Research Article

Certain Types of m-Compact Functions

Samaa M. Ezat, Haider Jebur

Department of Mathematics, college of Science, Mustansiriyah University, IRAQ. *Corresspondant email: iris_ss90@yahoo.com or haidarali89@yahoo.com

ArticleInfo	Abstract
	In this work we introduce some functions by using cocompact open sets and semi cocompact
Received	open sets in m-structure space namely, m-coc-continuous, m-coc*-continuous, m-coc**-
30/5/2016	continuous, m-coc-compact, m-s-coc-continuous, m-s-coc*-continuous, m-s-coc**-continuous
	functions the relationships between these concepts have been studied also we give some facts,
Accepted	examples and propositions to illustrate our results.
5/10/2016	Keywords: m-compact,m-open,m-continuous.
	الخلاصية
	في عملنا هذا قدمنا بعض الدوال باستخدام المجموعات المتراصة المفتوحة من نمطcoc باستخدام الفضائات ذات البنية-m
	اسميناها، المستمر m-coc\$، المستمر m-coc\$، المستمر a**m-coc،المتر اصةm-coc، المستمر a*m-s-coc، المستمر a-m **s-coc>، كذلك در ست العلاقة بين هذه المفاهيم وقدمت بعض الامثلة و الحقائق والمبر هنات لتعزيز ـ نتائجنا

Introduction

In the present paper by m-structure space we mean minimal structure space, $(X\neq\Phi)$ and $mx=\{\Phi,X\})[1]$, every element belong to mx is said to be mx-open set, a function from m-structure space (X,m_X) into an m-structure (Y,m_Y) is said to be m-continuous if the inverse image of every an my-open set in Y is an mx-open set in X [2], If (X, m_X) is an m-structure space and $\{U_{\alpha}\}_{\alpha \in \mu} \subset m_X$ such that $\{U_{\alpha}\}_{\alpha \in \mu}$ is a cover to X, then

 $\{U_{\alpha}\}_{\alpha \in \mu}$ is called an m_X -open cover to X [3]. A subset K of an m-structure space X is said to be m-compact if every m_x -open cover of K reducible to a finite subcover [3], an m-structure m_X on a non-empty set X is said to have the property (β) if the union of any family of subsets belong to m_X belong to m_X and said to have property (γ) if the intersection of a finite number of m_X -open sets is m_X -open [1]. In [5] the authors define coc-open sets by the same context we can define m_x -open sets by using m-structure spaces.

Definition 1:

Let (X,m_x) be an m-structure space, then a subset A of X is said to be an m_x -cocompact open set (briefly m-coc-open set) if for every $x \in A$ there exists an mx-open set $U \subset X$ and m-compact subset K such that $x \in U - K \subseteq A$, the complement of m_x -coc-open set is called m_x -coc-closed set. The family of all mx-coc-open sets in X is denoted by m^k .

Proposition 1:

Let (X, m_X) be an m-structure space, then m^k forms an m-structure space.

Proof:

By definition $\phi \in m^k$, to show that $X \in m^k$, take U=X and K= ϕ then x \in U-K \subseteq X.

Remark 1:

Let X is an m-structure space then $m_x \subseteq m^k$, i.e every m_x -open set is m_x -coc-open set but the converse may be not true.

Example 1:

Let (R, mind) be the indiscrete m-structure space and $Y = R - \{0\}$ is not an m-open in (R, mind), but

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

for each $x \in Y$ there is an mx-open subset R of X and $K = \{0, x+1\}$ is an m-compact set (since K is a finite set) and $x \in R - K \subseteq Y$. so Y is m_x-cocopen set but not an mx-open.

Definition 2:

Let f be a function from an m-structure space (X,m_x) into an m-structure space (Y, m_Y) , then f is said to be m-coc-continuous function if the inverse image of every m_Y -open set U in Y is m_x -coc-open in X.

Clearly, every m-continuous function is m-coccontinuous function but the converse may be not true.

Example 2:

Let f be the identity function from the indiscrete m-structure space (R, m_{ind}), into the discrete m-structure space (R, m_D) so f is m-coc-continuous function but not m-continuous function.

