{3}$, and $\left|h_{2}(x)\right| \leq \phi_{4}, \forall x \in \Omega$.
Proposition (1)[19]: Let $f: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is of Carathéodory type, let F be a functional, s.t. $F(y)=\int_{\Omega} f(x, y(x)) d x$, where Ω is a measurable subset of \mathbb{R}^{n}, and suppose that $\|f(x, y)\| \leq \zeta(x)+\eta(x)\|y\|^{\alpha}$,

$$
\forall(x, y) \in \Omega \times \mathbb{R}^{n}, y \in L^{P}\left(\Omega \times \mathbb{R}^{n}\right)
$$

where $\zeta \in L^{1}(\Omega \times \mathbb{R}), \eta \in L^{\frac{P}{P-\alpha}}(\Omega \times \mathbb{R})$, and $\alpha \in[1, P]$, if $P \in[1, \infty)$, and $\eta \equiv 0$, if $P=\infty$. Then F is continuous on $L^{P}\left(\Omega \times \mathbb{R}^{n}\right)$.

Proposition (2)[19]: Let $f, f_{y}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are of the Carathéodory type, let $F: L^{p}(\Omega) \longrightarrow$ \mathbb{R} be a functional, s.t. $F(y)=\int_{\Omega} f(x, y(x)) d x$, where Ω is a measurable subset of \mathbb{R}^{d}, and
$\left\|f_{y}(x, y)\right\| \leq \zeta(x)+\eta(x)\|y\|^{\frac{\beta}{q}}$,
$\forall(x, y) \in \Omega \times \mathbb{R}^{n}$, where $\zeta \in L^{q}(\Omega \times \mathbb{R})$,
$\frac{1}{P}+\frac{1}{q}=1, \quad \eta \in L^{\frac{P q}{P-\beta}}(\Omega \times \mathbb{R}), \quad \beta \in[0, P], \quad$ if $P \neq \infty$, and $\eta \equiv 0$, if $P=\infty$.
Then the Fréchet derivative of F exists for each $y \in L^{P}\left(\Omega \times \mathbb{R}^{n}\right)$ and is given by
$\Phi^{\prime}(y) h=\int_{\Omega} f_{y}(x, y(x)) h(x) d x$.
Theorem (1) (Minty-Browder) [20]: Let V be a reflexive Banach space, and $A: V \rightarrow V^{*}$ be a continuous nonlinear map s.t.
$\left\langle A v_{1}-A v_{2}, v_{1}-v_{2}\right\rangle>0, \forall v_{1}, v_{2} \in V$,
$v_{1} \neq v_{2}$ and $\lim _{\|v\|_{H^{1}(\Omega)} \rightarrow \infty} \frac{\langle A v, v\rangle}{\|v\|_{H^{1}(\Omega)}}=\infty$.
Then for every $f \in V^{*}$, there exists a unique solution $y \in V$ of the equation $A y=f$.
Theorem (2) (Egorov's theorem) [18]: Let Ω be a measurable subset of $\mathbb{R}^{d}, \phi: \Omega \rightarrow \mathbb{R}$ and $\phi \in L^{1}(\Omega, \mathbb{R})$, if the following inequality is satisfied $\int_{S} \phi(x) d x \geq 0$ (or ≤ 0 or $=0$), for each measurable subset $S \subset \Omega$, then $\phi(x) \geq 0$ (or ≤ 0 or $=0$), a.e. in Ω.
Theorem (3): If the assumptions A are hold, and if the function f_{1} (or h_{1}) in (11) is strictly monotone, then for a given control $\vec{u} \in \vec{W}_{A}$, the w.f. (11) has a unique solution $\vec{y} \in \vec{V}$.

Proof: Let $\bar{A}: \vec{V} \rightarrow \vec{V}^{*}$. Then the w.f. (11) can rewrite as

$$
\begin{equation*}
\langle\bar{A}(\vec{y}), \vec{v}\rangle=(\vec{F}(\vec{u}), \vec{v}) \tag{12}
\end{equation*}
$$

where $\langle\bar{A}(\vec{y}), \vec{v}\rangle=a(\vec{y}, \vec{v})+\left(f_{1}\left(y_{1}\right), v_{1}\right)_{\Omega}+$ $\left(h_{1}\left(y_{2}\right), v_{2}\right)_{\Omega}$

$$
(\vec{F}(\vec{u}), \vec{v})=\left(f_{2}, v_{1}\right)_{\Omega}+\left(u_{1}, v_{1}\right)_{\Gamma}+
$$

$\left(h_{2}, v_{2}\right)_{\Omega}+\left(u_{2}, v_{2}\right)_{\Gamma}$
i) From assumptions $\mathrm{A}-(\mathrm{a} \& \mathrm{~d}), \bar{A}$ is coercive.
ii) From assumptions $\mathrm{A}-(\mathrm{b} \& \mathrm{c})$ and using
iii) Proposition (1) then \bar{A} is continuous w.r.t. \vec{y}.
From assumptions A-(a \& d) and part (i) \bar{A} is strictly monotone w.r.t. \vec{y}.

Then by Theorem (1), the uniqueness solution $\vec{y} \in \vec{V}$ of the w.f. (12) is obtained.

Existence of a Classical Optimal Boundary Control of CCBOCV

This section deals with the state and proof the existence theorem of CCBOCV with the suitable assumptions. Therefore, the following lemmas and assumptions are useful.
Lemma (1): If the assumptions (A) are hold, the functions f_{1}, h_{1} are Lipschitz w.r.t. y_{1} and y_{2} respectively, and if f_{2}, h_{2} are bounded. Then the mapping $\vec{u} \mapsto \vec{y} \vec{u}$ is Lipschitz continuous from \vec{W}_{A} into $\left(L^{2}(\Omega)\right)^{2}$, i.e.
$\|\overrightarrow{\Delta y}\|_{\left(L^{2}(\Omega)\right)^{2}} \leq L\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}}$, with $L>0$.
Proof: Let $\vec{u}, \vec{u}^{\prime} \in \vec{W}$ be two given controls vectors, and $\vec{y}, \vec{y}^{\prime}$ be their corresponding state solutions vectors (of the weak form (11)). Subtracting the above two obtained weak forms from (11), setting $\overrightarrow{\Delta y}=\vec{y}^{\prime}-\vec{y}$ and $\overrightarrow{\Delta u}=\vec{u}^{\prime}-$ \vec{u}, with $\vec{v}=\overrightarrow{\Delta y}$, then adding the obtained two equations, once get

$$
\begin{gather*}
a_{1}\left(\Delta y_{1}, \Delta y_{1}\right)+\left(a_{0} \Delta y_{1}, \Delta y_{1}\right)_{\Omega}+ \\
a_{2}\left(\Delta y_{2}, \Delta y_{2}\right)+\left(b_{0} \Delta y_{2}, \Delta y_{2}\right)_{\Omega} \\
+\left(f_{1}\left(y_{1}+\Delta y_{1}\right)-f_{1}\left(y_{1}\right), \Delta y_{1}\right)_{\Omega}+ \tag{13}\\
\left(h_{1}\left(y_{2}+\Delta y_{2}\right)-h_{1}\left(y_{2}\right), \Delta y_{2}\right)_{\Omega} \\
\quad=\left(\Delta u_{1}, \Delta y_{1}\right)_{\Gamma}+\left(\Delta u_{2}, \Delta y_{2}\right)_{\Gamma}
\end{gather*}
$$

