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Articlelnfo | Abstract

This paper concerns with, the proof of the existence and the uniqueness theorem for the

Received solution of the state vector of couple of nonlinear elliptic partial differential equations by

19/02/2018 using the Minty-Browder theorem, where the continuous classical boundary control vector is
given. Also the existence theorem of a continuous classical boundary optimal control vector

Accepted governing by the couple of nonlinear elliptic partial differential equation with equality and

12/06/2018 inequality constraints is proved. The existence of the uniqueness solution of the couple of
adjoins equations which are associated with the couple of the state equations with equality and

Published inequality constraints are studied. The necessary and sufficient conditions theorem for
15/08/2019 optimality of the couple of nonlinear elliptic equations with equality and inequality constraints

are proved by using the Kuhn-Tucker-Lagrange multipliers theorems.

Keywords: Classical boundary optimal control, couple of nonlinear elliptic partial differential
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Introduction

The optimal control problems play an
important role in many fields in the real life
problems, for examples in robotics [1], in an
electric power [2], in civil engineering [3], in
Aeronautics and Astronautics [4], in medicine
[5], in economic [6], in heat conduction [7], in
biology [8] and many others fields.

This importance of optimal control problems
encouraged many researchers interested to
study the optimal control problems of systems
are governed either by nonlinear ordinary
differential equations as in [9] and [10] or by
linear partial differential equations as in [11] or
are governed by nonlinear partial differential
equations either of a hyperbolic type as in [12]

or of a parabolic type as in [13] or by an
elliptic type as in [14], or optimal control
problem are governed either by a couple of
nonlinear partial differential equations of a
hyperbolic type as in [15] or of a parabolic type
as in [16] or by an elliptic type as in [17], or of
an elliptic type but involve a boundary control
as in [18]. While the optimal control problem
which, is considered in this work is an optimal
boundary (Neumann boundary conditions
NBCs) control problem governed by a couple
of nonlinear partial differential equations of
elliptic type.

This work is concerned at first with, the proof
of existence and the uniqueness theorem of the
state vector solution of a couple nonlinear
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elliptic partial differential equations " where 7 = (uy,u,) and W = W, x W, with
CNLEPDEs" for a given continuous classical W — e — (0 2 2 |1 —

boundary control vegctor (CCBCV) using the W= Wﬁ =W € ()" W = (wy,w,) €
Minty- Browder theorem. Second the existence U &€ in T} _
theorem of a continuous classical boundary =~ Where U = Uy x Uz, and Vi = 1,2, U; c Ris a
optimal control vector "CCBOCV" which is  convex and compact set, and

governing by the considered couple of  The costfunctional is

nonlinear partial differential equation of elliptic Go(@) = Jf o[go1(x, ¥1) + go2 (x, ¥2)]dx1dx, )
type with equality and inequality constraints is +f1‘[903:(x' Uus) + goa (x, uz)]dy

proved. The existence and the uniqueness  The state constraints are

solution of the couple of adjoint vector Gy (@) = [[[g11Ce y1)

equations associated with the couple of state t912(x, y)ldxidx, — (6)
equations with equality and inequality + 11913 0, up) + g1a(x, uz)]dy = 0
constraints are studied. The necessary .

conditions theorem for optimality and the G @ = [[olg21(ryn)

sufficient conditions theorem for optimality of T 92206 y2)ldxdx, )

+fp[923(X, U) + g24(x, ux)]dy < 0

CNLEPDEs with equality and inequality The set of admissible control is

constraints are proved via the Kuhn-Tucker-

Lagrange multipliers theorems. Wy = {il € W|6,@D) = 0,6,aD) < 0} (®)
The CCBOCP is to find the minimum of (5)
Description of the problem such that "s.t." the state constraints (6) and (7),

Let O c R? with its boundary T'=aQ be Ietofindu
Lipschitz. Consider the following continuous U € W, and Go(@) = min G,(W).
classical boundary optimal control consisting WEWa

7 — —_ g1 1
of CNLEPDES "state equations" with NBCs Let V.=V xV =H(Q) x H'(Q). We denote
Ayys + ag(x)y; —b(X)y, + fi(x,y1) = ) to the (v, U).Q((U: v)r) and ”U”LZ(Q)(”V”LZ(F?)
f2(x),in Q to be the inner product and the norm in

