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In the current study, we have been derived some Bayesian estimations of the scale parameter of 
Maxwell distribution using the New loss function (NLF) which it called Generalized weighted 
loss function, assuming non-informative prior, namely, Jefferys prior and information prior, 
represented by Inverted Levy prior. Based on Monte Carlo simulation method, those estimations 
are compared depending on the mean squared errors (MSE's). The results show that, the behavior 
of Bayesian estimation under New loss function using Inverted Levy prior when (k=0, c=3) is the 
better behavior than other estimates for all cases.  
 
Keywords: Maxwell distribution, Bayesian estimations, New loss Function, Jefferys prior and 
Inverted Levy prior, Mean squared error. 
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(k=0, c=3)

 
Introduction 
Maxwell [1] derived a mathematical formulation 
in three dimensional spaces to describe the 
distributions of speeds of molecules in thermal 
equilibrium and it came to be known as Maxwell 
distribution. Not all molecules move at the same 
speed and a few molecules move at faster speeds 
resulting in a leptokurtic distribution, i.e., 
unimodal with a longer right tail. A major 
characteristic of the Maxwell distribution is that 
it has a smooth increasing failure rate, because of 
which it is useful in those life-testing and 
reliability studies in which the assumption of 
constant failure rate, such as in case of 
exponential distribution, is not realistic. Tyagi 
and Bhattacharya [2] for the first time consider 
one parameter (scale) Maxwell distribution as a 
model for the distribution of life times. They 
obtained the minimum variance unbiased and the 
Bayes estimators of the scale parameter, and the 
reliability function of this distribution. 
Chaturvedi and Rani [3] generalized the Maxwell 

distribution through some trans-formation on a 
gamma distributed random variable. They also 
obtained the classical and Bayes estimators of 
the parameters. Howlader and Hossain [4] 
derived the highest posterior density (HPD) 
intervals for the unknown scale parameter, as 
well as for a future observation considering an 
asymptotically locally invariant prior proposed 
by Hartigan [5]. Podder and Roy [6] estimated 
the parameter of this distribution under Modified 
Linear Exponential Loss Function (MLINEX). 
Bekker and Roux [7] studied the maximum 
likelihood estimator (MLE), as well as the Bayes 
estimators of the truncated first moment and 
hazard function of the Maxwell distribution. 
Krishna and Malik [8] obtained themlE and the 
Bayes estimator of the reliability characteristics 
under type-II censoring scheme. Dey and Maiti 
[9] considered one parameter Maxwell 
distribution with scale parameter and obtained 
Bayes estimators using non-informative and 
conjugate priors under symmetric as well as 
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asymmetric loss functions, namely quadratic loss 
function, squared-log error loss function, and 
modified linear exponential loss function. 
Performances of all these estimators were 
compared on the basis of their estimated risk. 
Krishna and Malik [10] compared themlE and 
the Bayes estimators of the scale parameter and 
the reliability function under progressive Type II 
censoring scheme. Recently, Dey et al. [11] 
studied one parameter Maxwell distribution 
under different loss functions, namely squared 
error loss function and precautionary loss 
function, and compared the performances of 
these estimators. They also obtained predictive 
density and HPD prediction interval for a future 
observation. Rasheed [12] derived minimax 
estimation of the parameter of the Maxwell 
distribution under Quadratic loss function. 

Model Description [13] 
The Maxwell (or Maxwell  Boltzmann) 
distribution gives the distribution of speeds of 
molecules in thermal equilibrium as given by 
statistical mechanics.  

Defining , where K is the Maxwell 
constant, T is temperature, m is the mass of a 
molecule. The probability density function and 
the cumulative distribution function of Maxwell 
distribution over the rang x  are given 
by: 
 

(1) f(x, =  0 <  

 

(2) F(x) ) 

 
,  =  is the 

incomplete gamma function. 
It can also be expressed as follows 

F(x;  

Where dw, is the error 

function. 