Using assumptions, $\mathrm{A}-(\mathrm{a}, \mathrm{d})$, taking the absolute value for both sides of (13), it becomes

$$
\begin{gather*}
c\|\overrightarrow{\Delta y}\|_{\left(H^{\prime}(\Omega)\right)^{2}}^{2} \\
\leq \alpha_{1}\left\|\Delta y_{1}\right\|_{H^{\prime}(\Omega)}^{2}+\alpha_{2}\left\|\Delta y_{2}\right\|_{H^{\prime}(\Omega)}^{2}+0+0 \tag{14}\\
\leq\left|\left(\Delta u_{1}, \Delta y_{1}\right)_{\Gamma}\right|+\left|\left(\Delta u_{2}, \Delta y_{2}\right)_{\Gamma}\right|
\end{gather*}
$$

Using the Cauchy-Schwartz inequality and then the trace operator in (14), to get

$$
\begin{gather*}
c\|\overrightarrow{\Delta y}\|_{\left(H^{\prime}(\Omega)\right)^{2}} \leq 2 c_{1}\|\overrightarrow{\Delta u}\|_{\left(L^{2}(T)\right)^{2}}\|\overrightarrow{\Delta y}\|_{\left(H^{\prime}(\Omega)\right)^{2}} \tag{15}\\
\quad \Rightarrow\|\overrightarrow{\Delta y}\|_{\left(H^{\prime}(\Omega)\right)^{2}} \leq c_{2}\|\overrightarrow{\Delta u}\|_{\left(L^{2}(T)\right)^{2}}
\end{gather*}
$$

where $c_{2}=\frac{2 c_{1}}{c}$,which gives

$$
\begin{equation*}
\|\overrightarrow{\Delta y}\|_{\left(L^{2}(\Omega)\right)^{2}} \leq L\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}} \text { with } L=c c_{2} \tag{16}
\end{equation*}
$$

Assumption (B):

Assume that $g_{l 1}, g_{l 2}, g_{l 3}$ and $g_{l 4}$ are of C.T. on $\Omega \times \mathbb{R}, \quad \Omega \times \mathbb{R}, \quad \Omega \times U_{1} \quad$ and $\quad \Omega \times U_{2}$ respectively, and $\forall l=0,1,2$, are satisfy

$$
\begin{array}{r}
\left|g_{l 1}\left(x, y_{1}\right)\right| \leq \gamma_{l 1}(x)+c_{l 1} y_{1}^{2}, \\
\left|g_{l 2}\left(x, y_{2}\right)\right| \leq \gamma_{l 2}(x)+c_{l 2} y_{2}^{2}
\end{array}
$$

$\begin{array}{lr}\left|g_{l 3}\left(x, u_{1}\right)\right| \leq \gamma_{l 3}(x)+c_{l 3} u_{1}^{2}, & \text { and } \\ \left|g_{l 4}\left(x, u_{2}\right)\right| \leq \gamma_{l 4}(x)+c_{l 4} u_{2}^{2} & \\ \text { where } \quad \gamma_{l 1}, \gamma_{l 2}, \gamma_{l 3}, \gamma_{l 4} \in L^{1}(\Gamma) & \text { and } \\ c_{l 1}, c_{l 2}, c_{l 3}, c_{l 4} \geq 0 & \end{array}$
Lemma (2): If assumptions (B) are hold, then $(\forall l=0,1,2)$ the functional $G_{l}(\vec{u})$ is continuous on $\left(L^{2}(\Gamma)\right)^{2}$.
Proof: Set $\forall l=0,1,2$,
$p_{l 1}(x, \vec{y})=g_{l 1}\left(x, y_{1}\right)+g_{l 2}\left(x, y_{2}\right), \quad$ and $p_{l 2}(x, \vec{u})=g_{l 3}\left(x, u_{1}\right)+g_{l 4}\left(x, u_{2}\right)$,
From assumptions (B), and by using Proposition (1) on each of the functional $\iint_{\Omega} p_{l 1}(x, \vec{y}) d x_{1} d x_{2}$, and $\int_{\Gamma} p_{l 2}(x, \vec{u}) d \gamma$ are continuous on $\left(L^{2}(\Omega)\right)^{2}$ and on $\left(L^{2}(\Gamma)\right)^{2}$ respectively. Hence
$G_{l}(\vec{u})=\iint_{\Omega} p_{l 1}(x, \vec{y}) d x_{1} d x_{2}+\int_{\Gamma} p_{l 2}(x, \vec{u}) d \gamma$ is continuous on $\left(L^{2}(\Gamma)\right)^{2}$.

Theorem (4): If the assumptions (A) and (B) are hold, $\vec{W}_{A} \neq \emptyset, f_{1}\left(h_{1}\right)$ is independent of u_{1} $\left(u_{2}\right)$, and $f_{2}\left(h_{2}\right)$ is bounded functions, s.t. for $\phi_{1}(x) \in L^{2}(\Omega),\left(\phi_{2}(x) \in L^{2}(\Omega)\right)$ and $\bar{c}_{1} \geq 0$, $\left(\bar{c}_{2} \geq 0\right)$
$\left|f_{1}\right| \leq \phi_{1}+\bar{c}_{1}\left|y_{1}\right|,\left(\left|h_{1}\right| \leq \phi_{2}+\bar{c}_{2}\left|y_{2}\right|\right)$
$\left|f_{2}\right| \leq \kappa_{1}, \kappa_{1} \geq 0\left(\left|h_{2}\right| \leq \kappa_{2}, \kappa_{2} \geq 0\right)$.
$g_{11}\left(g_{12}\right)$ is independent of $u_{1}\left(u_{2}\right), g_{l 3}($ $\left.g_{l 4}\right)(\forall l=0,2)$ is convex w.r.t. u_{1} (w.r.t. u_{2}). Then there exists a CCBOCV.
Proof: The set W_{i} is convex and bounded $\forall i=1,2$, since U_{i} it is, then so is $W_{1} \times W_{2}$. On the other hand, and by Egorov's theorem, W_{i} $\forall i=1,2$ is closed since U_{i} it is, then $W_{1} \times W_{2}$ is closed, hence it is weakly compact " w.c.".
From the assumption on \vec{W}_{A}, there is an element $\vec{w} \in \vec{W}_{A}$ with $G_{1}(\vec{w})=0, G_{2}(\vec{w}) \leq 0$ and a minimum sequence $\left\{\vec{u}_{n}\right\}=$ $\left\{\left(u_{1 n}, u_{2 n}\right)\right\} \in \vec{W}_{A}$, for each n, s.t. $\lim _{n \rightarrow \infty} G_{0}\left(\vec{u}_{n}\right)=\inf _{\vec{w} \in \vec{W}} G_{0}(\vec{w})$.
But \vec{W} is w.c., this means that $\left\{\vec{u}_{n}\right\}$ has a subsequence say again $\left\{\vec{u}_{n}\right\}$ which
converges weakly to \vec{u} in \vec{W}.
Then from the proof of Theorem (3), corresponding to this sequence $\left\{\vec{u}_{n}\right\}$ there is a sequence of solutions $\left\{\vec{y}_{n}\right\}$ of the sequence of weak form:

$$
\begin{gather*}
a_{1}\left(y_{1 n}, v_{1}\right)+\left(a_{0} y_{1 n}, v_{1}\right)_{\Omega}-\left(b y_{2 n}, v_{1}\right)_{\Omega} \\
+a_{2}\left(y_{2 n}, v_{2}\right) \\
+\left(b_{0} y_{2 n}, v_{2}\right)_{\Omega} \\
+\left(b y_{1 n}, v_{2}\right)_{\Omega}+ \tag{17}\\
\left(f_{1}\left(y_{1 n}\right), v_{1}\right)_{\Omega}+\left(h_{1}\left(y_{2 n}\right), v_{2}\right)_{\Omega}= \\
\left(f_{2}, v_{1}\right)_{\Omega}+\left(u_{1 n}, v_{1}\right)_{\Gamma}+\left(h_{2}, v_{2}\right)_{\Omega} \\
+\left(u_{2 n}, v_{2}\right)_{\Gamma}
\end{gather*}
$$

s.t. $\left\|\vec{y}_{n}\right\|_{\left(H^{1}(\Omega)\right)^{2}}$ is bounded, for each n. Then $\left\{\vec{y}_{n}\right\}$ has a subsequence say again $\left\{\vec{y}_{n}\right\}$ s.t. $\vec{y}_{n} \rightarrow \vec{y}$ weakly in \vec{V} (Alaoglu theorem [22]). To prove that (17) converges to

$$
\begin{align*}
& a_{1}\left(y_{1}, v_{1}\right)+\left(a_{0} y_{1}, v_{1}\right)_{\Omega}-\left(b y_{2}, v_{1}\right)_{\Omega} \\
&+ a_{2}\left(y_{2}, v_{2}\right) \\
&+\left(b_{0} y_{2}, v_{2}\right)_{\Omega} \\
&+\left(b y_{1}, v_{2}\right)_{\Omega} \tag{18}\\
&+\left(f_{1}\left(y_{1}\right), v_{1}\right)_{\Omega} \\
&+\left(h_{1}\left(y_{2}\right), v_{2}\right)_{\Omega} \\
&=\left(f_{2}, v_{1}\right)_{\Omega}+\left(u_{1}, v_{1}\right)_{\Gamma}+\left(h_{2}, v_{2}\right)_{\Omega} \\
&+\left(u_{2}, v_{2}\right)_{\Gamma}
\end{align*}
$$

Let $\left(v_{1}, v_{2}\right) \in(C(\bar{\Omega}))^{2}$, and first for the left hand sides, since $y_{i n} \rightarrow y_{i}$ weakly in V_{i}, i.e. $y_{\text {in }} \rightarrow y_{i}$ weakly in $L^{2}(\Omega)$, for each $i=1,2$.
Then from the left hand sides of (17), (18) and by using Cauchy- Schwarz inequality, one has

$$
\begin{gather*}
\mid a_{1}\left(y_{1 n}, v_{1}\right)+\left(a_{0} y_{1 n}, v_{1}\right)_{\Omega}-\left(b y_{2 n}, v_{1}\right)_{\Omega} \\
+a_{2}\left(y_{2 n}, v_{2}\right) \\
+\left(b_{0} y_{2 n}, v_{2}\right)_{\Omega} \\
+\left(b y_{1 n}, v_{2}\right)_{\Omega}-a_{1}\left(y_{1}, v_{1}\right) \\
-\left(a_{0} y_{1}, v_{1}\right)_{\Omega}+\left(b y_{2}, v_{1}\right)_{\Omega} \\
-a_{2}\left(y_{2}, v_{2}\right)-\left(b_{0} y_{2}, v_{2}\right)_{\Omega} \\
-\left(b y_{1}, v_{2}\right)_{\Omega} \mid \tag{19}\\
\leq c_{1}\left\|y_{1 n}-y_{1}\right\|_{H^{1}(\Omega)}\left\|v_{1}\right\|_{H^{1}(\Omega)}+ \\
c_{2}\left\|y_{1 n}-y_{1}\right\|_{L^{2}(\Omega)}\left\|v_{1}\right\|_{L^{2}(\Omega)}+ \\
c_{3}\left\|y_{2 n}-y_{2}\right\|_{L^{2}(\Omega)}\left\|v_{1}\right\|_{L^{2}(\Omega)} \\
+c_{4}\left\|y_{2 n}-y_{2}\right\|_{H^{1}(\Omega)}\left\|v_{2}\right\|_{H^{1}(\Omega)}+ \\
c_{5}\left\|y_{2 n}-y_{2}\right\|_{L^{2}(\Omega)}\left\|v_{2}\right\|_{L^{2}(\Omega)} \\
+c_{6}\left\|y_{1 n}-y_{1}\right\|_{L^{2}(\Omega)}\left\|v_{2}\right\|_{L^{2}(\Omega)} \rightarrow 0
\end{gather*}
$$

From assumptions (B), and proposition (1) the functional $\quad \iint_{\Omega} f_{1}\left(x, y_{1 n}\right) v_{1} d x_{1} d x_{2} \quad$ and $\iint_{\Omega} h_{1}\left(x, y_{2 n}\right) v_{2} d x_{1} d x_{2}$ are continuous with respect to $y_{1 n}$ and $y_{2 n}$ respectively. But $\vec{y}_{n} \rightarrow \vec{y}$ weakly in $\left(L^{2}(\Omega)\right)^{2}$ (since $\vec{y}_{n} \rightarrow \vec{y}$ weakly in \vec{V}), then by using the compactness theorem (Rellich-Kondrachov theorem) in [21], once get that $\vec{y}_{n} \rightarrow \vec{y}$ strongly in $\left(L^{2}(\Omega)\right)^{2}$, and $\forall\left(v_{1}, v_{2}\right) \in(C(\bar{\Omega}))^{2}$, we have

$$
\begin{gather*}
\left(f_{1}\left(y_{1 n}\right), v_{1}\right)_{\Omega}+\left(h_{1}\left(y_{2 n}\right), v_{2}\right)_{\Omega} \rightarrow \tag{20a}\\
\left(f_{1}\left(y_{1}\right), v_{1}\right)_{\Omega}+\left(h_{1}\left(y_{2}\right), v_{2}\right)_{\Omega},
\end{gather*}
$$

i.e. the left-hand side of $(17) \rightarrow$ the left-hand side of (18)
Second, but $u_{1 n} \rightarrow u_{1}$ weakly in $L^{2}(\Gamma)$ and so as $u_{2 n} \rightarrow u_{2}$, then

$$
\begin{equation*}
\left(u_{1 n}-u_{1}, v_{1}\right)_{\Gamma}+\left(u_{2 n}-u_{2}, v_{2}\right)_{\Gamma} \rightarrow 0 \tag{20a}
\end{equation*}
$$