2(@)(L*(1), by (v, v) and [|v|| () the inner

A2y2 + bo(x)y;l JEXI;(’I?I}S thny) = (g product and the norm in H1(Q), by (&, %) =
o -1 (v, v;) and ||17||(L2(Q))2 = Z?:l”vi”Lz(Q)
s oy nr 3) the inner product and the norm in L*(Q) x
i,j=1%ij n 17 2 5 oo 2 . .
L (Q)v by (vl v) - ZL:]_(vll vl) and
- _ 2 -
n by aay il @ ||v||(H1(Q))z = ZijlllvilLHl(Q) the inner Eroduct
and the norm in VV and V* is the dual of V.
. _ d dy .
With A;y, = - ?j—la—(aij(x) —1) Weak Formulation of the State
5 .
A3y = — SPjor (bu( ) yz) Equations

The weak form (WF) of problem (1- 4) is
where ao(x), bo(x), b(x),a;;(x),b;j(x) €  obtained by multiplying both sides of (1- 2) by
C®(Q), and (up,uy) = (w(x),u,(x))€ v, €V and v, €V respectively, integrating
(L?(1))? is the classical boundary control ~ both sides and then by using the generalize
vector, (yy,y,) = (yl(X) yz(x)) c (Hl(Q))Z Green's theorem (in Hilbert Space) for the
is the state vector, corresponding to the control ~ (rms which have the 24 derivatives, once get.

vector, and (fi, hy) = (f1(x» y1), hi(x, J’Z)) € GO+ (aoyiz}z?y:)’(zi%vl)g 9)
(LZ(.Q))Z and  (f;, hy) = (fz (x), h, (x)) € = (fo,v)a + (uy, v, Vv, EV

(L?(©))? are a vector of functions. And

The constraint on the controls is given by a2 (2 v2) + (boyi‘ IEZ)% +)(1;y3‘ v2)a (10)
iew . W c (LZ(F))Z, = (hy,vy)q + (uz,UZ)};,Z‘v:v;EQV
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Adding (9) with (10), get that
a®,v) + (fi(y1), v)a + (i (32),v2)q =
(f2,v1)a + (ug, vy)r + (hz,zz)n + (uz,v))r  (11)
V(vy,v,) €V
where a(y,v) =
a;(y1,v1) + (@oy1, v1)a — (by2, v1)q
+ a; (2, v2) + (boy2,v2)a

+ (bylﬁ UZ)Q
9y, 0vy

l] 1% ax; " ox;’
53’2 6172
a;(¥2,v2) = Xij=1 bi )
f J dx; " 9x;

a;(y,y) = clllleIHl(m, where ¢; > 0,i = 1,2
la; (vi, vl < Cillyill iy lvill 2oy

where ¢; > 0,1 = 1,2.

The following assumptions are useful to prove
the existence theorem of a unique solution of
the weak form (11).

Assumptions (A):

a)a(y, V) is coercive,

With al(yl, 171) ==

.ﬁ = C”:)_}”(Hl(ﬂ))z >0,Vy€ Vv
b)la(F, )| < 2411l 102 19 gy £2 > O,
vy, B eV

c) f, and h, are of Carathéodory type " C.T."
on O X R and satisfy the following conditions
with respect to " w.rt. " y, and Yy,
respectively, i.e. for ¢;(x),p,(x) € L3(Q),
and ¢;,¢, = 0:
Ifil < @1 +CilyilVix,y) €EQAXR
|y | < @2 + Cly2| V(x,y2) EQAXR
d) f; and h, are monotone for each x € Q
w.r.t. y; and y, respectively, and
(x,0) =0, hy(x,0) =0, Vx € Q.
e) f,and h, are of C.T. on Q and satisfy for
$3(x), Pa(x) € L*(Q)
If2 ] < ¢z, and [h(X)] < ¢y VX € Q.
Proposition (1)[19]: Let f:Q X R® — R™ is
of Carathéodory type, let F be a functional, s.t.
F(y) = fﬂf(x,y(x))dx, where Q is a
measurable subset of R™, and suppose that
If G I < TG +nllyll%

V(x,y) € Ax Ry € LP(Q x R™)

P
where ¢ € L}(Q x R),n € LP—2(Q X R), and
€[1,P],if P €[1,00),andn =0, if P = oo.
Then F is continuous on LP (Q x R™).

Proposition (2)[19]: Let f, f,: A X R" — R™
are of the Carathéodory type, let F: LP(Q) —
R be a functional, s.t. F(y) = [ ,f (x,¥(x))dx,
where Q is a measurable subset of R¢, and

B
1y e || < <) + @Iyl
V(x,y) € QX R", Where (€ LI(QXR),

—+—_1 nELPﬁ(QxR) B €[o,P], if

Pioo andn =0, if P = oo,
Then the Fréchet derivative of F exists for each
y € LP(Q x R™) and is given by
®'(Wh = [ f,(x,y(x)) h(x)dx.
Theorem (1) (Minty-Browder) [20]: -Let V be
a reflexive Banach space, and A:V — V* be a
continuous nonlinear map s.t.
(Avy — Av,y, vy —v,) > 0V, v, EV,

