Research Article

Effect of Temperature on Silicon Carriers Mobilities Using MATLAB

Saad N. Ibrahim

Department of Computer Science, College of Science, Mustansiriyah University, IRAQ Correspondent Author Email: <u>saad.ibrahim@uomustansiriyah.edu.iq</u>

ArticleInfo	Abstract
Received 06 Jun. 2017	The effect of temperature on the electron and hole mobilities in silicon is studied using MATLAB. A theoretical study has been used for the electrons mobility and holes in silicon. The resulting data allows one to obtain the electron mobility and the hole mobility as a function of doping concentration and continuous temperature range between (200-550 K).
Accepted 17 Oct. 2017	Keywords: Carrier Mobilities, Doping Concentration, Hole Mobility, Electron Mobility.
	الخلاصة تم دراسة تأثير درجة الحرارة على ناقلات الحركة للالكترون وناقلات الحركة للفجوة في السليكون باستخدام الماتلاب، وقد استخدمت دراسة نظرية لناقلات حركة الالكترونات وناقلات حركة الفجوات في السليكون. ان البيانات الناتجة تسمح بالحصول على ناقلات حركة الالكترون وناقلات حركة الفجوة كدالة لكثافة تركيز الإشابة وبدرجة حرارة تتراوح بين K (200-550).

Introduction

The valence band and the band of electrons are completely full for the band structure of the semiconductors. The conduction band occur when the electrons excited to the next highest band, otherwise there is no conduction of electrons when the voltage is applied because of no gaps to allow the electrons to transmit from band to band [1].

Normally, the conduction band separated by a barrier from the valence band therefore, to create a free electron and hole in the conduction and valence bands respectively which is normally empty in the conduction band and full in the valence band, valence electron must absorbed small amounts of energy such as light or heat to break this barrier [1].

The carriers are commonly refers to electrons and holes. In semiconductor physics, the electron mobility refers to how rapidly an electron will move through a metal or semiconductor, when pulled by an electric field [2]. In semiconductor, there is a homologous quantity for holes, called hole mobility. The conductivity of a semiconductor is directly proportional to the product of carrier concentration and carrier mobility. Whenever all the things are equal, higher mobility leads to better device performance [3].

Carrier bounces around and regularly changes direction and velocity in the semiconductor because of the scattering. Consequently Carriers do not follow a straight pathway along the electric field lines and this action occurs even when no electric field is applied because of the thermal energy of the electrons. A thermal energy for the electrons in a nondegenerate and non-relativistic electron gas which is equals to $\frac{KT}{2}$ per particle per degree of freedom where *K* the Stefan–Boltzmann constant is and *T* is the temperature. The typical drift velocity in the semiconductor is less than a typical thermal velocity which is a round 10⁺⁷ cm/s at room temperature. The

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

carrier motion is shown in the Figure 1 when the electric fields are applied or without it in the semiconductor [3].

Figure 1: Random motion of carriers when the electric fields are applied or without it in the semiconductor [3].

The carrier motions are occurred randomly and quickly through the semiconductor when the electric field is not applied, otherwise a small difference when the electric field applied there is a net motion along the field.

By the analyzation of the net movement of the carrier motion according to the Newton's second law, the applied force is proportional to the acceleration of the carrier [3]:

$$\vec{F} = m\vec{a} = m\frac{d(\vec{v})}{dt} \tag{1}$$

Where \vec{F} is the force, \vec{a} is the acceleration, m is the mass, \vec{v} is the velocity and t is the time, the force equal to the difference between the electrostatic force and the force due to the loss of momentum at the time of scattering divided by the average time between scattering events:

$$\vec{F} = q\vec{\varepsilon} - m\frac{(\vec{v})}{\tau} \tag{2}$$

The average particle velocity can be measured by the additions of equations (1) and (2):

$$q\vec{\varepsilon} = m\frac{d(\vec{v})}{dt} + m\frac{(\vec{v})}{\tau}$$
(3)

The particle in semiconductor has accelerated to reach a constant velocity as considered in the situation above; otherwise under such conditions the particle has velocity which is proportional to the applied electric field. Equation (4) shows the mobility as the velocity to field ratio:

$$\mu \triangleq \frac{|\vec{v}|}{\vec{\varepsilon}} = \frac{q\tau}{m} \tag{4}$$

From equation (4) we can expected that if the mass of the particle is small the mobility of a particle will be large and proportional to the time between scattering events in a semiconductor.

