Conic Parameterization in $\operatorname{PG}(2,25)$

Emad B. Al-Zangana*, Elaf A.S. Shehab
Department of Mathematics, College of Science, Mustansiriyah University, IRAQ
*Correspondent author email: e.b.abdulkareem@uomustansiriyah.edu.iq

ArticleInfo

Received
22/09/2017

Revised
12/03/2018
Accepted
26/03/2018

Introduction

In $P G(2, q)$, the projective plane of order q, there have been many characterizations of the classical curves given by the zeros of quadratic forms called conics. For example, Al-Zangana studied the group effect on the conic in $P G(2, q), q=19,29,31$ [1] [2]. Also, AlZangana started to parameterized the conics through the inequivalent 5 -arc in $P G(2,19)$, $P G(2,23)[1][3]$. It is worth mentioning that, the projective plane $P G(2,25)$ has been studied by calculated the complete arcs only as in [4] [5].
The purpose of the research is to compute the 5 -arc and then parameterized the conics through these 5 -arc in $P G(2,15)$. Also, in this paper, the inequivalent 6 -arcs have been computed and then show that, there is a unique 6 -arc with ten B-points but does not form a $10-$ arc.

Preliminary

Definition 1[6]. A k-arc, K in projective plane $P G(2, q)$ is a set of k points no three of them are collinear, but there is some two collinear. A k-set, S in projective line $\operatorname{PG}(1, \mathrm{q})$ is a set of k distinct points.

Definition 2 [6]. A line ℓ of $P G(2, q)$ is an i secant of a k-arc K if $|\ell \cap K|=i$. A 2 -secant is called a bisecant, a 1 -secant is a unisecant and a 0 -secant is an external line. The number of bisecants through a point Q out of K is called the index of Q with respect to K.
Definition 3 [6]. Let K be an arc and c_{i} be the number of points of $P G(2, q) \backslash K$ with index exactly i. A point of index three is called a Brianchon point or B-point for short.
During this research, write $i j \cdot k l \cdot m n=$ $P_{i} P_{j} \cap P_{k} P_{l} \cap P_{m} P_{n}$ for B-point, where $P_{\lambda} P_{\beth}$ represent the line through the points P_{λ} and P_{\beth}.
Definition 4 [6]. The zero set of the form F of degree two

$$
\begin{gathered}
V(F)=V\left(a X_{0}^{2}+b X_{1}^{2}+c X_{2}^{2}+d X_{0} X_{1}\right. \\
\left.+e X_{0} X_{2}+f X_{1} X_{2}\right)
\end{gathered}
$$

is called plane quadric. A non-singular plane quadric is called conic.
For details about groups that appear in this paper like, $Z_{n} \rtimes Z_{m}=$ semi direct product group, $S_{n}=$ symmetric group of degree n, $V_{4}=$ Klein 4-group and $A_{n}=$ alternating group of degree n, see [7].
To start with this research, the points and lines of $P G(2,25)$ are needed to construct.
The projective plane of order twenty five, $P G(2,25)$, has 651 points and lines, 26 points
on each line and 26 lines passing through each point.
Let $(X)=X^{3}-\beta^{16} X-\beta \in F_{25}[X]$, where β is the primitive element of F_{25}. Then f is primitive polynomial over F_{25} since
$f(0)=\beta^{13}$,

$$
f(1)=\beta^{2},
$$

$f(\beta)=\beta^{21}$,
$f\left(\beta^{2}\right)=\beta^{10}$
$f\left(\beta^{3}\right)=\beta^{5}$,,
$f\left(\beta^{4}\right)=\beta$,
$f\left(\beta^{5}\right)=\beta^{16}$,
$f\left(\beta^{6}\right)=\beta^{11}$,
$f\left(\beta^{7}\right)=\beta^{5}$,
$f\left(\beta^{8}\right)=\beta^{13}$,
$f\left(\beta^{9}\right)=\beta^{23}$,
$f\left(\beta^{10}\right)=\beta^{20}$,
$f\left(\beta^{11}\right)=\beta^{16}$,
$f\left(\beta^{12}\right)=\beta^{4}$
$f\left(\beta^{13}\right)=\beta^{22}$
$f\left(\beta^{14}\right)=\beta^{5}$,
$f\left(\beta^{15}\right)=\beta^{10}$,
$f\left(\beta^{16}\right)=\beta^{7}$,
$f\left(\beta^{17}\right)=\beta^{6}$,
$f\left(\beta^{18}\right)=\beta^{18}$,
$f\left(\beta^{19}\right)=\beta^{10}$,
$f\left(\beta^{20}\right)=\beta^{13}$,
$f\left(\beta^{21}\right)=\beta^{15}$,
$f\left(\beta^{22}\right)=1$,
$f\left(\beta^{23}\right)=\beta^{6}$.
That is, f irreducible over F_{25}, but f has three zeros $\gamma, \gamma^{25}, \gamma^{625}$ in $F_{25^{3}}$, where γ is the primitive element of $F_{25^{3}}$. Therefore, the companion matrix of f

