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The aim of this research is to classify certain geometric structures, called arcs. The main com-

puting tool is the Computer algebra system GAP. In the plane 𝑃𝐺(2,16), an important arcs are 

called complete when they can't be increased to a larger arc. So far, all arcs up to size eighteen 

have been classified. Each of these arcs gives rise to an error-correcting code that corrects the 

maximum possible number of errors for its length. 
 

Keywords: projective plane, arcs, code. 

خلاصـةال  
ذا البحث هو تصنيف تشكيل هندسي معين يدعى أقواس. ادوات الحسابات الرئيسيه هي لغة برمجة الأقواس الهدف من ه 

,𝑃𝐺(2المهمه تدعى كاملة وتلك الأقواس لاتكون متزايدة في  𝑞) في المستوي .GAP قوس أكبر.كل الأقواس  الرياضيات

 من الاخطاء لاطوالها.الى حجم ثمانية عشر تم تصنيفها.كل هذه الأقواس تعطي تصحيح اخطاء أكبر عدد ممكن 

Introduction 

A projective plane is an incidence structure of 

points and lines with the following properties: 

 Every two points are incident with a unique 

line; 

 Every two lines are incident with a unique 

point; 

 There are four points, no three collinear; see 

[4]. 

A Desarguesian projective plane 𝑃𝐺(2, 𝑞) has 

as points one-dimensional subspaces and as 

lines two-dimensional subspaces of a three-

dimensional vector space over the finite field 

𝐹𝑞 of 𝑞 elements 𝑉(3, 𝑞). A 𝑘-arc in 

𝑃𝐺(2, 𝑞) is a set of 𝑘 points no three of which 

are collinear. A 𝑘-arc is complete if it is not 

contained in a (𝑘 + 1)-arc. 

The main aims of this paper is to classify arcs 

of all sizes in projective plane 𝑃𝐺(2,16), and 

classify those arcs which are contained in a 

conic. Many results of 𝑃𝐺(2, 𝑞), 𝑞 ≤ 31 have 

been satisfied; see [4],[6],[7],[10],[11]. For 

more results we are looking at the projective 

plane of order sixteen. A brief history of the 

research subject is given as follows. Arcs were 

first introduced by Bose (1947) in connection 

with designs in statistics. Further development 

began with Segre in (1954) showed that every 

(𝑞 + 1)-arc in 𝑃𝐺(2, 𝑞) is a conic. An im-

portant result is that of Ball, Blokhuis and 

Mazzocca showing that maximal arcs cannot 

exist in a plane of odd order. In (1981) Goppa 

found important applications of curves over 

finite fields to coding theory. As geometry over 

a finite field, it has been thoroughly studied in 

the major treatise of Hirschfeld (1979-1985) 

and of Hirschfeld –Thas (1991) and Hirschfeld 

(1998).  

 

Definitions and basic properties 
Definition 2.1[4]: Given a homogenous poly-

nomial 𝐹 in three variables 𝑥0, 𝑥1, 𝑥2 over 𝐹𝑞, a 

curve ℱ is the set ℱ = 𝑣(𝐹) = {𝐏(𝑋): 𝐹(𝑋) =
0} where 𝐏(𝑋): is the point of 𝑃G(2, q):repre-

sented by 𝑋 = (𝑥0, 𝑥1, 𝑥2). If 𝐹 has degree 

two, that is,  

 𝐹 = 𝑎0𝑥0
2 + 𝑎1𝑥1

2 + 𝑎2𝑥2
2 + 𝑏2𝑥0𝑥1 +

𝑏1𝑥0𝑥2 + 𝑏0𝑥1𝑥2, 

then ℱ is called a quadric. A conic 𝐶 is a non-

singular quadric ℱ. 

http://creativecommons.org/licenses/by-nc/4.0/
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 Definition 2.2[7]: An(𝑛, 𝑀) code C over Fq is 

a subset of (Fq)n of size 𝑀. A linear [𝑛, 𝑘]𝑞 

code over Galois field Fq is a k-dimensional 

subspace of (Fq)n and size 𝑀 = 𝑞𝑘 The vec-

tors in the linear code C are called codewords 

and we denote them by 𝑥 = 𝑥1𝑥2 ⋯ 𝑥𝑛,where 

𝑥𝑖 ∈ Fq. 