Proposition 2:

If $f:X \rightarrow Y$ is an m-coc-continuous function from m-structure space X into m-structure space Y such that Y has the property (β) then, f(m-coccl(A)) \subseteq m-cl(f(A))

Proof:

Since Y has the property (β) then m-cl(f(A)) is m_Y-closed in Y but f is m-coc-continuous, then f ¹(m-cl(f(A)) is m-coc-closed in X containing A, i.e., A \subseteq f¹(m-cl(f(A))) m-coc-cl(A) \subseteq m-coc-cl(f¹(m-cl(f(A)))) f(m-coc-cl(A)) \subseteq m-coc-cl(f(f ¹(m-cl(f(A)))) \subseteq m-cl(f(A))) f(m-coc-cl(A)) \subseteq m-cl(f(A)).

Definition 3:

Let f be a function from an m-structure space (X, m_x) into an m-structure space (Y, m_Y), then f is said to be m-coc*-continuous function if the inverse image of every m_Y -coc-open set U in Y is m_x -open in X.

Definition 4:

Let f be a function from an m-structure space (X, m_x) into an m-structure space (Y, m_Y), then f is said to be m-coc**-continuous function if the inverse image of every m_Y -coc-open set U in Y is m_x -coc-open in X.

Propostions 3:

1. Every m-coc*-continuous function is m-coccontinuous function.

- 2. Every m-continuous function is m-coccontinuous function.
- 3. Every m-coc**-continuous function is m-coccontinuous function.
- 4. Every m-coc*-continuous function is m-coc**-continuous function.
- 5. Every m-coc-continuous function is m-coc**- continuous function.
- 6. Every m-coc*-continuous function is m-continuous function.
- 7. Every m-continuous function is m-coc**- continuous.

Proof (1):

Let U be an m_Y -open set in Y but every m_Y -open set is mY-coc-open set and since f is m-coc^{*}continuous function then $f^1(U)$ is m_X -open which is an m_X -coc-open set in X and so f is mcoc-continuous function.

By the same way we can prove the others. The converse of (1) may not be true:-

Example 3:

Let IX :(X, m_x) \rightarrow (X, m_{ind}) such that $I_x(x)=x$, for each x \in X then I_x is m-coc-continuous function but not m-coc*-continuous.

Definition 5:

A subset A of an m-structure (X, m_x) is said to be an m_x -semi-open set in X (briefly m_x -s-open set)

if $A \subseteq m_x$ -cl(m_x -int(A)).

So, every mx-open set is m_X -s-open set but the converse may be not being true.

Example 4:

Let R be the set of all real numbers and τu be the usual topological space so it is an m-structure space, then the set [0,1) in (R, τu) is m_R-s-open set which is not m_R-open set.

Definition 6:

A subset A of an m-structure space (X, m_X) is said to be m_x -semi cocompact open set (briefly m_x -s-coc-open set) if for every $x \in A$ there exists an mx-s-open set $U \subseteq X$ and an m-compact subset K such that $x \in U - K \subseteq A$, the complement of m_x -s-coc-open set is called m_x -scoc-closed set.

Definition 7:

Let f be a function from an m-structure space (X,m_x) into m-structure space (Y, m_Y) then f is

said to be m-s-coc-cotinuous function if the inverse image of mY-open set in Y is an m_x -s-coc-open set in X.

Definition 8:

Let f be a function from an m-structure space (X, m_x) into m-structure space (Y, m_Y), then f is said to be an m-s-coc^{*}-continuous function if the inverse image of any m_Y -s-coc-open set in Y is m_x -open set in X.

Definition 9:

Let f be a function from an m-structure space (X, m_x) into m-structure space (Y, m_Y), then f is said to be an m-s-coc**-continuous function if the inverse image of every m_Y -s-coc-open set in Y is m_x -s-coc-open set in X.

Propositions 4:

- 1. Every m-continuous function is m-s-coccontinuous function.
- 2. Every m-coc-continuous function is m-s-coccontinuous function.
- 3. Every m-s-coc*-continuous function is m-continuous function.
- 4. Every m-coc*-continuous function is m-s-coc-continuous function.
- 5. Every m-coc**-continuous function is m-s-coc-continuous function.
- 6. Every m-s-coc*-continuous function is m-coc*-continuous function.
- 7. Every m-s-coc*-continuous function is m-coc**-continuous function.