From (20a) and (20b) give us that (17) converges to (18).
But $(C(\bar{\Omega}))^{2}$ is dense in \vec{V}, then these convergences hold $\forall\left(v_{1}, v_{2}\right) \in \vec{V}$, which gives $\vec{y}=\vec{y}_{\vec{u}}$ satisfies the w.f. of the state equations.
From Lemma (2), the functional $G_{l}(\vec{u})$ is continuous on $\left(L^{2}(\Gamma)\right)^{2}, \forall l=0,1,2$.
From the assumptions on $g_{11}, g_{12}, G_{1}\left(\vec{u}_{n}\right)$ is continuous, and the strongly converges of $y_{1 n} \rightarrow y_{1}, y_{2 n} \rightarrow y_{2}$ in $L^{2}(\Omega)$, once get $G_{1}(\vec{u})=\lim _{n \rightarrow \infty} G_{1}\left(\vec{u}_{n}\right)=0$
Also, from the assumptions on $g_{l 1}\left(x, y_{1}\right)$ and $g_{l 3}\left(x, u_{1}\right) \quad(\forall l=0,1,2)$ and Lemma (2), the integrals $\quad \iint_{\Omega} g_{l 1}\left(x, y_{1}\right) d x_{1} d x_{2} \quad$ and $\int_{\Gamma} g_{l 3}\left(x, u_{1}\right) d \gamma$ are continuous w.r.t. y_{1} and u_{1} respectively, but $g_{l 3}\left(x, u_{1}\right)$, (for each $l=0,2$) is convex w.r.t. u_{1}, then $\int_{\Gamma} g_{l 3}\left(x, u_{1}\right) d \gamma$ is weakly lower semicontinuous "w.l.sc." w.r.t. u_{1}, and then

$$
\begin{aligned}
& \iint_{\Omega} g_{l 1}\left(x, y_{1}\right) d x_{1} d x_{2}+\int_{\Gamma} g_{l 3}\left(x, u_{1}\right) d \gamma \leq \\
& \iint_{\Omega} g_{l 1}\left(x, y_{1}\right) d x_{1} d x_{2}+\lim _{n \rightarrow \infty} \int_{\Gamma} g_{l 3}\left(x, u_{1}\right) d \gamma \\
& =\lim _{n \rightarrow \infty} \iint_{\Omega}\left[g_{l 1}\left(x, y_{1 n}\right)-g_{l 1}\left(x, y_{1}\right)\right] d x_{1} d x_{2} \\
& +\iint_{\Omega} g_{l 1}\left(x, y_{1}\right) d x_{1} d x_{2}+\lim _{n \rightarrow \infty} \int_{\Gamma} g_{l 3}\left(x, u_{1}\right) d \gamma \\
& =\lim _{n \rightarrow \infty} \iint_{\Omega} g_{l 1}\left(x, y_{1 n}\right) d x_{1} d x_{2}+ \\
& \quad \lim _{n \rightarrow \infty} \int_{\Gamma} g_{l 3}\left(x, u_{1}\right) d \gamma
\end{aligned}
$$

By the same way one can get
$\iint_{\Omega} g_{l 2}\left(x, y_{2}\right) d x_{1} d x_{2}+\int_{\Gamma} g_{l 4}\left(x, u_{2}\right) d \gamma \leq$ $\lim _{n \rightarrow \infty} \iint_{\Omega} g_{l 2}\left(x, y_{2 n}\right) d x_{1} d x_{2}+$
$\lim _{n \rightarrow \infty} \int_{\Gamma} g_{l 4}\left(x, u_{2}\right) d \gamma$, (for each $l=0,2$)
From the above inequalities, one gets $G_{l}(\vec{u})$ $(\forall l=0,2)$ is w.l.sc. with respect to (\vec{y}, \vec{u}).
But $G_{2}\left(\vec{u}_{n}\right) \leq 0, \forall n$, then
$G_{2}(\vec{u}) \leq \lim _{n \rightarrow \infty} G_{2}\left(\vec{u}_{n}\right)=0$
Finally,
$G_{0}(\vec{u}) \leq \lim _{n \rightarrow \infty} G_{0}\left(\vec{u}_{n}\right)=\lim _{n \rightarrow \infty} G_{0}\left(\vec{u}_{n}\right)=$
$\inf _{\vec{n} \rightarrow} G_{0}(\vec{w})$
$\inf _{\vec{w} \in \vec{W}} G_{0}(\vec{w})$

Which implies that \vec{u} is a CCBOCV

The NCFO "necessary conditions for optimality " of CCBOCV

To find the derivatives of the Hamiltonian" Fréchet derivatives" The following assumption is useful.

Assumptions(C):

a) $f_{1 y_{1}}, h_{1 y_{2}}$ are of the C.T. on $\Omega \times \mathbb{R}$, and satisfy for $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \Omega$ the conditions $\left|f_{1 y_{1}}\right| \leq \breve{c}_{1},\left|h_{1 y_{2}}\right| \leq \breve{c}_{2}$, with $\breve{c}_{1}, \breve{c}_{2} \geq 0$.
$f_{1 y_{1}} \geq 0$ and $h_{1 y_{2}} \geq 0$.
b) f_{2}, h_{2} are of the C. T. on Ω and for $x \in \Omega$ and $\breve{c}_{3}, \breve{c}_{4} \geq 0$ satisfy
$\left|f_{2}(x)\right| \leq \breve{c}_{3},\left|h_{2}(x)\right| \leq \breve{c}_{4}$,
c) $g_{l 1 y_{1}}, g_{l 2 y_{2}}, g_{l 3 u_{1}}, g_{l 4 u_{2}}(\forall l=0,1,2)$ are of the C . T. on $\Omega \times \mathbb{R} \times \mathbb{R}$ and satisfy
$\left|g_{l 1 y_{1}}\right| \leq \gamma_{l 1}+c_{l 1}\left|y_{1}\right|,\left|g_{l 2 y_{2}}\right| \leq \gamma_{l 2}+c_{l 2}\left|y_{2}\right|$,
$\left|g_{l 3 u_{1}}\right| \leq \gamma_{l 3}+c_{l 3}\left|u_{1}\right|,\left|g_{l 4 u_{2}}\right| \leq \gamma_{l 4}+c_{l 4}\left|u_{2}\right|$ $c_{l 1}, c_{l 2}, c_{l 3}, c_{l 4} \geq 0, \gamma_{l 1}, \gamma_{l 2}, \gamma_{l 3}, \gamma_{l 4} \in L^{2}(\Omega)$.
Theorem (5): If the assumptions (A), (B) and (C) are hold, the Hamiltonian is defined by:

$$
\begin{aligned}
H= & H\left(x, y_{1 u_{1}}, y_{2 u_{2}}, z_{1}, z_{2}, u_{1}, u_{2}\right) \\
= & z_{1}\left(f_{2}(x)-f_{1}\left(x, y_{1}\right)\right)+g_{01}\left(x, y_{1}\right) \\
& \quad+g_{03}\left(x, u_{1}\right)+z_{2}\left(h_{2}(x)-h_{1}\left(x, y_{2}\right)\right) \\
& +g_{02}\left(x, y_{2}\right)+g_{04}\left(x, u_{2}\right)
\end{aligned}
$$