Theorem 2.3[4]: For any [𝑛, 𝑘, 𝑑]𝑞 code we 

have 𝑑 ≤ 𝑛 − 𝑘 + 1. 

Definition 2.4[4]: Let 𝑓(𝑥) = 𝑥𝑛 −
𝑎𝑛−1𝑥𝑛−1 − ⋯ − 𝑎0 be a monic polynomial of 

degree 𝑛 ≥ 1 over 𝐹𝑞.  

 Its companion matrix 𝐶(𝑓) is given by the 

𝑛 × 𝑛 matrix 

𝐶(𝑓) = (

0 1 0 0
⋮ ⋮ ⋱ ⋮

0 0 0 1
𝑎0 𝑎1⋯ 𝑎𝑛−1

) 

 

 Let 𝑓 be irreducible over 𝐹𝑞 and 𝛼 ∈ 𝐹𝑞𝑛 be a 

root of 𝑓. It is called primitive if the smallest 

power 𝑠 of 𝛼 such that 𝛼𝑠 = 1 is (𝑞𝑛 − 1); that 

is, 𝛼 is a primitive root over Fq
n . 

Definition 2.5[4]: Denote by 𝑆 and 𝑆∗ two 

subspaces of 𝑃G(𝑛, 𝐾), A projectivity 𝛽: 𝑆 →
𝑆∗ is a bijection given by a matrix 𝑇, necessari-

ly non-singular, where 𝐏(𝑋∗) = 𝐏(𝑋)𝛽 if 

𝑡𝑋∗ = 𝑋𝑇 , with 𝑡 ∈ 𝐾 ∖ 0. Write 𝛽 = 𝑀(𝑇); 

then 𝛽 = 𝑀(𝜆𝑇) for any 𝜆 in 𝐾. The group of 

projectivities of 𝑃G(𝑛, 𝐾) is denoted by 

𝑃GL(𝑛 + 1, 𝐾). 

Definition 2.6[4]: A group 𝐺 acts on a set Λ if 

there is a map Λ × G → Λ such that given 

g, g´elements in 𝐺 and 1 its identity, then 

a. 𝑥1 = 𝑥, 

b. (𝑥𝑔)g´ = 𝑥(g g´) for any 𝑥 in Λ. 

Definition 2.7[4]: The orbit of 𝑥 in Λ under the 

action of G is the set 𝑥𝐺 = {𝑥g│g ∈ G}. 

Definition 2.8[4]: The stabilizer of 𝑥 in Λ un-

der the action of G is the group 𝐺𝑥 = {𝑔 ∈

G│𝑥𝑔 = 𝑥}. 

Definition 2.9[4]: Let 𝐾 be a 𝑘-arc and 𝐏 a 

point of 𝑃G(2, 𝑞) ∖ 𝐾. Then if exactly 𝑖 bise-

cants of 𝐾 pass through 𝐏, then 𝐏 is said to be a 

point of index 𝑖. The number of these points is 

denoted by 𝑐𝑖.  

Lemma 2.10[4]: The constants 𝑐𝑖 of a 𝑘–arc 𝐾 

in satisfy the following equations with the 

summation taken 0 to 𝑛 for which 𝑐𝑖 ≠ 0 : 

∑ 𝑐𝑖 = q2 + q + 1 − 𝑘;   

∑ 𝑖𝑐𝑖 = 𝑘(𝑘 − 1)(q − 1)/2;   
∑ 𝑖(𝑖 − 1)𝑐𝑖 = k(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)/8.  

Theorem 2.11[4]: There exists a projective 

[𝑛, 𝑘, 𝑑] 𝑞-code if and only if there exists an 

(𝑛; 𝑛 − 𝑑)-arc in 𝑃𝐺(𝑘 − 1, 𝑞). 

Definition 2.12[4]: 𝑛-stigms is a set of 𝑛 points 

in 𝑃𝐺(2, 𝑞), no three of which are colline-

ar,together with the 𝑛(𝑛 − 1) ∕ 2 sides (joins 

of pairs of points). 

 

Results and Discussion 
Construction of Inequivalent 𝑘-Arcs 
In this section, the algorithm used to classify 

the 𝑘-arcs that contain the standard frame is 

described. 

Let 𝐾 be a (𝑘 − 1)-arc, 𝑘 ≥ 5, containing the 

standard frame ϒ. 

(1) Define 𝐶0
𝑘−1 to be a set of points not on the 

bisecants of 𝐾; that is, points 

of index zero. Here │𝐶0
𝑘−1│ = 𝑐0. 