Proof (1):

Let f be a continuous function from m-structure space X into m-structure space Y, let U be m_{Y} open subset of Y then f-1(U) is m_X -open in X, but every m_X -open set is m_X -coc-open, and since every m-coc-open set is m-s-coc-open set then, f-1(U) is m_X -s-coc-open set in X, thus f is m-scoc-continuous function.

By the same way we can prove the others.

Example 5:

Let $f:(X, m_{cof}) \rightarrow (Y, m_{ind})$, where X and Y are m-structure spaces, m_{cof} is the cofinite mstructure space, m_{ind} is the indiscrete m-structure space and f(x)=c for each $x \in X$, then 1-the constant function is m-coc-continuous function and so it is m-s-coc-continuous.

2-if X is the indiscrete m-structure space, then f is m-coc-continuous and so it is an m-s-coc-continuous.

Example 6:

Let f: $(X,m_X) \rightarrow (Y, m_{ind})$, where $(X, m_X) \& (Y, m_{ind})$ are m-structure spaces and f(x) = x, for each $x \in X$, then f is m-continuous, since the only m_y - open sets in Y are φ and Y, so it is an m-coccontinuous & m-s-coc-continuous.

Remark 2:

Every m-coc*-continuous function is m-coccontinuous function but the convers may be not true.

Example 7:

Let $I_X : (X,m_X) \rightarrow (Y, m_{ind})$ be a function such that I(x)=x, for each $x \in X$, then I_X is m-coccontinuous function but not m-coc*-continuous function, also it is not an m-s*-coc-continuous function.

Example 8:

Let f be a function from an m-structure space (X, m_D) into an m-structure space (Y, m_Y) where m_D is the discrete m-structure space, then f is continuous since if $U \subset Y$ then $f^1(U)$ is an open subset of X, but X is the discrete space then f $^1(U)$ is m_X -open in X so it is m_X -coc-open set and m_X -s-coc-open set therefore f is m-continuous function and m-s-coc-continuous function.

Remark 3:

Every subset of a discrete space X is m_x -cocopen set and m_x -s-coc-open set. Since every subset of a discrete space is m_x -open. On m-coccompact functions in [4], the author defines coccompact set, in this work by the same context we can define m-coc-compact set by using mstructure spaces.

Definition 10:

If (X, m_X) is an m-structure space and $\{U_{\alpha}\}_{\alpha \epsilon \mu} \subseteq m_X$ such that $\{U_{\alpha}\}$ is a cover to X, then $\{U_{\alpha}\}_{\alpha \epsilon \mu}$ is called an m_X -coc-open cover to X if every U_{α} is an m_X -coc-open set.

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Definition 11:

A subset A of an m-structure space X is said to be m-coc-compact set if for every m_X -coc-open cover to A has a finite subcover.

Remarks 4:

1- Every coc-compact set is an m-coc-compact set to the same topology.

2- every m-coc-compact set is an m-compact set (since, if we suppose that A is an m-coc-compact set, to show that it is m-compact, let $\{U_{\alpha}\}_{\alpha \in \mu}$ be an m_X-open cover to A but every m_X-open set is an m_X-coc-open set so $\{U_{\alpha}\}_{\alpha \in \mu}$ is m_X-coc-open cover to A which is an m_x-coc-compact set so $\{U_{\alpha}\}_{\alpha \in \mu}$ is reducible to a finite subcover, that is, A is an m-compact).

Example 9:

Let (R, m_{ind}) be the indiscrete m-structure space, then R is an m-compact space which is not an mcoc-compact space since any m_X -open cover to R is either $\{R, \varphi\}$ or $\{R\}$ which is finite so (R,mind) is m-compact but not m-coc-compact, that is, if we take $\{x\}_{x \in R}$ is an m_X -coc-open cover to R we can not reduce it to a finite subcover.

Definition 12:

A function f from m-structure space (X, m_X) into m-structure space (Y, m_Y) is said to be mcompact function if $f^{1}(K)$ is m-compact for every m-compact set K in Y.

Definition 13:

A function f from m-structure space (X, m_X) into m-structure space (Y, m_Y) is said to be m-coccompact function if $f^1(M)$ is m-coc-compact for every m-compact set M in Y.

Remark 5:

Every m-coc-compact function is m-compact function but the converse is not true in general.

Example 10:

Let R be the set of all real numbers and let f: (R, m_{ind}) \rightarrow (R, m_R) be a function defined by f(x)=c for each x \in R, then f is an m-compact function but not an m-coc-compact function.