Bayesian Estimations 
Let be a random sample of size n 
with probability density function given in (1) and 
likelihood function is given by: 

 (3)  

( )  

Bayes Estimator under New Loss 
Function 
Rasheed and Al-Shareefi [14] offered a new loss 
function, in estimating the scale parameter of 
Laplace distribution which is called Generalized 
weighted loss function and introduced as 
follows: 
 

(4)   

 
Where, is constant, j =0, 1, 2,  , k, c 
is constant. Hence, Bayesian estimation using the 
new loss function will be; [15] 
 

(5)   

Where  are constant. 
The Bayesian estimators of the parameter  
under different two prior distributions which are 
mentioned below can be obtained as follows:  
 
(i) Bayesian estimation Using Jefferys Prior 
Information  
Suppose that, the unknown scale parameter  has 
non-information prior density defined as using 
Jefferys prior information  which is derived 
to be: [13-16] 

(6)   

 

Where , represents the 

Fisher's information matrix. 
Hence, 
  

(7)   

k is a constant.  
By taking the logarithm for distribution and 
taking the second partial derivative according to 

, yields: 
 

(8)    
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=  and =  [7] 

  

 =  =  

(9)  =  

 
After Substitution (9) into (7), yields: 
 

(10)   =  

 
Now, combining the prior (10) with the 
likelihood function (3), we have the posterior 
distribution of  according to Jefferys prior 
information which is given by:  
  

(11)  

 

 

    
On Simplification, yields: 
 

(12)  

  

 

 
This posterior density is recognized as the 
density of the Inverse Gamma distribution. 
Now, Recall that, according to the posterior 
density function (12), we derived , 

 and get: 

 

  

And   

  

 
Which can be substituted to obtain , that is 
denoted to the Bayesian estimation based on 
Jef . Now, 
putting k = 0 in (5), yields: 
 

(13)  

 

 

 
Let c=1, then the Bayesian estimation using New 
loss function based on Jefferys prior which is 
denoted by will be: 
 

(14)   

 
Putting c=2, then the Bayesian estimation using 
New loss function based on Jefferys prior that is 
denoted by will be: 
 

(15)   

 
With c=3, then the Bayesian estimation using 
New loss function based on Jefferys prior which 
is denoted by will be: 
 

(16)   

 
Now, putting k = 1 in (5), we get: 
 



Rasheed et al  Some Bayes Estimators for Maxwell Distribution by Using New Loss Function 2017 

 

106 
 
 

 

 
With c=1,then the Bayesian estimation using 
New loss function based on Jefferys prior which 
is denoted by will be: 
 

(17)   

 
 
With c=2, then the Bayesian estimation using 
New loss function based on Jefferys prior which 
is denoted by  become 
 

(18)  
 

With c=3,then the Bayesian estimation using 
New loss function based on Jefferys prior that is 
denoted by  is: 
 

(19)  
 

 
(ii) Bayesian estimation Using Inverted Levy 
Prior Information 
The inverted Levy prior is assumed to be [17]: 
 

(20)  ,   

 
Where  is the hyper-parameter. Now, the 
posterior density function is: 
 

(21)  
 

 

 
Hence, the posterior density functions of ( ) 
based on Inverted Levy prior is given by: [14] 

(22)  

 

 

 
It is clear that,  is recognized as the 
density of the Inverse Gamma distribution. 
Now, based on Inverted Levy prior, we get: 

(23)   

And 

(24)  

    

   
Which can be substituted to obtain , where, 

 denoted to the Bayesian estimation based 
on Inverted Levy prior using new loss function. 
Now, putting k = 0 in (5), we get: 

(25)   
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With c=1, then the Bayesian estimation using 
New loss function based on Inverted Levy prior 
that is denoted by will be: 

(26)   

 
With, c = 2 then the Bayesian estimation using 
New loss function based on Inverted Levy prior 
that is denoted by  become: 
 

(27)    

 
With, c = 3, then the Bayesian estimation using 
New loss function based on Inverted Levy prior 
which is denoted by  is: 
 