The adjoint equations of state equations (1-4) are given by

$$
\begin{gather*}
A_{1} z_{1}+a_{0}(x) z_{1}+b(x) z_{2}+z_{1} f_{1 y_{1}}\left(x, y_{1}\right)= \tag{21}\\
g_{01 y_{1}}\left(x, y_{1}\right), \text { in } \Omega
\end{gather*}
$$

$$
\begin{gather*}
A_{2} z_{2}+b_{0}(x) z_{2}-b(x) z_{1}+z_{2} h_{1 y_{2}}\left(x, y_{2}\right)= \tag{22}\\
g_{02 y_{2}}\left(x, y_{2}\right), \text { in } \Omega
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial z_{1}}{\partial n}=0, \text { in } \Gamma \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial z_{2}}{\partial n}=0, i n \Gamma \tag{24}
\end{equation*}
$$

Then the Fréchet derivatives of G_{0} are given by $\dot{\vec{G}}_{0}(\vec{u}) \cdot \overrightarrow{\Delta u}=\int_{\Gamma} H_{\vec{u}}^{\prime \mathrm{T}} \cdot \overrightarrow{\Delta u} d \gamma$, where
$H_{\vec{u}}^{\prime}=\binom{H_{u_{1}}^{\prime}}{H_{u_{2}}^{\prime}}=\binom{z_{1}+g_{03 u_{1}}}{z_{2}+g_{04 u_{2}}}$ and $\vec{z}=\vec{z}_{\vec{u}}$ is the adjoint of the state $\vec{y}_{\vec{u}}$.
Proof: Writing the couple of the adjoint equations (21-24) by their w.f., then adding them, and then substituting $\vec{v}=\overrightarrow{\Delta y}$ in the obtained equation to get

$$
\begin{array}{r}
a_{1}\left(z_{1}, \Delta y_{1}\right)+\left(a_{0} z_{1}, \Delta y_{1}\right)_{\Omega}+\left(b z_{2}, \Delta y_{1}\right)_{\Omega}+ \\
a_{2}\left(z_{2}, \Delta y_{2}\right)+\left(b_{0} z_{2}, \Delta y_{2}\right)_{\Omega}-\left(b z_{1}, \Delta y_{2}\right)_{\Omega}+ \\
\left(z_{1} f_{1 y_{1}}\left(y_{1}\right), \Delta y_{1}\right)_{\Omega}+\left(z_{2} h_{1 y_{2}}\left(y_{2}\right), \Delta y_{2}\right)_{\Omega} \tag{25}\\
=\left(g_{01 y_{1}}\left(y_{1}\right), \Delta y_{1}\right)_{\Omega}+\left(g_{02 y_{2}}\left(y_{2}\right), \Delta y_{2}\right)_{\Omega},
\end{array}
$$

One can easily prove that the w.f. (25) "for a given control $\vec{u} \in \vec{W}^{\prime \prime}$ has a unique solution $\vec{z}=\vec{z}_{\vec{u}}$ using a similar way which is used in proof of theorem (3).
Now, substituting once the solutions y_{1} in the weak form of the state equations (9) and once again the solution $y_{1}+\Delta y_{1}$, then subtracting the $1^{\text {st }}$ obtained weak form from the other one, to obtain

$$
\begin{gather*}
a_{1}\left(\Delta y_{1}, v_{1}\right)+\left(a_{0} \Delta y_{1}, v_{1}\right)_{\Omega}-\left(b \Delta y_{2}, v_{1}\right)_{\Omega}+ \\
\left(f_{1}\left(y_{1}+\Delta y_{1}\right)-f_{1}\left(y_{1}\right), v_{1}\right)_{\Omega} \tag{26}\\
=\left(\Delta u_{1}, v_{1}\right)_{\Gamma}, \forall v_{1} \in V_{1}
\end{gather*}
$$

The above substituting and subtracting are repeated with the solutions y_{2} and $y_{2}+\Delta y_{2}$, and in the weak form of the state equations (10), to obtain

$$
\begin{gather*}
a_{2}\left(\Delta y_{2}, v_{2}\right)+\left(b_{0} \Delta y_{2}, v_{2}\right)_{\Omega}+\left(b \Delta y_{1}, v_{2}\right)_{\Omega}+ \\
\left(h_{1}\left(y_{2}+\Delta y_{2}\right)-h_{1}\left(y_{2}\right), v_{2}\right)_{\Omega} \tag{27}\\
=\left(\Delta u_{2}, v_{2}\right)_{\Gamma}, \forall v_{2} \in V_{2}
\end{gather*}
$$

Adding (26) with (27), then substituting $\vec{v}=\left(z_{1}, z_{2}\right)$ in the resulting equation, to get

$$
\begin{gather*}
a_{1}\left(\Delta y_{1}, z_{1}\right)+\left(a_{0} \Delta y_{1}, z_{1}\right)_{\Omega}-\left(b \Delta y_{2}, z_{1}\right)_{\Omega}+ \\
a_{2}\left(\Delta y_{2}, z_{2}\right)+\left(b_{0} \Delta y_{2}, z_{2}\right)_{\Omega}+\left(b \Delta y_{1}, z_{2}\right)_{\Omega} \\
+\left(f_{1}\left(y_{1}+\Delta y_{1}\right)-f_{1}\left(y_{1}\right), z_{1}\right)_{\Omega}+ \tag{28}\\
\left(h_{1}\left(y_{2}+\Delta y_{2}\right)-h_{1}\left(y_{2}\right), z_{2} \Omega_{\Omega}\right) \\
=\left(\Delta u_{1}, z_{1}\right)_{\Gamma}+\left(\Delta u_{2}, z_{2}\right)_{\Gamma}, \forall\left(z_{1}, z_{2}\right) \in \vec{V}
\end{gather*}
$$