(Av,v)
Uy F Uy and ol o T =
Then for every f € V™, there exists a unique
solutiony € V of the equation Ay = f-.
Theorem (2) (Egorov's theorem) [18]: Let Q
be a measurable subset of R4, ¢: Q2 — R and
¢ € L'(Q,R), if the following inequality is
satisfied [ p(x)dx =0 (or <0 or = 0), for
each measurable subset S c Q, then ¢(x) =0
(or<0o0r=0),a.ec.inQ.
Theorem (3): If the assumptions A are hold,
and if the function f; (or hy ) in (11) is strictly
monotone, then for a given control i € WA, the
w.f. (11) has a unique solution y € V.
Proof: Let A:V — V*. Then the w.f. (11) can
rewrite as

(A, ) = (F@),7) (12)
where  (A(y), V) = a(y, V) + (fi(y1),v1)q +
(hg(}’z), V2)0
(F(l_i)'ﬁ) = (f2,v)a + (ug, v)r +
(ha, v2)q + (uz, v2)r _
i) From assumptions A-(a & d), A is
coercive.
i) From assumptions A-(b & ¢) and using
iii) Proposition (1) then A is continuous w.r.t.
y.

From assumptions A-(a & d) and part (i)A is
strictly monotone w.r.t. y.
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Then by Theorem (1), the uniqueness
solutiony € V of the w.f. (12) is obtained.

Existence of a Classical Optimal

Boundary Control of CCBOCV

This section deals with the state and proof the
existence theorem of CCBOCV with the
suitable assumptions. Therefore, the following
lemmas and assumptions are useful.

Lemma (1): If the assumptions (A) are hold,
the functionsf;, h; are Lipschitz w.r.t. y; and
y, respectively, and if f,, h, are bounded.
Then the mapping u+— ygz is Lipschitz
continuous from W, into (L2(2))?, i.e.
||Ay||(L2(Q))2 < L||Au||(L2(F))2, with L > 0.

=

Proof: Let #,u' € W be two given controls
vectors, and y,y’ be their corresponding state
solutions vectors (of the weak form (11)).

Subtracting the above two obtained weak forms
from (11), setting Ay = %' — ¥ and Au = 4’ —
i, with = Ay, then adding the obtained two
equations, once get
a, (Ayy, Ayy) + (agAyy, Ay, )qg +
a,(Ay,, Ay,) + (boAy,, Ay, )q
+(fi(yy +Ay;) = f1(y1), Ayp ) +

13
(hi(y2 +Ay2) — hi(¥2),Ay2)q (13)
= (Auy, Ay, ) + (Auy, Ay,)
Using assumptions, A-(a, d), taking the

absolute value for both sides of (13), it
becomes

2
NS
< a1||AY1||121'(Q) + a2||A}’2||121'(Q) +0+0

< [(Auy, Ay,) | + [(Auy, Ay,)
Using the Cauchy-Schwartz inequality and

then the trace operator in (14), to get
— 2 — N
C”Ay”(H’(Q))2 = 2C1||Au||(L2([))?||Ay||(H'(Q))2

(14)

= = (15)
= ”Ay”(HI(Q))z = CZHAu”(Lz(r))z
where ¢, = 2% ,which gives
”A—)Y”(Lz(g))z = L||M||(Lz(r))fWith L=cc;  (16)

Assumption (B):

Assume that g1, 912, 913 and gy, are of C.T. on
OxXR, OxR, QxU; and QxU,
respectively, and vl = 0,1,2, are satisfy
1912 6, y )| < via () + ciay?,

1912, y2)| < v (X) + cppy5

146

191306, u) | < yiz(x) + cpzuf, and
| g1 (x, up)| < yia(x) + Cl4u%
where Y11, Y12, Vi3, Via € L*(D) and

€11, €12, €13, €14 2 0

Lemma (2): If assumptions (B) are hold, then
(vl = 0,1,2) the functional G,(1) is continuous
on (L3(M))%

Proof: Set vl = 0,1,2,

pu (%, }Z) = 911 (%, ¥1) + gi2(x, y2), and
Pz (6, w) = gi3(x, ug) + gra(x, uz),
From assumptions (B), and by using

Proposition (1) on each of the functional
ffﬂpll(x'}_})dxldxb and fpplz(x:ﬁ)d)/ are
continuous on (L2(Q))* and on (L?(I))?
respectively. Hence

Gl(l_’z) = ffﬂpll('x’ y)dxlde + frp12(xi ﬁ)d]/
is continuous on(L?(I"))2.