(2) If 𝐶0
𝑘−1 is not empty, that is, 𝐾 is not com-

plete, then 𝐶0
𝑘−1 is separated into orbits by the 

stabilizer group 𝐺𝑘 of 𝐾. 

(3) A 𝑘-arc is constructed by adding one point 

to 𝐾 from an orbit. 

(4) Let ⌊
𝐾

2
⌋ = 𝑛. Then the values of the con-

stants 𝑐0, 𝑐1, … , 𝑐𝑛, are calculated 

for each 𝑘-arc. 

(5) Let 𝑀𝑘 be the set of all different 𝑘-arcs that 

are constructed from (𝑘 − 1)-arcs in 𝑃𝐺(2, 𝑞). 

Then 𝑀𝑘 is partitioned into classes {𝑀𝑖
𝑘}

𝑖∈𝐴
 

𝑐0, 𝑐1, … , 𝑐𝑛. 

(6) In general, two 𝑘-arcs, 𝐾 and 𝐾´ are 

equivalent if there is a projective transfor-

mation 𝔗 which transforms the frame ϒ to any 

permutation of four points in 𝐾´ such that 𝔗 

transforms 𝐾´ ∖ ϒ to any permutation of the 

other 𝑘 − 4 points in 𝐾´. Accordingly, any two 

k-arcs in the same class 𝑀𝑖
𝑘 are equivalent if 

there is a projective transformation between 

them. 
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Preliminary to 𝑷𝑮(𝟐, 𝟏𝟔) 

The field 𝐹16 = 𝐹2[𝑋] ∕ 〈𝑋4 + 𝑋 + 1〉, 
where 𝐹2[𝑋] polynomials ring over 𝐹2 and 

〈𝑋4 + 𝑋 + 1〉 the principle ideal generated by 

𝑋4 + 𝑋 + 1, let 𝜔 = 𝑋 + 〈𝑋4 + 𝑋 + 1〉, so 

with 𝜔4 + 𝜔 + 1 = 0, we have 𝐹16 =
{0,1, 𝜔, 𝜔2, … , 𝜔14; 𝜔15 = 1} . In 𝑃G(2,16) 

the projective plane of order 16, 𝜃1 = 17, 

𝜃2 = 273, where 𝜃𝑛 = │𝑃𝐺(𝑛, 𝑞)│ =
(𝑞𝑛+1 − 1) (𝑞⁄ − 1) for more informations see 

[12]; hence we have 273 points, 273 lines, 17 

points on each line and 17 lines passing 

through each point. Let 𝐏𝟎 = 𝐏(1,0,0), and 

𝑇 = (
0 1 0
0 0 1

𝜔7 1 0
) be a non-singular matrix 

such that the points of 𝑃𝐺(2,16) are generated 

as following. 𝐏𝒊 = 𝐏(1,0,0) 𝑇𝑖, 𝑖 =
0,1, … ,272. such that 

𝐏𝟎 = 𝐏(1,0,0) , 𝐏𝟏 = 𝐏(0,1,0) , … , 𝐏𝟐𝟓𝟑 =
𝐏(1,1,1) , 

𝐏𝟐𝟓𝟒 = 𝐏(𝜔7, 0,1) , 𝐏𝟐𝟓𝟓 = 𝐏(𝜔13, 1,0) , … , 

𝐏𝟐𝟕𝟐 = 𝐏(1,0,1) . 

Let ℓ1 = 𝑣(𝑍); that is, ℓ1 is the line passing 

through points 𝐏(x, y, z) with third coordinate 

equal to zero. Then ℓ1 forms the following dif-

ference set, with 𝐏𝒊 = 𝑖, 𝑖 = 0, … ,272 . 

0 1 3 7 15 31 63 90 116 127 136  
1 181 194 204 233 238 255 

The points 𝐏𝒊 = 𝑖 and the lines ℓ𝑖  of 𝑃𝐺(2,16) 

can be represented by the following array. 

ℓ1 =

{
0,1,3,7,15,31,63,90,116,127,136,181,194,

204,233,
238,255

} ; 

ℓ2 =

{
1,2,4,8,16,32,64,91,117,128,137,182,195,

205,234,239,256
} ; 

⋮ 
ℓ273

= {
272,0,2,6,14,30,62,89,115,126,135,180

, 193,203,232,237,254
}. 