Proposition 5:

Every m-closed subset of an m-compact space is also an m-compact.

Proof:

let F be an m_x -closed subset of X, & let $\{U_{\alpha}\}_{\alpha \in \mu}$ be an m_x -open cover to F but F is an m_x -closed subset of X so F' is m_x -open subset of X then X= F' $\cup \{U_{\alpha}\}_{\alpha \in \mu}$ but X is m-compact, then X= F' $\cup \{U_{\alpha}\}$ in but F' \cap F= φ so F $\subseteq \bigcup_{i=1}^{n} U\alpha i$ then F is m-compact

Propostion 6:

Let f: $(X, m_X) \rightarrow (Y, m_Y)$ be an m-coc-compact function then if A is a closed subset of X, then f|A: $(A, m_A) \rightarrow (Y, m_Y)$ is m-compact

Proof:

let K be an m-compact subset of Y, then $f^{1}(K)$ is m-coc-compact subset of X, so $f^{1}(K)$ is mcompact of X, but A is m-closed in X then f ${}^{1}|_{A}(K)=f^{1}(K) \cap A$ is an m-compact subset of A, and so $f|_{A}$ is an m-compact function.

Propostion 7:

Let X, Y and G be an m-structure spaces and f1: (X, m_X) \rightarrow (Y, m_Y) & f2: (Y, m_Y) \rightarrow (G, m_G) be a continuous functions, then

1- If f_1 is an m-compact function and f_2 is m-coccompact function then $f_{2o}f_1$ is an m-compact function.

2- If f_1 is m-coc-compact function and f_2 is m-compact function then $f_{20}f_1$ is m-coc-compact function.

3- If f_1 is m-compact function and f_2 is m-compact function then $f_{2o}f_1$ is m-compact.

Proof:

1- Let K be an m-compact subset of G, then $f_2^{-1}(K)$ is an m-coc-compact subset of Y and so $f_2^{-1}(K)$ is an m-compact subset of Y, also f_1 is an m-compact function then $f_1^{-1}(f2^{-1}(K))$ is an m-compact in X but $f_1^{-1}(f2^{-1}(K))=(f_0^1 f^2)^{-1}(K)$ therefore $f_{10}f_2$ is an m-compact function.

2- Let M be an m-compact subset of G, then $f_2^{-1}(M)$ is an m-compact subset of Y, and since f_1 is m-coc-compact function then $f_1^{-1}(f_2^{-1}(M))$ is an m-coc-compact in X, but $f_1^{-1}(f_2^{-1}(M))=(f_{2o}f_1)^{-1}(M)$ therefore $f_{2o}f_1$ is an m-coc-compact function.

3- Let N be an m-compact subset of G, then $f_2^{-1}(N)$ is an m-compact subset of Y f_1 is m-coccompact function $f_1^{-1}(f_2^{-1}(N))$ is an m-compact in X, but $f_1^{-1}(f_2^{-1}(N))=(f_{20}f_1)^{-1}(N)$ therefore $f_{20}f_1$ is an m-compact function.

Conclusion

In our work we conclude the following results:

 Every m-coc*-continuous function is m-coccontinuous function.

- 2. Every m-continuous function is m-coccontinuous function.
- 3. Every m-coc**-continuous function is m-coccontinuous function.
- 4. Every m-continuous function is m-s-coccontinuous function.
- 5. Every m-coc-continuous function is m-s-coccontinuous function.
- 6. Every m-s-coc*-continuous function is m-continuous function.

References

- [1] Maki H., "on generalizing Semi-open sets and preopen sets", in: Report for meeting on Topological spaces theory and its Application Yatsushiro college of Technology, 13-18. 1996.
- [2] Nori T. and Popa V., "on upper and lower m-continuous Multifunction", Filomat, 14, 73-86. 2000.
- [3] Saleh M., "on θ-closed sets and some forms of continuity ", Archivum Mathematical (Brono), 40, 38-393. 2004.
- [4] Farah H. Jasim Al-Hussaini "on compactness via cocompact open sets", M.Sc. thesis, University of Al-Qadisiya, 2014.
- [5] S. Al Ghour and S. Samarah "Cocompact open sets and continuity ", Abstract and applied analysis, Article ID 548612, 2012.