Theorem (4): If the assumptions (A) and (B)
are hold, W, # @, f,( hy ) is independent of u,
(uy), and f,( hy) is bounded functions, s.t. for
1 (x) € L3(Q), (¢2(x) € L*(Q)) and & >0,
(c; =0)

Ifil < ¢1 +Cilyal, (1hy | < @2 + G2ly2l)
121 <k, %60 =20 (lhy | < Ky, K = 0).

911 (912) is independent of wu; (uz), gis(
912)(V1 = 0,2) is convex w.r.t. u; (w.rt. u,).
Then there exists a CCBOCV.

Proof: The set W; is convex and bounded
Vi = 1,2, since U; it is, then so is W; X W,. On
the other hand, and by Egorov's theorem, W;
Vi = 1,2 is closed since U; it is, then W; x W,
is closed, hence it is weakly compact " w.c."".
From the assumption on W,, there is an
element w € W, with G;(W) = 0, G,(W) <0
and a minimum  sequence {u,}=
{(uyn, Upp)} € W,, for each s.t.
lim Gy(u,) = inf Go(W).

n—oo WEW

n,

But W is w.c., this means that {@i,} has a
subsequence say again {u,,} which

converges weakly to 7 in .

Then from the proof of Theorem (3),
corresponding to this sequence {ii,} there is a
sequence of solutions {y,} of the sequence of
weak form:
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a1 (Yin, v1) + (@oY1in V1o — (BY2n, V1)q
+ a; (V2n, v2)
+ (boY2n, V2)0
+ (bY1n V2)o + 17)
(fi(yin), v)a + (M (Y2n), v2) =
(f2,v1)a + (Uin, v)r + (hy , v2)q
+(Uzn, v2)r

s.t. ||5;n||(H1(Q))2 is bounded, for each n. Then

{y,,} has a subsequence say again {y,} s.t.
7, — ¥ weakly in V (Alaoglu theorem [22]).
To prove that (17) converges to
a;(y1,v1) + (aey1, v1)a — (bY2, v1)q
+ a;, (2, V)
+ EZO)’Z' Ué)ﬂ
+ (by1,V2)q
+ (f1(v1), v1)a (18)
+ (hi(32), v2)q
= (f2,v1)a + (W, v)r + (hy, v2)g
+(uz, v2)r
Let (vy,v,) € (C(Q))? and first for the left
hand sides, since y;,, — y; weakly in V;, i.e.
yin — y; Weakly in L2(Q), for each i = 1,2.
Then from the left hand sides of (17), (18) and
by using Cauchy- Schwarz inequality, one has
la; V1, V1) + (@oYin, V1)a — (BYan, V1o
+ a; (Yon, v2)
+ (boY2n, V2)a
+ (bY1n v2)o — a1 (1, v1)
— (a1, v1)a + (byz, v1)q
— a3 (¥2,v2)—(boY2, V2)q
— (by1, v2)al (19)
< allym — J’1||H1(Q)”V1||H1(Q) +
llyin = yillzallvill 2 +
csllyen — y2”L2(Q)”v1”L2(Q)
+egllyan — yallwrllvallyr ) +
csllyzn — 3’2||L2(Q)”V2||L2(Q)
+c6llyin — y1||L2(Q)”772||L2(Q) —0
From assumptions (B), and proposition (1) the
functional  [f,fi(x, y1n)vadxidx,  and
JJ yh1 (%, y20)vodx,dx, are continuous with

respect to y;, and y,, respectively. But

- -

¥, — y weakly in (LZ(Q))2 (since y, — y
weakly in 17), then by using the compactness
theorem (Rellich-Kondrachov theorem) in [21],
once get that ¥, — ¥ strongly in (LZ(Q))Z,
and V(vy,v,) € (C(Q))? we have

(fi1n) v1)a + (hy(V2n), v2)q —

(fily),vg + (hy(y2), v2)q (20a)

I.e. the left-hand side of (17) — the left-hand
side of (18)
Second, but u,,, — u; weakly in L?(T) and so
as u,, — u,, then

(U1n —up, )+ (Upn — Up, ) — 0 (20a)
From (20a) and (20b) give us that (17)
converges to (18).
But (C(Q))? is dense in V, then these
convergences hold ¥ (v,,v,) € V, which gives
y = yy satisfies the w.f. of the state equations.
From Lemma (2), the functional G,(u) is
continuous on (L?(T))?, vI = 0,1,2.
From the assumptions on g1, 912, G;(i,) is
continuous, and the strongly converges of
Yin = Y1, Yan — Y2 in L?(Q), once get