$$
C(f)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\beta & \beta^{16} & 0
\end{array}\right)
$$

cycle is projectivity, and then the points of $P G(2,25)$ are

$$
P(i)=(1,0,0) C(f)^{i} .
$$

Dully, the lines of $P G(2,25)$ are

$$
P(i)=\ell_{1} C(f)^{i},
$$

where $i=0,1, \ldots, 650$ and $\ell_{1}=V\left(X_{2}\right)$. The line ℓ_{1} in numeral form is
$1,2,4,44,65,74,93,162,170,176,215$,
$252,269,310,397,422,454,472,501$,
$506,516,528,532,539,552,587$.
For a comprehensive bibliography and more theoretical details about the lines and points structure see [6], and about field theory see [8].

Inequivalent 5-Arcs

From the fundamental theorem of projective geometry, there is projectively a unique 4 -arc
called frame. The stabilizer group of any 4 -arc is S_{4}. Let $\Gamma_{25}=\left\{U_{0}, U_{1}, U_{2}, U\right\}$ be the representative 4 -arc (standard frame) where $U_{0}=[1,0,0]=P(0), \quad U_{1}=[0,1,0]=P(1)$, $U_{2}=[0,0,1]=P(2), \quad U=[1,1,1]=P(603)$. The 5 -arcs are formed by adding points of index zero and the inequivalent one are computed using mathematical program language Gap as summarized in the following theorem.
Theorem 5. In $P G(2,25)$, there are eight inequivalent 5 -arcs through Γ_{25}. The values of the constants c_{i} for any $5-\operatorname{arc}$ are $c_{0}=421$; $c_{1}=210 ; c_{2}=15$. These arcs with their stabilizer group types are given in Table 1.

Table 1: inequivalent 5-arcs

\mathcal{A}_{i}	The 5-arc	SG- type
\mathcal{A}_{1}	$\Gamma_{25} \cup P\left(\beta^{16}, \beta^{6}, 1\right)$	Z_{2}
\mathcal{A}_{2}	$\Gamma_{25} \cup P\left(\beta^{18}, \beta^{5}, 1\right)$	I
\mathcal{A}_{3}	$\Gamma_{25} \cup P\left(\beta^{7}, \beta^{10}, 1\right)$	Z_{2}
\mathcal{A}_{4}	$\Gamma_{25} \cup P\left(\beta^{20}, \beta^{9}, 1\right)$	Z_{2}
\mathcal{A}_{5}	$\Gamma_{25} \cup P\left(\beta^{18}, \beta^{6}, 1\right)$	$Z_{5} \rtimes Z_{4}$
\mathcal{A}_{6}	$\Gamma_{25} \cup P\left(\beta^{22}, \beta^{23}, 1\right)$	Z_{2}
\mathcal{A}_{7}	$\Gamma_{25} \cup P\left(\beta^{14}, \beta^{18}, 1\right)$	I
\mathcal{A}_{8}	$\Gamma_{25} \cup P\left(\beta^{20}, \beta, 1\right)$	S_{3}