(28)   

 
Now, putting k = 1 in (5), yields: 
 

 

 
With, c=1, then the Bayesian estimation using 
New loss function based on Inverted Levy prior 
that is denoted by  become: 
 

(2
9)  

With, c=2, then the Bayesian estimation using 
New loss function based on Inverted Levy prior 
that is denoted by  is: 

 

(30)   

 
With, c = 3, then the Bayesian estimation using 
New loss function based on Inverted Levy prior 
which is denoted by will be: 
 

(31)  

 

Simulation Results 
Mean Squared Errors, are considered to compare 
the different estimations of the parameter 
obtained by the method of Bayes Estimators for 
New loss function that derived previously. In this 
simulation results study, the number of 
recurrence used was I = 5000 samples of sizes n 
= 5, 10, 20, 50, 100 from the Maxwell 
distribution with different values of (
3), and hyper parameter of Inverted Levy prior 

=0.8, and constant of New loss function 
( =5000 and 0.5, 50). 
The random samples from Maxwell distribution 
have been generated by applying an algorithm 
offered by [8]. 
In this section, Monte-Carlo simulation study is 
performed to compare the methods of estimation 
by using mean squared errors as an important 
criteria for comparing the efficiency of each of 
estimators, where:  
 

(32)  MSE( =  

Discussion 
The results are summarized study for estimating 
the scale parameter of Maxwell distribution 
and Tables (1, 2, and 3) which contain the 
Expected values and MSE's, we have observed 
that: 
The behavior of Bayesian estimation using New 
loss function based on Inverted Levy(NIL03) 
when (K=0, C=3)is the best estimate, comparing 
to others for all sample sizes and based on all 
values of the scale parameter. It is observed that 
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mean squared error of all estimations of scale 
parameter is increasing with the increase of the 
scale parameter value. Finally, for all parameter 
values, an obvious reduction in mean squared 
error is observed based on the increase in sample 
size 

Conclusion 
It is observed that mean squared error of all 
estimates of the scale parameter is increases 

based on the increase of the scale parameter 
value, based on all cases.  
With all values of , the performance of 
Bayesian estimations using New loss function 
based on K=0, C=3 is better in comparing to 
other estimations. 
Use New loss function, based on value of the 
constant ( ) is much greater than, nearly, 

=5000, =0.5. 

 
Table 1: Estimates and MSE's for different sample sizes with =0.5, =0.8 and =5000 