Gy (ﬁ) = lim, o, Gy (ﬁn) =0

Also, from the assumptions on g;;(x,y,) and
giz(x,uy) (VI=0,1,2) and Lemma (2), the
integrals JJ 0911 (x, y1)dxy dx, and
J +913(x, u;)dy are continuous w.r.t. y; and u,
respectively, but g;5(x,u,), (for each [ = 0,2)
is convex w.rt ug, then [ g;3(x,u;)dy is

weakly lower semicontinuous "w.l.sc." w.r.t.
u,, and then

0911 Ge,y)dxdx, + [ gz (x,u)dy <
091 Ge, y)dxrdox, + lim [ 1913 Cx, uy)dy
= Tll_)_rgo ffﬂ[gu(x: Yin) — g (%, y1)]dx,dx,
+ffggll(x' y1)dxidx, + %fpgl3 (x, uq)dy
= L_HC}OHQQM(?C’ Yin)dx dx; +

lim [ .15 (x, uy)dy
By the same way one can get
I 4912 (x, y2)dxsdx, + [ g1a(x, uz)dy <
7lli_>_r£10ffgglz (%, Yan)dx,dx, +
7lli_>_rgfrgl4(x, u,)dy, (foreach [ = 0,2)

From the above inequalities, one gets G;(u)
(vl = 0,2) is w.l.sc. with respect to (y, ).

But G, (u,) < 0,vn, then

Gz(a) < %L_%Gz(ﬁn) =0

Finally,

Go(ﬁ) = 111_)_1'?0 Go(ﬁn) = Tlll_{{}o Go(ﬁn) =

inf Go(W)
wWEeEW
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Which implies that % is a CCBOCV.

The NCFO "necessary conditions for
optimality "* of CCBOCV
To find the derivatives of the Hamiltonian”
Fréchet derivatives” The following assumption
is useful.
Assumptions(C):
a) fiy,,» hiy, are of the C.T. on Q xR, and
satisfy for (x, y,), (x,y,) € Q the conditions
|fiy, | < &1 |hay, | < &, with &8, > 0.
fiy, = 0and hy,, =0.
b) f,, h, are of the C. T. on Q and for x € Q
and ¢;, ¢, = 0 satisfy
1200 < &3, lha(X)| < ¢,
C) Gi1y,r G2y, Ji3uyr Jau, (V1 = 0,1,2) are of
the C. T. on Q X R X R and satisfy
|glly1| <vu tculyil |.912y2| < vz + czlyal,
|913u1| < vz + czluql, |gl4u2| < Yia + Claluz]
Cu1, C12: €13, Cua 2 0, V11, V12, Vizs Vs € L2(Q).
Theorem (5): If the assumptions (A), (B) and
(C) are hold, the Hamiltonian is defined by:
H = H(X, y1u1'y2u2'21'22'u1'u2)
= Z1(f2(x) - filx, 3’1)) + go1(x,¥1)
+g03(x, 1) + 2 (ha (x) — by (x, 2))
+902(%, ¥2) + goa(x, uz)-

The adjoint equations of state equations (1- 4)
are given by

Az + ag(x)z; + b(x)z; + Zlflyl(xf Y1) =

; 21
.901y1(x.y1), nQ (21)
A2y + by(x)zy — b(X)zy + 250y, (x,y,) = -
Jo2y, (X, y2) ,in ()
92 0,inI’ (23)
on
Zﬁ =0,inl’ (24)

Then the Fréchet derivatives of G, are given by

50(ﬁ)- Au = [ H"- Au dy, where
I Hy, — (Z1t903u
Hﬁ o (H,Q:) o (Zz+go4u;
adjoint of the state y.
Proof: Writing the couple of the adjoint
equations (21-24) by their w.f., then adding

them, and then substituting ﬁz@ in the
obtained equation to get

) and Z =2z is the

148

a1 (21, Ay1) + (agzy, Ay, )q + (bzz, Ay1)q +
a3 (23, 8y;) + (bozz, Ayz)q — (bzy, Ayz)q +
(Z1f1y1( J’1):A}’1)Q + (Zzh1y2(3’2):A)’2)ﬂ

= (9013/1( 3’1):A}’1)Q + (g02y2(y2)lAy2)Q
One can easily prove that the w.f. (25) "for a

given control % € W" has a unique solution
Z = Zy using a similar way which is used in
proof of theorem (3).
Now, substituting once the solutions y; in the
weak form of the state equations (9) and once
again the solution y; + Ay;, then subtracting
the 1% obtained weak form from the other one,
to obtain

a1 (Ayy, v1) + (@plAyy, v1)g — (bAY,, v1)q +

(fi(yr + Ay1) — fi(y), vida
= (Duy, v1)p, Vv, EV;