Therefore, the drift of velocity (v_d) of holes and electrons in a solid equal to the mobility tensor as denotes $(\vec{\mu})$ multiplied by an applied electric field (E).

$$v_d = \vec{\mu} E \tag{5}$$

There is a difference between the mobility of electrons and the holes in a semiconductor, because of the different band structure and scattering mechanisms of these two carrier types. When one charge carrier is dominant the conductivity of a semiconductor is directly proportional to the mobility of the dominant carrier [4] [5] [6] [7].

Materials and Methodology

In this theoretical study, the MATLAB program calculates the following outputs:

1. Tables of electron and hole mobility (Table 1 and Table 2).

2. Graphical representation of mobilities in the silicon as a function of the doping concentration at continuous temperature range (200-550) K shown in Figures 2, 3, 4, 5, 6, 7, 8 and 9.

Using user defined functions and function files many functions are programmed inside MATLAB program, where the user saved as a one or many functions file, and then can be used as a built in mathematical expression function.

Using these theoretical ideas we can calculate the density of the ionized impurities for hole and electron mobility and deal with them as array matrixes.

Results and Discussion

The results can be explained as follow, when semiconductor n-type silicon doped with a shallow donor impurity in concentration $(10^{14} - 10^{20})$ cm⁻³, at room temperature and above, all the shallow donor impurity atoms will be

ionized providing free electron carriers concentration in n-type silicon in concentration $(10^{14} - 10^{20})$ cm⁻³. The relationship between conductivity and free carriers mobility is well known in the theory of semiconductors. Semiconductor theory considers two major

mechanisms for free carriers' mobility dependency of crystal temperature:

Table 1 and Table 2 show the carrier mobility (hole) and the carrier mobility (electron) in Silicon respectively. Figures (2-9) below show the mobility of electrons and holes in silicon at temperature T= (200-550) K.

Doping cm ⁻³	Hole Mobility (cm ² V- sec)							
1e14	1=200K 10731	1=250K 6711	4611	1=350 K 3381	1=400K 2601	1=450K 2081	1=500K	1=550K 1441
2e14	10712	6712	4612	3382	2602	2082	1712	1442
5e14	10685	6705	4615	3385	2605	2085	1715	1445
1e15	10631	6681	4601	3381	2601	2081	1711	1441
2e15	10532	6642	4582	3372	2602	2072	1712	1442
5e15	10235	6545	4545	3355	2585	2075	1705	1435
1e16	9781	6371	4471	3311	2571	2061	1701	1431
2e16	8992	6062	4332	3242	2532	2042	1682	1422
5e16	7275	5315	3975	3065	2435	1985	1655	1405
1e17	5581	4431	3501	2801	2281	1881	1591	1361
2e17	3922	3392	2872	2412	2042	1732	1492	1292
5e17	2295	2145	1965	1775	1595	1425	1275	1145
1e18	1561	1481	1401	1321	1231	1141	1051	971
2e18	1142	1082	1022	972	932	882	832	792
5e18	875	805	755	715	685	655	625	595
1e19	781	701	651	611	571	551	521	501
2e19	732	652	602	552	522	492	472	452
5e19	705	625	565	525	485	465	435	415
1e20	961	611	551	511	471	441	421	401
2e20	692	612	552	502	472	442	412	392
5e20	695	605	555	505	465	435	415	395
				216				

Table 1:	Carrier	Mobility	(Hole)) in	Silicon

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Doping cm ⁻³	Electron	Electrons						
	Mobility							
	$(cm^2 V -$							
	sec)							
	T=200K	T=250K	T=300K	T=350 K	T=400K	T=450K	T=500K	T=550K
1e14	33061	19911	13211	9381	7001	5421	4331	3541
2e14	33032	19902	13212	9382	6992	5422	4332	3542
5e14	32975	19885	13205	9375	6995	5425	4335	3545
1e15	32851	19841	13191	9371	6991	5421	4331	3541
2e15	32632	19772	13152	9352	6982	5412	4322	3542
5e15	31995	19555	13065	9315	6965	5405	4325	3545
1e16	30981	19191	12911	9241	6921	5381	4301	3531
2e16	92132	18512	12622	9102	6852	5342	4282	3512
5e16	24745	16765	11835	8705	6645	5215	4205	3465
1e17	19841	14491	10721	8121	6311	5031	4091	3391
2e17	14312	11462	9062	7182	5762	4692	3882	3252
5e17	8055	7205	6285	5395	4605	3935	3375	2905
1e18	4911	4641	4291	3901	3511	3131	2791	2491
2e18	3032	2922	2792	2642	2482	2312	2142	1972
5e18	1785	1705	1635	1575	1515	1455	1395	1335
1e19	1331	1251	1181	1131	1091	1051	1011	981
2e19	1112	1012	952	892	852	812	782	762
5e19	975	875	805	745	705	665	635	605
1e20	931	821	751	691	651	611	581	551
2e20	902	802	722	672	622	582	552	552
5e20	895	785	715	655	605	575	535	515