The unique 4-arc in 𝑷𝑮 (𝟐, 𝟏𝟔) 
The Fundamental Theorem of Projective Ge-

ometry is applied to the projective plane, the 

frame ϒ is projectively the unique 4-arc 

in 𝑃𝐺(2,16).The frame points in 𝑃𝐺(2,16) are 

the points 0 = 𝐏(1,0,0), 1 = 𝐏(0,1,0), 2 =
𝐏(0,0,1), 253 =  𝐏(1,1,1) in numeral form. 

The stabilizer group of ϒ is 𝑺𝟒, which can be 

found by transforming ϒ to its 24 permuta-

tions. The matrix determining each element of 

𝑺𝟒 for each permutation (𝑖𝑗𝑘𝑙) of ϒ is given by 

Table 1. The two matrices marked by 𝑔1, 𝑔2 are 

generators of 𝑺𝟒. 
 

Table 1: The stabilizer of the standard frame in 

𝑃𝐺(2,16) 

(𝑖𝑗𝑘𝑙) Matrix trans-

formation 

(𝑖𝑗𝑘𝑙) Matrix trans-

formation 

 

(1234) (
1 0 0
0 1 0
0 0 1

) 
 

(3124) (
0 0 1
1 0 0
0 1 0

) 

 

(1243) (
1 0 0
0 1 0
1 1 1

) 
 

(3142) (
0 0 1
1 0 0
1 1 1

) 

 

(1324) (
1 0 0
0 0 1
0 1 0

) 
 

(3214) (
0 0 1
0 1 0
1 0 0

) 

 

(1342) (
1 0 0
0 0 1
1 1 1

) 
 

(3241) (
0 0 1
0 1 0
1 1 1

) 

 

(1423) (
1 0 0
1 1 1
0 1 0

) 
 

(3412) (
0 0 1
1 1 1
1 0 0

) 

 

(1432) (
1 0 0
1 1 1
0 0 1

) 
 

(3421) (
0 0 1
1 1 1
0 1 1

) 

 

(2134) (
0 1 0
1 0 0
0 0 1

)

= 𝑔1 

 

(4123) (
1 1 1
1 0 0
0 1 0

) 

 

(2143) (
0 1 0
1 0 0
1 1 1

) 
 

(4132) (
1 1 1
1 0 0
0 0 1

) 

 

(2314) (
0 1 0
0 0 1
1 0 0

) 
 

(4213) (
1 1 1
0 1 0
1 0 0

) 

 

(2341) (
0 1 0
0 0 1
1 1 1

)

= 𝑔2 

 

(4231) (
1 1 1
0 1 0
0 0 1

) 

 

(2413) (
0 1 0
1 1 1
1 0 0

) 
 

(4312) (
1 1 1
0 0 1
1 0 0

) 

 

(2431) (
0 1 0
1 1 1
0 0 1

) 
 

(4321) (
1 1 1
0 0 1
0 1 0

) 

The 5-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 
The number of points on the sides of a 

tetrastigm is 𝑙(4,16) = 91 which is the number 

of an 4-stigm where 𝑞 = 16. Hence the number 

of points not on the sides of tetrastigm is 

http://creativecommons.org/licenses/by-nc/4.0/
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𝑙∗(4,16) = 273 − 91 = 182 . The projective 

group 𝑺𝟒 of the standard frame ϒ =
{0,1,2,253} splits the 182 points not on the 

bisecants of ϒ into 10 disjoint. This gives the 

following conclusion. 

 

Theorem 3.4.1. In 𝑃𝐺 (2,16), there are pre-

cisely four projectively distinct 5-arcs, as 

summarized in Table 2, as follows: 
 

Table 2: Inequivalent 5-arcs in PG(2,16) 

Symbol The 5-arc Stabilizer 

𝐴1 {0,1,2,253,9} 𝑰  

𝐴2 {0,1,2,253,12} 𝒁𝟐 × 𝒁𝟐 

𝐴3 {0,1,2,253,24} 𝒁𝟐 × 𝒁𝟐 

𝐴4 {0,1,2,253,101} 𝑨𝟓 
 

Remark 3. 4.2.  

1. The values of the constants 𝑐𝑖 for any 5-

arcs are 

𝑐0 = 133 , 𝑐1 = 120 , 𝑐2 = 15 

2. The 5-arcs 𝐴2 and 𝐴3 have the same 

constants 𝑐𝑖 and isomorphic stabilizer 

groups but they are inequivalent. 