The above substituting and subtracting are
repeated with the solutions y, and y, + Ay,,
and in the weak form of the state equations
(10), to obtain

a; (Ay,, v3) + (boly,, v2)q + (DAY, v3)q +

(hi(yz + Ay,) — hi(y2),v2)q
= (Auy, vy)r, Vv, €V,

Adding (26) with (27), then substituting
v = (24, z,) in the resulting equation, to get
ai(Ayy,z1) + (aghyy, z1)q — (bAY,, 21)q +
az(Ay,, 75) + (boAy,, 7)o + (bAyy, 72)q
+(fi(y1 + Ay1) — fi(y1), 2o +
(h(y2 + Ay;) — hi(¥2), Z2)q
= (Duy, z))r + (Auy, 2,)r, V(21,2,) €V
From the assumptions on f;( hy), and by using
Proposition (2), the Fréchet derivative of f;(h,)
exists, and hence from Lemma (1) and the
Minkowski inequality, (28) becomes
a,(Ayy, z1) + (aplyy, z1)q — (bAY,, 71)q
+ a;(8y,, 2,)
+ (boAys, 72)q
+ (bAy,, 23)q
+(f1}’1Ay1'Zl)Q + gl(m)”E”(LZ(F))Z +
(h1)/2Ay2'ZZ)Q + gZ(E)”M”(LZ(F))Z
=_(>Au1,zl)_r)+ (Auz,zz)r_>
where & (Au), & (Au) — 0 as Au — 0.
Subtracting (25) from (29), to get
(go1y1(x: yl)’A}ﬁ)Q + (g02y2 (x, yz)’AYZ)Q
+ & (Bu) | A
+& (E)”M”(Lz(f))z
= (Quy, 7)) + (Quy, z5)

(25)

(26)

(27)

(28)

(29)

L*()? (30)

Now, from the assumptions on go1, 9oz, Jo3
and g4, the definition of the Fréchet derivative
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and then using the result of Lemma (1), we
have

Go(1 + Z17) —Go() = fr(Zl + g03u1)Au1dy

(22 + oy )Dudy + (B0 Bl 1y, O
where
g (M) [[8ull 2y = & @Bl o . =
& Q)| 8ul] 22 = @B .

But from the definition of the Fréchet
derivative of G, once get
Go(@) - Au = [ HLT - Dudy.
Note: In the prove of the above theorem, we
have found the Fréchet derivative for the
functional G, so the same technique is used to
find the Fréchet derivative for G and G,.
Theorem (6):
(@) If assumptions (A), (B) and (C) are
hold, W is convex, and if @ € WA is a classical
optimal, then VvIl=0,1,2 , there exists
multipliers A, € R, with 4,, A, are
nonnegative, Y2 ,|1;| = 1, s.t. the following
Kuhn- Tucker- Lagrange(K.T.L.)conditions are
satisfied:

JHyT-Budy >0, (32a)

-

Foreachw € W, with Au = W — i
where g; = Y7 )lzgliuj and z; = Yo Az,
(forj=1,2,i = 3,4) in (Theorem (5)),

A6, (1) =0, (32b)
(b) (Minimum Principle in point wise weak
form): The inequality (32a) is equivalent to
Hﬁf-ﬂ=rlleigHL’7T-v7a.e.onF (33)
Proof: (a) FromWTheorem (5), G,(1) (for each
1 =0,1,2 and at each u € W) has a continuous
Fréchet derivative, since the control (classical)
% €W, is optimal, then using the K.T.L.
theorem VI = 0,1,2, there exists multipliers
A €R, with 4,, 4, are nonnegative, and
212=o|ll| =1,st
o k@), @-) 2 ovwew (G40

126, (@) = 0 (34D)

Then from Theorem 5, (34a) with setting
Au; =w; —uy, Au, =w,—1u,, can be
written Viw € W as
Jol(z1 + g3u,)Duy + (22 + Gaw,)Duz]dy =0
where z; = Yizo Aizjy, Giu; = Yi-o Algliuj, for
j=12,i=34
=>fFH7§T-Edy2 0,VweW,Au=w— 1.
(b) Let {u,} be a dense sequence in Wﬁ, and
S c T’ be a measurable set s.t.

- U, (x),if x belongsin S

wix) = {ﬁ(x), if x not belong in S
Then (32a), gives
JHE" - (dy —U)ds 2 0,VS T
Then using Theorem (2) once get that
H;"- (U, —u) = 0,a.e.onT,
The above inequality holds on the boundary T
of the region Q except in a subset I',, with
u(T,,) = 0, for each n, where u is a Lebesgue
measure, then this equality satisfies on the
boundary T' except in the union of tr{l“n with

u(UT,) = 0, but {u,} is a dense sequence in
n

the control set I¥/, then there exists % € W s.t.
~T-U = minHgz"-w, aeonT.
weu ) . ]
The converse of the proof is obtained directly.