Table 2: Carrier Mobility (Electron) in Silicon

Figure 2: variation of Electron and hole mobility with doping concentration for silicon at T=200 K.

Figure 3: variation of Electron and hole mobility with doping concentration for silicon at T=250 K.

Figure 4: variation of Electron and hole mobility with doping concentration for silicon at T=300 K.

Figure 5: variation of Electron and hole mobility with doping concentration for silicon at T=350 K.

Figure 6: variation of Electron and hole mobility with doping concentration for silicon at T=400 K.

Figure 7: variation of Electron and hole mobility with doping concentration for silicon at T=450 K.

Figure 8: variation of Electron and hole mobility with doping concentration for silicon at T=500 K.

Figure 9: variation of Electron and hole mobility with doping concentration for silicon at T=550 K.

From the Figures above which are represented the variation of electrons and holes mobility with doping concentration for silicon at different temperatures; the mobilities have the same doping behavior:

- The mobility is constant and is limited by phonon scattering for low doping concentrations.
- The mobility decreases because of ionized impurity scattering with the ionized doping atoms for high doping concentrations. The real mobility also depends on the type of doping.

Conclusions

In summary, knowing type and concentration of doping impurities and their energy level in the forbidden band and measuring a semiconductor's conductivity, one can determine mobility of free electrons or holes. There is an intermediate region of temperatures between low and high regions where a mixture of both scattering mechanisms can co-exist.

At high temperatures; where phonon and electron momentums become comparable, so that a free electron can change its initial direction in just one collision with a phonon. Also, the phonon concentration is growing with the temperature. It is shown that mobility depends of temperature as ($\mu \sim T^{-3/2}$). In high temperature region (typically well above room temperature), scattering of free carriers on

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

phonons with growing temperature lead to the carriers' mobility reduction.

While: low temperature region (typically well below room temperature) where shallow donors are not completely ionized and the concentration of free electrons changes according to the Fermi level temperature dependence - the lower the temperature, the less free electrons concentration, that is concentration becomes a function of (T). It is that dominating shown the scattering mechanism is scattering of free carriers on ionized impurity centers where ($\mu \sim T^{3/2}$). Free carriers' mobility is growing with the temperature increase in this region.

References

- W. D. Callister, "Materials Science and Engineering: An Introduction", Department of Metallurgical Engineering, the University of Utah, ISBN 0470120320, 9780470120323, John Wiley and Sons, Inc. USA, Ch. 19.6-19.12, (2007).
- [2] Bart Van Zeghbroeck, Boulder, "Principles of semiconductor devices," Colarado University, USA, (2004).
- [3] S. Reggiani, A. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. Stricker, F. Illien, N. Felber, W. Fichtner, S. Mettler, S. Lindenkreuz, and L. Zullino, "Surface mobility in silicon at large operating temperature," in Simulation of Semiconductor Processes and Devices. SISPAD 2002. International Conference, Business Center for Academic Societies, Japan, pp.15-20, (2002).
- A. G. Sabnis and J. T. Clemens, "Characterization of the electron mobility in the inverted< 100> Si surface", IEEE International Electron Devices Meeting, Washington, USA, Vol. 25, pp. 18-21, (1979).
- [4] S.i. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part Ieffects of substrate impurity concentration," IEEE Transactions on Electron Devices, Vol. 41, No. 12, pp. 2363-2368, (1994).
- [5] V. Gurevich and D. Parshin, "Population inversion of the carriers in a

semiconductor in the field of intensive electromagnetic wave," Solid State Communications, Elsevier, Vol. 37, pp. 515-518, USA, (1981).

 [6] G. Ghibaudo and Q. Rafhay, "Electron and Hole Mobility in Semiconductor Devices," Wiley Encyclopedia of Electrical and Electronics Engineering, France, pp 1-13, Sep. (2014).