Conic Representation through 5- Arc

It is well known that, through any 5 -arc there is a unique conic and the rational points X of the conic $C^{*}=V\left(X_{1}-X_{0} X_{2}\right)$ parameterized as $\left(t^{2}, t, 1\right)$ [6]. So, There is a unique conic through each 5 -arc, \mathcal{A}_{i} and since each of this arcs passes through Γ_{25}, therefore, each conic $C_{\mathcal{A}_{i}}$, take
the form
$C_{\mathcal{A}_{i}}=V\left(F_{\mathcal{A}_{i}}\right)=X_{0} X_{1}+a X_{0} X_{2}-(a+1) X_{1} X_{2}$.
After substituted the fifth point of the $\operatorname{arcs} \mathcal{A}_{i}$ into $F_{\mathcal{A}_{i}}$ the following are deduced.

$$
\begin{aligned}
C_{\mathcal{A}_{1}} & =V\left(X_{0} X_{1}+\beta^{4} X_{0} X_{2}+\beta^{11} X_{1} X_{2}\right) . \\
& =\{1,2,3,6,7,8,107,119,137,139,279,319,342,361,431,434,452, \\
& 466,555,562,584,594,601,603,613,620\} . \\
C_{\mathcal{A}_{2}} & =V\left(X_{0} X_{1}+\beta^{4} X_{0} X_{2}+\beta^{11} X_{1} X_{2}\right) . \\
& =\{1,2,3,6,7,8,107,119,137,139,279,319,342,361,431,434,452,
\end{aligned}
$$

$466,555,562,584,594,601,603,613,620\}$.
$C_{\mathcal{A}_{3}}=V\left(X_{0} X_{1}+\beta^{10} X_{0} X_{2}+\beta X_{1} X_{2}\right)$.
$=\{1,2,3,9,86,120,151,178,180,209,222,239,244,273,281,284$, $294,406,487,525,526,579,592,603,606,607\}$.
$C_{\mathcal{A}_{4}}=V\left(X_{0} X_{1}+\beta^{19} X_{0} X_{2}+\beta^{21} X_{1} X_{2}\right)$.
$=\{1,2,3,12,26,72,81,187,194,208,227,243,260,331,352,379$, $467,484,494,549,570,582,589,600,603,627\}$.
$C_{\mathcal{A}_{5}}=V\left(X_{0} X_{1}+X_{0} X_{2}+\beta^{18} X_{1} X_{2}\right)$.
$=\{1,2,3,17,34,49,116,141,166,168,212,223,256,265,287,333$, $345,381,427,429,430,508,593,603,605,632\}$.
$C_{\mathcal{A}_{6}}=V\left(X_{0} X_{1}+\beta^{9} X_{0} X_{2}+\beta^{23} X_{1} X_{2}\right)$.
$=\{1,2,3,19,23,57,127,153,230,232,241,258,285,290,306,358$, $369,376,387,399,465,550,565,583,603,645\}$.
$C_{\mathcal{A}_{7}}=V\left(X_{0} X_{1}+X_{0} X_{2}+\beta^{10} X_{1} X_{2}\right)$.
$=\{1,2,3,21,61,112,149,156,220,242,247,249,298,315,336,383$, $392,448,530,548,566,596,603,611,629,643\}$.
$C_{\mathcal{A}_{8}}=V\left(X_{0} X_{1}+\beta^{8} X_{0} X_{2}+\beta^{16} X_{1} X_{2}\right)$.
$=\{1,2,3,35,37,39,76,99,124,125,131,157,173,322,324,346,347$, $378,384,444,475,522,599,603,609,646\}$.

Lemma 6 [9].
On $P G(1,25)$, there are precisely eight distinct pentads given with their stabilizer groups in Table 2 and Table 3

Table 2: Inequivalent pentads

Type	The pentads
\mathcal{P}_{1}	$\left\{\infty, 0,1, \beta^{12}, \beta^{6}\right\}$
\mathcal{P}_{2}	$\left\{\infty, 0,1, \beta^{12}, \beta\right\}$
\mathcal{P}_{3}	$\left\{\infty, 0,1, \beta^{12}, \beta^{2}\right\}$
\mathcal{P}_{4}	$\left\{\infty, 0,1, \beta^{12}, \beta^{3}\right\}$
\mathcal{P}_{5}	$\left\{\infty, 0,1, \beta^{4}, \beta^{2}\right\}$
\mathcal{P}_{6}	$\left\{\infty, 0,1, \beta^{4}, \beta^{5}\right\}$
\mathcal{P}_{7}	$\left\{\infty, 0,1, \beta, \beta^{2}\right\}$
\mathcal{P}_{8}	$\left\{\infty, 0,1, \beta, \beta^{8}\right\}$