SCFO "Sufficient Conditions for
Optimality" of CCBOCV

Theorem (7): If assumptions (A), (B) and (C)
are hold, if fiand g;,( hq, g12) are affine w.r.t.

Y1(¥2), 913( 914 ) is affine w.r.t. u, (u,),f; and
h, are bounded functional for x, and if

VI=0,2 g1, 912, 913, Jia are convex w.r.t.
Y1,Y2, Uq, Uy respectively. Then the NCFO in
Theorem 6, are also sufficient if A, is positive.

Proof: Assume % € W,, @ is satisfied the
conditions(32a) and(32b).
Let G(ﬁ) = 212=0 AlGl('l_,l:) =

G = 3o A [ (11 + Gisu, )by +
(le + 914u2)Au2)]d)/
= [ Hy(x, 21, 23, ug, Uy) Audy = 0.

Since

fi(,y1) = f11(Oy + fi2(x), 2(x) = f21(x)
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hi(x,y2) = hy1(x)y; + hyz(x), hy(x) = 1G,@) < Z 1,G,(W) (37)

hp1(x) 1=0 1=0

Let % = (uy,u,), u=(%,,u,) be a given
controls then % = (y1,y,), ¥ = (J.,7,) are
their corresponding solutions, substituting the
pair (y,u) in (1-4) and multiplying all the
obtained equations by g € [0,1] once, and then
substituting the pair (y,) in (1-4) and
multiplying all the obtained equations by
£ = (1 - p), finally adding each pair from the
corresponding equations together one gets:
A1(ﬁ3’1 + 53_’1) + ao(x)(ﬁ% + 3371)
—b(x)(By, + B¥)
+ f11(x)(3}’1 + E3_’1)
+f12(x) = f21(x)
Ej:l aijaa_n(ﬁh + ,g}_’l) =au, + Eﬁl
And
A5 (Byz2 + BY2) + bo () (By, + BY»)
+ b(x)(.[’)}ﬁ + [’7}_’1)
+ h11(x)(.83’2 + [’7}_’2)
. +hyz(x) = hyq (%)

0 - .
D by (B, + 72) = fus + BT,

ij=1

(35q)

(35b)

(36a)

(36b)

Now, if we have the control vector
(a4, u) with

i, = Bu, + B, and @i, = Bu, + Pii,

Then from (35a, 35b) , (36a, 36b), once get that
the state vector (y; = y17,,¥2 = Y2z,) With

Vi =BY1u, + ,33’1121 = By1 + By )

and y, = BYau, + BYou, = BY2 + B2,

are their corresponding solution, i.e. are
satisfied (1-4) respectively. So, the operators
Uy 7 Y1y, Up 7 Yoy, are convex- linear
w.r.t. (y;,uq) and (y,, u,) respectively.

Now, from this result and since gi1, 912, 913
g1s are affine w. r. t. y;, o, W , Uy
respectively, on Q, once get that Vx € Q,
G, (1) is convex-linear w.r.t. (y,),.

Also, since (V1 =0,2&Vx € Q) g1, 912, 913 »
Jia, are convex Ww.rt. y;, y,, u;, and u,
respectively, i.e. G (1) is convex w.r.t. y and u.
Then G(u) is convex w.rt. y,and u, in "the
convex set" I/, and has a " continuous" Fréchet
derivative satisfies

G(@)Au = 0 = @ minimize G(%@), i.e. for any
W in W, we have

150

Now, let w is also admissible and satisfies the
Transversality condition, then (37) becomes
Go(@) < Go(W), vw € W, i.e. T isa CCBOCV
continuous classical optimal control for the
problem.

Conclusions

The Minty-Browder theorem can be used
successfully to prove the existence and
uniqueness solution of the continuous state
vector of the couple nonlinear elliptic partial
differential equations when the continuous
classical boundary control vector is given. The
existence theorem of a continuous classical
boundary optimal control vector which is
governing by the considered couple of
nonlinear partial differential equation of elliptic
type with equality and inequality constraints is
proved. The existence and uniqueness solution
of the couple of adjoint equations which is
associated with the considered couple
equations with equality and inequality
constraints of the state are studied. The
necessary conditions theorem so as the
sufficient conditions theorem of optimality of a
CNLEPDEs with equality and inequality
constraints are proved via Kuhn- Tucker-
Lagrange's Multipliers theorems.

References

[1] D. J. Braun, F. Petit, F. Huber, S. Haddadin, A.
Albu-Schaffer, and S. Vijayakumar, "Robots Driven by
Compliant Actuators: Optimal Control under Actuation
Constraints”, leee Transactions On Robotics, VOL. 29,
NO.5, 2013.