Estimators 
n 

Criteria 5 10 20 50 100 

NJ01 EXP. 0.499823 0.498925 0.499653 0.499709 0.499559 
MSE 0.034281 0.017208 0.008368 0.003295 0.001646 

NJ02 EXP. 0.441021 0.467742 0.483536 0.493134 0.496250 
MSE 0.030168 0.016164 0.008108 0.003256 0.001638 

NJ03 EXP. 0.394597 0.440227 0.468425 0.486729 0.492986 
MSE 0.032476 0.016969 0.008351 0.003302 0.001652 

=0.5 

NJ11 EXP. 0.499828 0.498927 0.499654 0.499709 0.499559 
MSE 0.034282 0.017208 0.008368 0.003295 0.001646 

NJ12 EXP. 0.441024 0.467744 0.483536 0.493135 0.496250 
MSE 0.030169 0.016164 0.008108 0.003256 0.001638 

NJ13 EXP. 0.394599 0.440228 0.468426 0.486729 0.492986 
MSE 0.032476 0.016969 0.008351 0.003302 0.001652 

=50 

NJ11 EXP. 0.500258 0.499114 0.499741 0.499743 0.499576 
MSE 0.034400 0.017234 0.008374 0.003296 0.001646 

NJ12 EXP. 0.441314 0.467898 0.483616 0.493166 0.496266 
MSE 0.030205 0.016174 0.008110 0.003256 0.001638 

NJ13 EXP. 0.394805 0.440356 0.468497 0.486761 0.493002 
MSE 0.032477 0.016970 0.008351 0.003302 0.001652 

NIL01 EXP. 0.592668 0.543715 0.521682 0.508431 0.503905 
MSE 0.047941 0.020325 0.009124 0.003411 0.001672 

NIL02 EXP. 0.518584 0.508637 0.504576 0.501698 0.500558 
MSE 0.030475 0.016189 0.008117 0.003254 0.001635 

NIL03 EXP. 0.460964 0.477810 0.488559 0.495139 0.497252 
MSE 0.025330 0.014713 0.007721 0.003191 0.001621 

=0.5 

NIL11 EXP. 0.592674 0.543717 0.521683 0.508432 0.503905 
MSE 0.047944 0.020326 0.009124 0.003411 0.001672 

NIL12 EXP. 0.518588 0.508639 0.504577 0.501698 0.500558 
MSE 0.030477 0.016190 0.008117 0.003254 0.001635 

NIL13 EXP. 0.460967 0.477811 0.488560 0.495139 0.495139 
MSE 0.025331 0.014713 0.007721 0.003191 0.003191 

=50 

NIL11 EXP. 0.593314 0.543947 0.521780 0.508467 0.503922 
MSE 0.048234 0.020377 0.009135 0.003412 0.001672 

NIL12 EXP. 0.519009 0.508826 0.504666 0.501732 0.500574 
MSE 0.030591 0.016217 0.008123 0.003255 0.001635 

NIL13 EXP. 0.461258 0.477967 0.488639 0.495172 0.497269 
MSE 0.025369 0.014725 0.007724 0.003191 0.001621 
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Table 2: Estimates and MSE's for different sample sizes with =1.5, =0.8 and =5000 