Table 3: Stabilizer of inequivalent pentads

Type	SG-type
\mathcal{P}_{1}	$Z_{5} \rtimes Z_{4}=\left\langle 1 /\left(t+\beta^{12}\right),\left(t \beta^{18}+\beta^{12}\right)\right\rangle$
\mathcal{P}_{2}	I
\mathcal{P}_{3}	$Z_{2}=\left\langle(t+1) /\left(t+\beta^{12}\right)\right\rangle$
\mathcal{P}_{4}	I
\mathcal{P}_{5}	$Z_{2}=\left\langle\beta^{4} / t\right\rangle$
\mathcal{P}_{6}	$S_{3}=\left\langle\left(\beta^{8} t+1\right), \beta^{5} t /\left(t+\beta^{17}\right)\right\rangle$
\mathcal{P}_{7}	$Z_{2}=\left\langle\beta^{2} / t\right\rangle$
\mathcal{P}_{8}	$Z_{2}=\left\langle t /\left(t+\beta^{12}\right)\right\rangle$

Using the corresponding properties between $P G(1,25)$ and the conic C^{*}, the eight 5 -sets, \mathcal{P}_{i} in Table 2 are transformed by $t \mapsto\left(t^{2}, t, 1\right)$ into 5 -arcs, $\mathcal{P}_{i}{ }^{*}$ in C^{*} but not through the frame Γ_{25}, where

$$
\begin{aligned}
& C^{*}=\{1,3,19,42,47,111,149,157,174 \\
& 210,217,273,288,303,325,348,357,416, \\
& 430,466,509,549,597,603,623,631\} .
\end{aligned}
$$

Each $\mathcal{P}_{i}{ }^{*}$ is projectively equivalent to $5-\operatorname{arc}, \mathcal{A}_{i}$ as given below.

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{P}_{1}{ }^{*}=\{1,3,603,357,210\} \xrightarrow{\left(\begin{array}{ccc}
\beta^{18} & 0 & 0 \\
0 & 0 & \beta^{14} \\
\beta^{15} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{5} \\
\mathcal{P}_{2}{ }^{*}=\{1,3,603,357,273\} \xrightarrow{\left(\begin{array}{ccc}
\beta & 0 & 0 \\
0 & 0 & \beta^{10} \\
\beta^{12} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{2}
\end{array} \\
& \mathcal{P}_{3}{ }^{*}=\{1,3,603,357,42\} \\
& \mathcal{P}_{3}{ }^{*}=\{1,3,603,357,42\} \xrightarrow{\left(\begin{array}{lll}
\beta^{12} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{3} \\
& \mathcal{P}_{4}{ }^{*}=\{1,3,603,357,228\} \\
& \mathcal{P}_{5}{ }^{*}=\{1,3,603,111,42\} \xrightarrow{\left(\begin{array}{ccc}
\beta^{15} & 0 & 0 \\
0 & 0 & \beta^{19} \\
\beta^{12} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{6}{ }^{*}=\{1,3,603,111,47\} \xrightarrow{\left(\begin{array}{ccc}
\beta^{20} & 0 & 0 \\
0 & 0 & \beta^{6} \\
\beta^{12} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{8} \\
& \mathcal{P}_{7}{ }^{*}=\{1,3,603,111,47\} \xrightarrow{\left(\begin{array}{ccc}
\beta^{13} & 0 & 0 \\
0 & 0 & \beta^{5} \\
\beta^{12} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{6} \\
& \mathcal{P}_{8}{ }^{*}=\{1,3,603,273,631\} \xrightarrow{\left(\begin{array}{ccc}
\beta & 0 & 0 \\
0 & 0 & \beta^{10} \\
\beta^{12} & \beta^{13} & \beta^{14}
\end{array}\right)} \mathcal{A}_{1} .
\end{aligned}
$$

Theorem 7. By uniqueness properties of conics, the parameterization of each conic $C_{\mathcal{A}_{i}}$ are given below using the matrix transformation between C^{*} and $C_{\mathcal{A}_{i}}$. Let $t \in F_{25} \cup\{\infty\}$,