From the assumptions on $f_{1}\left(h_{1}\right)$, and by using Proposition (2), the Fréchet derivative of $f_{1}\left(h_{1}\right)$ exists, and hence from Lemma (1) and the Minkowski inequality, (28) becomes

$$
\begin{gather*}
a_{1}\left(\Delta y_{1}, z_{1}\right)+\left(a_{0} \Delta y_{1}, z_{1}\right)_{\Omega}-\left(b \Delta y_{2}, z_{1}\right)_{\Omega} \\
+a_{2}\left(\Delta y_{2}, z_{2}\right) \\
\\
+\left(b_{0} \Delta y_{2}, z_{2}\right)_{\Omega} \\
+\left(b \Delta y_{1}, z_{2}\right)_{\Omega} \tag{29}\\
+\left(f_{1 y_{1}} \Delta y_{1}, z_{1}\right)_{\Omega}+\tilde{\varepsilon}_{1}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}}+ \\
\left(h_{1 y_{2}} \Delta y_{2}, z_{2}\right)_{\Omega}+\tilde{\varepsilon}_{2}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}} \\
=\left(\Delta u_{1}, z_{1}\right)_{\Gamma}+\left(\Delta u_{2}, z_{2}\right)_{\Gamma}
\end{gather*}
$$

where $\tilde{\varepsilon}_{1}(\overrightarrow{\Delta u}), \tilde{\varepsilon}_{2}(\overrightarrow{\Delta u}) \rightarrow 0$ as $\overrightarrow{\Delta u} \longrightarrow 0$.
Subtracting (25) from (29), to get

$$
\begin{gather*}
\left(g_{01 y_{1}}\left(x, y_{1}\right), \Delta y_{1}\right)_{\Omega}+\left(g_{02 y_{2}}\left(x, y_{2}\right), \Delta y_{2}\right)_{\Omega} \\
+\tilde{\varepsilon}_{1}(\overrightarrow{\Delta u})\|\Delta \overrightarrow{\Delta u}\|_{\left(L^{2}(I)\right)^{2}} \tag{30}\\
+\tilde{\varepsilon}_{2}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(I)\right)^{2}} \\
=\left(\Delta u_{1}, z_{1}\right)_{\Gamma}+\left(\Delta u_{2}, z_{2}\right)_{\Gamma}
\end{gather*}
$$

Now, from the assumptions on g_{01}, g_{02}, g_{03} and g_{04}, the definition of the Fréchet derivative
and then using the result of Lemma (1), we have

$$
\begin{align*}
& G_{0}(\vec{u}+\overrightarrow{\Delta u})-G_{0}(\vec{u})=\int_{\Gamma}\left(z_{1}+g_{03 u_{1}}\right) \Delta u_{1} d \gamma \\
& +\int_{\Gamma}\left(z_{2}+g_{04 u_{2}}\right) \Delta u_{2} d \gamma+\tilde{\varepsilon}_{8}(\Delta u)\|\Delta u\|_{\left(L^{2}(I)\right)^{2}} \tag{31}
\end{align*}
$$

where
$\tilde{\varepsilon}_{8}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}}=\tilde{\varepsilon}_{7}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}}-$
$\tilde{\varepsilon}_{1}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}}-\tilde{\varepsilon}_{2}(\overrightarrow{\Delta u})\|\overrightarrow{\Delta u}\|_{\left(L^{2}(\Gamma)\right)^{2}}$
But from the definition of the Fréchet derivative of G_{0}, once get
$\hat{\vec{G}}_{0}(\vec{u}) \cdot \overrightarrow{\Delta u}=\int_{\Gamma} H_{\vec{u}}^{\prime \mathrm{T}} \cdot \overrightarrow{\Delta u} d \gamma$.
Note: In the prove of the above theorem, we have found the Fréchet derivative for the functional G_{0}, so the same technique is used to find the Fréchet derivative for G_{1} and G_{2}.

Theorem (6):

(a) If assumptions (A), (B) and (C) are hold, \vec{W} is convex, and if $\vec{u} \in \vec{W}_{A}$ is a classical optimal, then $\forall l=0,1,2$, there exists multipliers $\lambda_{l} \in \mathbb{R}$, with $\lambda_{0}, \quad \lambda_{2}$ are nonnegative, $\sum_{l=0}^{2}\left|\lambda_{l}\right|=1$, s.t. the following Kuhn- Tucker- Lagrange(K.T.L.)conditions are satisfied:

$$
\begin{equation*}
\int_{\Gamma} H_{\vec{u}}^{\prime} T \cdot \overrightarrow{\Delta u} d \gamma \geq 0, \tag{32a}
\end{equation*}
$$

For each $\vec{w} \in \vec{W}$, with $\overrightarrow{\Delta u}=\vec{w}-\vec{u}$
where $g_{i}=\sum_{l=0}^{2} \lambda_{l} g_{l i u_{j}}$ and $z_{j}=\sum_{l=0}^{2} \lambda_{l} z_{l j}$, (for $j=1,2, i=3,4$) in (Theorem (5)),

$$
\begin{equation*}
\lambda_{2} G_{2}(\vec{u})=0, \tag{32b}
\end{equation*}
$$

(b) (Minimum Principle in point wise weak form): The inequality (32 a) is equivalent to

$$
\begin{equation*}
H_{\vec{u}}^{\prime} T \cdot \vec{u}=\min _{\vec{w} \in \bar{U}} H_{\vec{u}}^{\prime} T \cdot \vec{w} \text { a.e.on } \Gamma \tag{33}
\end{equation*}
$$

Proof: (a) From Theorem (5), $G_{l}(\vec{u})$ (for each $l=0,1,2$ and at each $\vec{u} \in \vec{W}$) has a continuous Fréchet derivative, since the control (classical) $\vec{u} \in \vec{W}_{A}$ is optimal, then using the K.T.L. theorem $\forall l=0,1,2$, there exists multipliers $\lambda_{l} \in \mathbb{R}$, with λ_{0}, λ_{2} are nonnegative, and $\sum_{l=0}^{2}\left|\lambda_{l}\right|=1$, s.t.

$$
\begin{gather*}
\left(\sum_{l=0}^{2} \lambda_{l} \hat{G}_{l \vec{u}}(\vec{u})\right)_{\Gamma} \cdot(\vec{w}-\vec{u}) \geq 0, \forall \vec{w} \in \vec{W} \\
\lambda_{2} G_{2}(\vec{u})=0 \tag{34b}
\end{gather*}
$$

Then from Theorem 5, (34a) with setting $\Delta u_{1}=w_{1}-u_{1}, \quad \Delta u_{2}=w_{2}-u_{2}, \quad$ can be written $\forall \vec{w} \in \vec{W}$ as
$\int_{\Gamma}\left[\left(z_{1}+g_{3 u_{1}}\right) \Delta u_{1}+\left(z_{2}+g_{4 u_{2}}\right) \Delta u_{2}\right] d \gamma \geq 0$ where $z_{j}=\sum_{l=0}^{2} \lambda_{l} z_{j l}, g_{i u_{j}}=\sum_{l=0}^{2} \lambda_{l} g_{l i u_{j}}$, for $j=1,2, i=3,4$
$\Rightarrow \int_{\Gamma} H_{\vec{u}}^{\prime \top} \cdot \overrightarrow{\Delta u} d \gamma \geq 0, \forall \vec{w} \in \vec{W}, \overrightarrow{\Delta u}=\vec{w}-\vec{u}$.
(b) Let $\left\{\vec{u}_{n}\right\}$ be a dense sequence in $\vec{W}_{\vec{U}}$, and $S \subset \Gamma$ be a measurable set s.t.