[2] Y. Wang, X. Lin, S. Park, and N. Chang,
"Optimal Control of a Grid-Connected Hybrid Electrical
Energy Storage System for Homes", 978-3-9815370-0-0,
Date 13, Edaa, 2013.

[3] F. Amini and M. Afshar, "Modified Predictive
Optimal linear Control of Structures in Seismic Region™,
Iranian Journal of Science & Technology, Transaction B,
Engineering, VVol.32, No.B2, 2008, pp: 91-106.

[4] L. Lessard, L and S. Lall, "Optimal Controller
Synthesis for the Decentralized Two-Player Problem
with output Feedback", American Control Conference,
2012, pp. 6314-6321.

[5] A. Di. Liddo, "Optimal Control and Treatment
of Infectious Diseases”, the case of huge treatment
Costs, Mathematics doi: 10.3390/math4020021, 2016.
[6] M. Derakhshan, "Control Theory and Economic
Policy Optimization: The Origin, Achievements and the



Al-Mustansiriyah Journal of Science
1SSN: 1814-635X (print), ISSN:2521-3520 (online)

Volume 30, Issue 1, 2019

DOI: http://doi.org/10.23851/mijs.v30i1.464

Fading Optimism from a Historical Standpoint",
International Journal of Business and Development
Studies Vol. 7, No. 1, 2015, pp 5-29.

[7 A. Yilmaz, |I. Maharig, and F. Yilmaz,
"Numerical Solutions of Optimal Control Problems for
microwave heating", International Journal of Advances
in Science Engineering and Technology, ISSN: 2321-
9009 Vol.4, Issue3, 2016.

[8] M. Chalak, "Optimal Control for a Dispersing
Biological Agent", Journal of Agricultural and Resource
Economics, 39(2):271-289, 2014, ISSN 1068-5502.

[9] J. Warga, "Optimal Control of Differential and
Functional Equations”, Academic Press: New York, and
London, 1972.

[10] A. Orpel, "Optimal Control Problems with
Higher order Constraints"”, Folia Mathematical, Vol.16,
No.1, 2009, pp: 31-44.

[11] J. L. Lions, "Optimal Control of Systems
Governed by partial Differential Equations”, Springer-
Verlag, New York, 1972.

[12] J. Al-Hawasy, "The Continuous Classical
Optimal Control of a nonlinear Hyperbolic Equation
(CCOCP)", Mustansiriyah Journal of Science., Vol.19,
No.8, 2008, pp.96-110.

[13] I. Chryssoverghi and J. Al-Hawasy, "The
Continuous Classical Optimal Control Problem of a semi
linear Parabolic Equations (CCOCP)", Journal of
Karbala University, Vol.8, No.3, 2010, pp: 57-70.

[14] D. Bors and S. Walczak, "Optimal control
elliptic system with distributed and boundary controls™,
Nonlinear Analysis 63, 2005, e1367- €1376.

151

[15] J. Al-Hawasy, "The Continuous Classical
Optimal Control of a Couple Nonlinear Hyperbolic
Partial Differential Equations with equality and
inequality Constraints", Iragi Journal of Science, Vol.57,
No.2C, 2016, pp: 1528-1538.

[16] J. Al-Hawasy and G. Kadhem, "The Continuous
Classical Optimal Control of a coupled of nonlinear
parabolic Equations”, Al-Nahrain Journal of Sciences,
Vol.19, No.1, 2016, pp: 173-186.

[17] J. Al-Hawasy and E. Al-Rawdanee, "The
Continuous Classical Optimal Control of a Coupled of
non-linear Elliptic Equations", Mathematical Theory and
modeling, Vol.4, No.14, 2014, pp: 211-219.

[18] B. Vexler, "Finite Element Approximation of
elliptic Dirichlet Optimal Control Problems”, Numer,
Funct, Anal., Optim., 28, 2007, 957-973.

[19] I.  Chryssoverghi and A. Bacopoulos,
"Approximation of Relaxed Nonlinear Parabolic
Optimal Control Problems”, Journal of Optimization
Theory and Applications, Vol.77, No.1, 1993.

[20] A. H. Borzabadi, A. V. Kamyad, and M. H. G.
Farahi, "Optimal control of the heat equation in an
inhomogeneous body", J. Appl. Math., and Computing,
Vol.15, No.1-2, 2004, pp.127-146.

[21] R. Temam, "Navier-Stokes Equations”, North-
Holand Publishing Company, 1977.

[22] A. Bacopoulos and I. Chryssoverghi,
"Numerical solutions of partial differential equations by
finite elements methods”, Symeom publishing co,
Athens, 2003.

G508

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.


http://creativecommons.org/licenses/by-nc/4.0/