$C_{\mathcal{A}_{i}}$	Matrix trans. of $C_{\mathcal{A}_{i}}$ to C^{*}	Parameterization of $C_{\mathcal{A}_{i}}$
$C_{\mathcal{A}_{1}}$	$\left(\begin{array}{ccc}\beta & 0 & 0 \\ 0 & 0 & \beta^{10} \\ \beta^{12} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-1}\left(t^{2}-\beta^{-1} t\right), \beta^{-10}(1-\beta t), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{2}}$	$\left(\begin{array}{ccc}\beta & 0 & 0 \\ 0 & 0 & \beta^{10} \\ \beta^{12} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-1}\left(t^{2}-\beta^{-1} t\right), \beta^{-10}(1-\beta t), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{3}}$	$\left(\begin{array}{ccc}\beta^{11} & 0 & 0 \\ 0 & 0 & \beta^{4} \\ \beta^{12} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-11}\left(t^{2}-\beta^{-1} t\right), \beta^{-4}(1-\beta t), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{4}}$	$\left(\begin{array}{ccc}\beta^{15} & 0 & 0 \\ 0 & 0 & \beta^{19} \\ \beta^{12} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-15}\left(t^{2}-\beta^{-1} t\right), \beta^{-19}(1-\beta t), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{5}}$	$\left(\begin{array}{ccc}\beta^{18} & 0 & 0 \\ 0 & 0 & \beta^{14} \\ \beta^{15} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-18}\left(t^{2}-\beta^{-1} t\right), \beta^{-15}(1-\beta \mathrm{t}), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{6}}$	$\left(\begin{array}{ccc}\beta^{13} & 0 & 0 \\ 0 & 0 & \beta^{5} \\ \beta^{12} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-13}\left(t^{2}-\beta^{-1} t\right), \beta^{-5}(1-\beta t), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{7}}$	$\left(\begin{array}{ccc}\beta^{2} & 0 & 0 \\ 0 & 0 & \beta^{13} \\ \beta^{12} & \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-2}\left(t^{2}-\beta^{-1} t\right), \beta^{-13}(1-\beta t), \beta^{-13} t\right)\right\}$
$C_{\mathcal{A}_{8}}$	$\left(\begin{array}{cc}\beta^{20} & 0 \\ 0 & 0 \\ \beta^{12} & \beta^{6} \\ \beta^{13} & \beta^{14}\end{array}\right)$	$\left\{P\left(\beta^{-20}\left(t^{2}-\beta^{-1} t\right), \beta^{-6}(1-\beta \mathrm{t}), \beta^{-13} t\right)\right\}$

Inequivalent 6-Arcs

After calculating the orbit of each 5-arc \mathcal{A}_{i} and adding one point from each orbit to \mathcal{A}_{i}, the 6arcs are constructed. In the following theorem the details of inequivalents 6 -arcs are given.

Theorem 8: In $P G(2,25)$, there are 365 inequivalent 6 -arcs through the standard frame. These arcs partitioned according to stabilizer group types and the parameters [$c_{0}, c_{1}, c_{2}, c_{3}$] as given below.

SG-type:No.
$I: 255$
$Z_{2}: 53$
$Z_{3}: 29$
$V_{4}: 5, Z_{4}: 4$
$S_{3}: 12$
$A_{4}: 5$
$G_{36}: 1$
$S_{5}: 1$

The elements of the group G_{36} have order as follows.

G_{36}
$\operatorname{Ord}(g):$ No.
$3: 9$
$3: 8$
$4: 18$

$\left[c_{0}, c_{1}, c_{2}, c_{3}\right]$	$:$ No.
$[320,300,15,10]$	$: 1$
$[324,288,27,6]$	$: 6$
$[326,282,33,4]$	$: 9$
$[327,279,36,3]$	$: 32$
$[328,276,39,2]$	$: 50$
$[329,273,42,1]$	$: 133$
$[330,270,45,0]$	$: 134$

Example 9:

The unique 6 -arc with stabilizer group of order 120 and ten B-points is

$$
\mathcal{H}=\mathcal{A}_{5} \cup P\left(\beta^{12}, \beta^{18}, 1\right) .
$$

The $\operatorname{arc} \mathcal{H}$ in numeral form is $\{1,2,3,603,17,430\}$.
The ten B-points of \mathcal{H} in numeral form is

$$
\mathcal{K}_{10}=\{176,93,396,268,624,380,
$$ 533,351,517,574\},

where

$i j \cdot k l \cdot m n$	Point in coordinate form	Point in numeral form
$12 \cdot 34 \cdot 56$	$P(1,1,0)$	176
$12 \cdot 35 \cdot 46$	$P\left(\beta^{12}, 1,0\right)$	93
$13 \cdot 24 \cdot 56$	$P(1,0,1)$	396
$13 \cdot 26 \cdot 45$	$P\left(\beta^{12}, 0,1\right)$	268
$14 \cdot 25 \cdot 36$	$P\left(\beta^{18}, 1,1\right)$	624
$14 \cdot 26 \cdot 35$	$P\left(\beta^{12}, 1,1\right)$	380
$15 \cdot 23 \cdot 46$	$P\left(0, \beta^{6}, 1\right)$	533
$15 \cdot 24 \cdot 36$	$P\left(1, \beta^{6}, 1\right)$	351
$16 \cdot 23 \cdot 45$	$P\left(0, \beta^{18}, 1\right)$	517
$16 \cdot 25 \cdot 34$	$P\left(\beta^{18}, \beta^{18}, 1\right)$	574

The set \mathcal{K}_{10} does not form 10 -arc since it has ten 3 -secants as given below.

$\mathcal{K}_{10} \cap \ell_{93}$	$=93,268,624$
$\mathcal{K}_{10} \cap \ell_{112}$	$=176,380,533$
$\mathcal{K}_{10} \cap \ell_{176}$	$=176,268,351$
$\mathcal{K}_{10} \cap \ell_{265}$	$=268,533,574$
$\mathcal{K}_{10} \cap \ell_{323}$	$=93,396,574$
$\mathcal{K}_{10} \cap \ell_{348}$	$=93,351,517$

$\mathcal{K}_{10} \cap \ell_{356}$	$=176,517,624$
$\mathcal{K}_{10} \cap \ell_{516}$	$=380,396,517$
$\mathcal{K}_{10} \cap \ell_{531}$	$=351,380,574$
$\mathcal{K}_{10} \cap \ell_{532}$	$=396,533,624$

References

[1] E. B. Al-Zangana, "The geometry of the plane of order nineteen and its application to error-correcting codes," Ph.D. Thesis, University of Sussex, UK, 2011.
[2] E. B. Al-Zangana, "Groups effect of types D_{5} and A_{5} on the points of projective plane Over $\mathrm{F}_{\mathrm{q}}, \mathrm{q}=29,31$," Ibn Al-Haitham Jour. for Pure and Appl. Sci., vol. 26, no. 3, pp. 410-423, 2013.
[3] E. B. Al-Zangana, "Results in projective geometry PG(r, 23), r = 1,2," Iraqi Journal of Science, vol. 57, no. 2A, pp. 964-971, 2016.
[4] Marcugini, S., Milani, A. and Pambianco, F., "Complete arcs in PG(2,25): The spectrum of the sizes and the classification of the smallest complete arcs," Discrete Mathematics, vol. 307, pp. 739-747, 2007.
[5] Coolsaet, K. and Sticker, H., "A full classification of the complete k -arcs of $\operatorname{PG}(2,23)$ and $\operatorname{PG}(2,25), "$ Journal of Combinatorial Designs, vol. 17, no. 6, pp. 459-477, 2009.
[6] Hirschfeld, J. W. P., Projective geometries over finite fields, 2nd edition.: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
[7] Thomas, A. D. and Wood, G. V., Group tables. Shiva Mathematics Series; 2: Shiva Publishing Ltd, 1980.
[8] Lidl, R. and Niederreiter, H., Finite fields, 2nd edition.: Cambridge, 1997.
[9] Al-Zangana, E. B. and Shehab, E. A., "Classification of k-sets in $\operatorname{PG}(1,25)$, for $\mathrm{k}=4, \ldots, 13 "$ Iraqi Journal of Science, vol. 59, no. 1B, pp. 360-368, 2018.