$$
\vec{w}(x)=\left\{\begin{array}{c}
\vec{u}_{n}(x), \text { if } x \text { belongs in } S \\
\vec{u}(x), \text { if } x \text { not belong in } S
\end{array}\right.
$$

Then (32a), gives
$\int_{S} H_{\vec{u}}^{\prime \mathrm{T}} \cdot\left(\vec{u}_{n}-\vec{u}\right) d s \geq 0, \forall S \subset \Gamma$
Then using Theorem (2) once get that
$H_{\vec{u}}^{\prime \mathrm{T}} \cdot\left(\vec{u}_{n}-\vec{u}\right) \geq 0$, a. e. on Γ,
The above inequality holds on the boundary Γ of the region Ω except in a subset Γ_{n} with $\mu\left(\Gamma_{n}\right)=0$, for each n, where μ is a Lebesgue measure, then this equality satisfies on the boundary Γ except in the union of $\bigcup_{n} \Gamma_{n}$ with $\mu\left(\mathrm{U}_{n} \Gamma_{n}\right)=0$, but $\left\{\vec{u}_{n}\right\}$ is a dense sequence in the control set \vec{W}, then there exists $\vec{u} \in \vec{W}$ s.t. $H_{\vec{u}}^{\prime} \cdot \vec{u}=\min _{\vec{w} \in \vec{U}} H_{\vec{u}}{ }^{\mathrm{T}} \cdot \vec{w}$, a.e.on Γ.
The converse of the proof is obtained directly.

SCFO "Sufficient Conditions for Optimality" of CCBOCV

Theorem (7): If assumptions (A), (B) and (C) are hold, if f_{1} and $g_{11}\left(h_{1}, g_{12}\right)$ are affine w.r.t. $y_{1}\left(y_{2}\right), g_{13}\left(g_{14}\right)$ is affine w.r.t. $u_{1}\left(u_{2}\right), f_{2}$ and h_{2} are bounded functional for x, and if $\forall l=0,2 g_{l 1}, g_{l 2}, g_{l 3}, g_{l 4}$ are convex w.r.t. $y_{1}, y_{2}, u_{1}, u_{2}$ respectively. Then the NCFO in Theorem 6, are also sufficient if λ_{0} is positive.
Proof: Assume $\vec{u} \in \vec{W}_{A}, \vec{u}$ is satisfied the conditions(32a) and(32b).
Let $G(\vec{u})=\sum_{l=0}^{2} \lambda_{l} G_{l}(\vec{u}) \Rightarrow$
$\dot{\vec{G}}(\vec{u}) \overrightarrow{\Delta u}=\sum_{l=0}^{2} \lambda_{l} \int_{\Gamma}\left[\left(\left(z_{l 1}+g_{l 3 u_{1}}\right) \Delta u_{1}+\right.\right.$
$\left.\left.\left(z_{l 2}+g_{l 4 u_{2}}\right) \Delta u_{2}\right)\right] d \gamma$
$=\int_{\Gamma} H_{\vec{u}}^{\prime}\left(x, z_{1}, z_{2}, u_{1}, u_{2}\right) \cdot \overrightarrow{\Delta u} d \gamma \geq 0$.
Since
$f_{1}\left(x, y_{1}\right)=f_{11}(x) y_{1}+f_{12}(x), f_{2}(x)=f_{21}(x)$

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
$h_{1}\left(x, y_{2}\right)=h_{11}(x) y_{2}+h_{12}(x), \quad h_{2}(x)=$ $h_{21}(x)$
Let $\vec{u}=\left(u_{1}, u_{2}\right), \quad \overrightarrow{\vec{u}}=\left(\bar{u}_{1}, \bar{u}_{2}\right)$ be a given controls then $\vec{y}=\left(y_{1}, y_{2}\right), \overrightarrow{\vec{y}}=\left(\bar{y}_{1}, \bar{y}_{2}\right)$ are their corresponding solutions, substituting the pair (\vec{y}, \vec{u}) in (1-4) and multiplying all the obtained equations by $\beta \in[0,1]$ once, and then substituting the pair $(\overrightarrow{\vec{y}}, \overrightarrow{\bar{u}})$ in (1-4) and multiplying all the obtained equations by $\bar{\beta}=(1-\beta)$, finally adding each pair from the corresponding equations together one gets:

$$
\begin{align*}
& A_{1}\left(\beta y_{1}+\bar{\beta} \bar{y}_{1}\right)+ a_{0}(x)\left(\beta y_{1}+\bar{\beta} \bar{y}_{1}\right) \\
&-b(x)\left(\beta y_{2}+\bar{\beta} \bar{y}_{2}\right) \tag{35a}\\
&+f_{11}(x)\left(\beta y_{1}+\bar{\beta} \bar{y}_{1}\right) \\
&+f_{12}(x)=f_{21}(x) \\
& \sum_{i, j=1}^{n} a_{i j} \frac{\partial}{\partial n}\left(\beta y_{1}+\bar{\beta} \bar{y}_{1}\right)=\alpha u_{1}+\bar{\beta} \bar{u}_{1} \tag{35b}
\end{align*}
$$

And

$$
\begin{align*}
& A_{2}\left(\beta y_{2}+\bar{\beta} \bar{y}_{2}\right)+ b_{0}(x)\left(\beta y_{2}+\bar{\beta} \bar{y}_{2}\right) \\
&+b(x)\left(\beta y_{1}+\bar{\beta} \bar{y}_{1}\right) \tag{36a}\\
&+h_{11}(x)\left(\beta y_{2}+\bar{\beta} \bar{y}_{2}\right) \\
&+h_{12}(x)=h_{21}(x) \\
& \sum_{i, j=1}^{n} b_{i j} \frac{\partial}{\partial n}\left(\beta y_{2}\right.\left.+\bar{\beta} \bar{y}_{2}\right)=\beta u_{2}+\bar{\beta} \bar{u}_{2} \tag{36b}
\end{align*}
$$

Now, if we have the control vector $\overrightarrow{\overline{\bar{u}}}=$ ($\overline{\bar{u}}_{1}, \overline{\bar{u}}_{2}$) with
$\overline{\bar{u}}_{1}=\beta u_{1}+\bar{\beta} \bar{u}_{1}$ and $\overline{\bar{u}}_{2}=\beta u_{2}+\bar{\beta} \bar{u}_{2}$
Then from (35a, 35b) , (36a, 36b), once get that the state vector ($\overline{\bar{y}}_{1}=y_{1} \overline{\bar{u}}_{1}, \overline{\bar{y}}_{2}=y_{2 \overline{\bar{u}}_{2}}$) with

$$
\overline{\bar{y}}_{1}=\beta y_{1 u_{1}}+\bar{\beta} y_{1 \bar{u}_{1}}=\beta y_{1}+\bar{\beta} \bar{y}_{1}
$$

and $\overline{\bar{y}}_{2}=\beta y_{2 u_{2}}+\bar{\beta} y_{2 \bar{u}_{2}}=\beta y_{2}+\bar{\beta} \bar{y}_{2}$,
are their corresponding solution, i.e. are satisfied (1-4) respectively. So, the operators $u_{1} \mapsto y_{1 u_{1}}, \quad u_{2} \longmapsto y_{2 u_{2}}$ are convex- linear w.r.t. $\left(y_{1}, u_{1}\right)$ and $\left(y_{2}, u_{2}\right)$ respectively.