Estimators 
n 

Criteria 5 10 20 50 100 

NJ01 EXP. 1.499469 1.496774 1.498959 1.499125 1.498673 
MSE 0.308532 0.154873 0.075310 0.029657 0.014811 

NJ02 EXP. 1.323063 1.403226 1.450607 1.479400 1.488749 
MSE 0.271514 0.145474 0.072968 0.029305 0.014740 

NJ03 EXP. 1.183792 1.403226 1.405273 1.460188 1.478957 
MSE 0.292286 0.145474 0.075162 0.029720 0.014865 

=0.5 

NJ11 EXP. 1.499510 1.496791 1.498968 1.499128 1.498675 
MSE 0.308564 0.154879 0.075312 0.029657 0.014811 

NJ12 EXP. 1.323089 1.403241 1.450613 1.479403 1.488750 
MSE 0.271524 0.145477 0.072969 0.029305 0.014740 

NJ13 EXP. 1.183810 1.320694 1.405280 1.460191 1.478958 
MSE 0.292286 0.152722 0.075162 0.029720 0.014865 

=50 

NJ11 EXP. 1.503330 1.498458 1.499747 1.499428 1.498825 
MSE 0.311705 0.155564 0.075467 0.029680 0.014816 

NJ12 EXP. 1.325672 1.404608 1.451317 1.479692 1.488897 
MSE 0.272484 0.145748 0.073037 0.029315 0.014742 

NJ13 EXP. 1.185641 1.321831 1.405922 1.460468 1.479101 
MSE 0.292317 0.152733 0.075162 0.029719 0.014864 

NIL01 EXP. 1.663719 1.575978 1.575978 1.514560 1.506367 
MSE 0.380984 0.171499 0.171499 0.030267 0.014949 

NIL02 EXP. 1.455753 1.474298 1.487503 1.494497 1.496355 
MSE 0.273129 0.145693 0.073016 0.029295 0.014724 

NIL03 EXP. 1.294002 1.384948 1.440279 1.474961 1.486478 
MSE 0.256693 0.141223 0.071874 0.029131 0.014700 

=0.5 

NIL11 EXP. 1.663772 1.575996 1.537932 1.514563 1.506369 
MSE 0.381046 0.171510 0.079324 0.030267 0.014949 

NIL12 EXP. 1.455785 1.474313 1.487511 1.494500 1.496357 
MSE 0.273150 0.145699 0.073018 0.029295 0.014724 

NIL13 EXP. 1.294025 1.384960 1.440286 1.474964 1.486479 
MSE 0.256699 0.141225 0.071875 0.029131 0.014700 

=50 

NIL11 EXP. 1.668816 1.577902 1.538769 1.514867 1.506514 
MSE 0.387016 0.172610 0.079557 0.030301 0.014957 

NIL12 EXP. 1.459105 1.475869 1.488263 1.494795 1.496502 
MSE 0.275340 0.146237 0.073147 0.029315 0.014729 

NIL13 EXP. 1.296324 1.386246 1.440969 1.475247 1.486621 
MSE 0.257280 0.141408 0.071923 0.029139 0.014702 

 
Table 3: Estimates and MSE's for different sample sizes with =3, =0.8 and =5000 

Estimators 
n 

Criteria 5 10 20 50 100 

NJ01 EXP. 2.998938 2.993549 2.997918 2.998251 2.997346 
MSE 1.234127 0.619490 0.301240 0.118626 0.059243 

NJ02 EXP. 2.646127 2.806452 2.901214 2.958800 2.977498 
MSE 1.086054 0.581897 0.291874 0.117220 0.058960 

NJ03 EXP. 2.367584 2.641365 2.810546 2.920375 2.957915 
MSE 1.169143 0.610886 0.300649 0.118881 0.059459 

=0.5 
NJ11 EXP. 2.999096 2.993617 2.997952 2.998263 2.997352 

MSE 1.234384 0.619547 0.301253 0.118628 0.059243 
NJ12 EXP. 2.646229 2.806511 2.901238 2.958811 2.977504 
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MSE 1.086135 0.581920 0.291879 0.117220 0.058960 

NJ13 EXP. 2.367661 2.641409 2.810574 2.920387 2.957920 
MSE 1.169145 0.610890 0.300650 0.118881 0.059459 

=50 

NJ11 EXP. 3.014093 3.000170 3.001023 2.999444 2.997946 
MSE 1.259003 0.624908 0.302472 0.118809 0.059286 

NJ12 EXP. 2.656391 2.811893 2.904030 2.959946 2.978077 
MSE 1.093657 0.584031 0.292409 0.117303 0.058979 

NJ13 EXP. 2.374866 2.645895 2.813105 2.921480 2.958474 
MSE 1.169361 0.610959 0.300642 0.118874 0.059455 

NIL01 EXP. 3.270289 3.124364 3.062290 3.023734 3.010049 
MSE 1.489784 0.678371 0.315414 0.120784 0.059734 

NIL02 EXP. 2.861506 2.922787 2.961891 2.983689 2.990048 
MSE 1.103861 0.586091 0.292893 0.117323 0.058942 

NIL03 EXP. 2.543555 2.745653 2.867859 2.944689 2.970314 
MSE 1.065371 0.576635 0.290690 0.117076 0.058950 

=0.5 

NIL11 EXP. 3.270493 3.124442 3.062323 3.023746 3.010054 
MSE 1.490244 0.678458 0.315433 0.120787 0.059734 

NIL12 EXP. 2.861637 2.922853 2.961920 2.983703 2.990054 
MSE 1.104028 0.586131 0.292903 0.117325 0.058942 

NIL13 EXP. 2.543652 2.745707 2.867886 2.944701 2.970321 
MSE 1.065408 0.576648 0.290694 0.117077 0.058950 

=50 

NIL11 EXP. 3.289675 3.131821 3.065582 3.024968 3.010652 
MSE 1.533912 0.686589 0.317161 0.121035 0.059793 

NIL12 EXP. 2.874289 2.928884 2.964863 2.984870 2.990632 
MSE 1.119701 0.590010 0.293836 0.117468 0.058976 

NIL13 EXP. 2.552429 2.750689 2.870559 2.945818 2.970893 
MSE 1.069214 0.577846 0.291005 0.117125 0.058960 
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