Now, from this result and since g_{11}, g_{12}, g_{13}, g_{14} are affine w. r. t. $y_{1}, y_{2}, u_{1}, u_{2}$ respectively, on Ω, once get that $\forall x \in \Omega$, $G_{1}(\vec{u})$ is convex-linear w.r.t. (\vec{y}, \vec{u}),.
Also, since $(\forall l=0,2 \& \forall x \in \Omega) g_{l 1}, g_{l 2}, g_{l 3}$, $g_{l 4}$, are convex w.r.t. y_{1}, y_{2}, u_{1}, and u_{2} respectively, i.e. $G(\vec{u})$ is convex w.r.t. \vec{y} and \vec{u}.
Then $G(\vec{u})$ is convex w.r.t. \vec{y}, and \vec{u}, in "the convex set" \vec{W}, and has a " continuous" Fréchet derivative satisfies
$\dot{\vec{G}}(\vec{u}) \overrightarrow{\Delta u} \geq 0 \Longrightarrow \vec{u}$ minimize $G(\vec{u})$, i.e. for any \vec{w} in \vec{W}, we have

$$
\begin{equation*}
\sum_{l=0}^{2} \lambda_{l} G_{l}(\vec{u}) \leq \sum_{l=0}^{2} \lambda_{l} G_{l}(\vec{w}) \tag{37}
\end{equation*}
$$

Now, let \vec{w} is also admissible and satisfies the Transversality condition, then (37) becomes $G_{0}(\vec{u}) \leq G_{0}(\vec{w}), \forall \vec{w} \in \vec{W}$, i.e. \vec{u} is a CCBOCV continuous classical optimal control for the problem.

Conclusions

The Minty-Browder theorem can be used successfully to prove the existence and uniqueness solution of the continuous state vector of the couple nonlinear elliptic partial differential equations when the continuous classical boundary control vector is given. The existence theorem of a continuous classical boundary optimal control vector which is governing by the considered couple of nonlinear partial differential equation of elliptic type with equality and inequality constraints is proved. The existence and uniqueness solution of the couple of adjoint equations which is associated with the considered couple equations with equality and inequality constraints of the state are studied. The necessary conditions theorem so as the sufficient conditions theorem of optimality of a CNLEPDEs with equality and inequality constraints are proved via Kuhn- TuckerLagrange's Multipliers theorems.

References

[1] D. J. Braun, F. Petit, F. Huber, S. Haddadin, A. Albu-Schaffer, and S. Vijayakumar, "Robots Driven by Compliant Actuators: Optimal Control under Actuation Constraints", Ieee Transactions On Robotics, VOL. 29, NO.5, 2013.
[2] Y. Wang, X. Lin, S. Park, and N. Chang, "Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes", 978-3-9815370-0-0, Date 13, Edaa, 2013.
[3] F. Amini and M. Afshar, "Modified Predictive Optimal linear Control of Structures in Seismic Region", Iranian Journal of Science \& Technology, Transaction B, Engineering, Vol.32, No.B2, 2008, pp: 91-106.
[4] L. Lessard, L and S. Lall, "Optimal Controller Synthesis for the Decentralized Two-Player Problem with output Feedback", American Control Conference, 2012, pp. 6314-6321.
[5] A. Di. Liddo, "Optimal Control and Treatment of Infectious Diseases", the case of huge treatment Costs, Mathematics doi: 10.3390/math4020021, 2016.
[6] M. Derakhshan, "Control Theory and Economic Policy Optimization: The Origin, Achievements and the

Fading Optimism from a Historical Standpoint", International Journal of Business and Development Studies Vol. 7, No. 1, 2015, pp 5-29.
[7] A. Yilmaz, I. Mahariq, and F. Yilmaz, "Numerical Solutions of Optimal Control Problems for microwave heating", International Journal of Advances in Science Engineering and Technology, ISSN: 23219009 Vol.4, Issue3, 2016.
[8] M. Chalak, "Optimal Control for a Dispersing Biological Agent", Journal of Agricultural and Resource Economics, 39(2):271-289, 2014, ISSN 1068-5502.
[9] J. Warga, "Optimal Control of Differential and Functional Equations", Academic Press: New York, and London, 1972.
[10] A. Orpel, "Optimal Control Problems with Higher order Constraints", Folia Mathematical, Vol.16, No.1, 2009, pp: 31-44.
[11] J. L. Lions, "Optimal Control of Systems Governed by partial Differential Equations", SpringerVerlag, New York, 1972.
[12] J. Al-Hawasy, "The Continuous Classical Optimal Control of a nonlinear Hyperbolic Equation (CCOCP)", Mustansiriyah Journal of Science., Vol.19, No.8, 2008, pp.96-110.
[13] I. Chryssoverghi and J. Al-Hawasy, "The Continuous Classical Optimal Control Problem of a semi linear Parabolic Equations (CCOCP)", Journal of Karbala University, Vol.8, No.3, 2010, pp: 57-70.
[14] D. Bors and S. Walczak, "Optimal control elliptic system with distributed and boundary controls", Nonlinear Analysis 63, 2005, e1367- e1376.
[15] J. Al-Hawasy, "The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with equality and inequality Constraints", Iraqi Journal of Science, Vol.57, No.2C, 2016, pp: 1528-1538.
[16] J. Al-Hawasy and G. Kadhem, "The Continuous Classical Optimal Control of a coupled of nonlinear parabolic Equations", Al-Nahrain Journal of Sciences, Vol.19, No.1, 2016, pp: 173-186.
[17] J. Al-Hawasy and E. Al-Rawdanee, "The Continuous Classical Optimal Control of a Coupled of non-linear Elliptic Equations", Mathematical Theory and modeling, Vol.4, No.14, 2014, pp: 211-219.
[18] B. Vexler, "Finite Element Approximation of elliptic Dirichlet Optimal Control Problems", Numer, Funct, Anal., Optim., 28, 2007, 957-973.
[19] I. Chryssoverghi and A. Bacopoulos, "Approximation of Relaxed Nonlinear Parabolic Optimal Control Problems", Journal of Optimization Theory and Applications, Vol.77, No.1, 1993.
[20] A. H. Borzabadi, A. V. Kamyad, and M. H. G. Farahi, "Optimal control of the heat equation in an inhomogeneous body", J. Appl. Math., and Computing, Vol.15, No.1-2, 2004, pp.127-146.
[21] R. Temam, "Navier-Stokes Equations", NorthHoland Publishing Company, 1977.
[22] A. Bacopoulos and I. Chryssoverghi, "Numerical solutions of partial differential equations by finite elements methods", Symeom publishing co, Athens, 2003.