3. Because of the one-to-one correspond-

ence between the projective line 

𝑃𝐺 (1,16) and a conic, for more details 

see [4]. Let 

ℂ∗ = 𝑣(𝑌2 − 𝑋𝑍) = {𝐏(𝑡2, 𝑡, 1);
∈ 𝐹16 ∪ {∞ = 𝐏(1,0,0)}} 

be a conic. Then the four pentads 𝛿𝑖 as given in 

[ 9 ] correspond to inequivalent four 5-arcs 

𝐶𝑖
∗ on the conic ℂ∗. Each 5-arc 𝐶𝑖

∗, 𝑖 = 1, … ,4 is 

equivalent to one of 𝐴𝑗 , 𝑗 = 1, … ,4. These 

equivalences and the matrix transformations 

are given in Table 3, as follows: 

 
Table 3: Transforming Ci

∗ to Aj 

𝐶𝑖
∗ ≅  𝐴𝑗 Matrix transformation 

 

𝐶1
∗ = {0,2,253,190,207} ≅ 𝐴3 (

𝜔5 0 0
𝜔2 𝜔 1
𝜔 𝜔 𝜔

)  

 

𝐶2
∗ = {0,2,253,190,215} ≅ 𝐴1 (

𝜔 1 𝜔14

𝜔10 𝜔7 𝜔4

𝜔12 0 0

)  

 

𝐶3
∗ = {0,2,253,190,176} ≅ 𝐴2 (

𝜔 0 0
𝜔4 𝜔3 𝜔2

𝜔10 𝜔10 𝜔10
)  

 

𝐶4
∗ = {0,2,253,101,151} ≅ 𝐴4 (

1 0 0
𝜔10 𝜔5 1

0 0 𝜔10
)  

Conics Through the Inequivalent 5-Arcs in 

𝑷𝑮(𝟐, 𝟏𝟔) 
There is a unique conic through each 5-arc. Let 

𝐹 = 𝑎0𝑋2 + 𝑎1𝑌2 + 𝑎2𝑍2 + 𝑎3𝑋𝑌 + 𝑎4𝑋𝑍
+ 𝑎5𝑌𝑍 

 be a form of degree two and ℂ = 𝑣(𝐹) be a 

conic. Since all five 5-arcs 𝐴𝑖 contain the 

points 𝐏𝟎, 𝐏𝟏, 𝐏𝟐 then the form 𝐹 reduces to  

 

𝑋𝑌 + 𝑎4
∗𝑋𝑍 + 𝑎5

∗𝑌𝑍 … (1) 

Therefore, by substituting 𝐏𝟐𝟓𝟑 and the 5th 

point of each 5-arc 𝐴𝑖 in (1) the following is 

deduced, then 

 ℂ𝐴1
= 𝑣(𝑋𝑌 + 𝜔5𝑋𝑍 + 𝜔10𝑌𝑍); 

 ℂ𝐴2
= 𝑣(𝑋𝑌 + 𝜔2𝑋𝑍 + 𝜔2𝑌𝑍);  

ℂ𝐴3
= 𝑣(𝑋𝑌 + 𝜔𝑋𝑍 + 𝜔4𝑌𝑍); 

 ℂ𝐴4
= 𝑣(𝑋𝑌 + 𝜔10𝑋𝑍 + 𝜔5𝑌𝑍). 

The 6-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The number of points on the sides of pen-

tastigm or 5-stigm is 𝑙(5,16) = 140. Hence the 

number of points not on the sides of each pen-

tastigm is 𝑙∗(5,16) = 273 − 140 = 133. So 

the total number of points not on the sides of 

the four pentastigms is 532. The action of the 

stabilizer group of each inequivalent 5-arc on 

the corresponding set 𝐶0
5 splits the 532 points 

into orbits. There are five different classes of 6-

arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3] and seven different 

sizes of stabilizer groups. The details about 

them are given in Table 2. A cell n:│𝐺│ in Ta-

ble 3 means that n is the number of 6-arcs sta-

bilized by the group 𝐺  

 
Table 4: Statistics of the constants ci of 6-arcs 

No. [𝑐0, 𝑐1, 𝑐2, 𝑐3] n: │𝐺│ 

1 [72,180,0,15] 1: 360 
2 [80,156,24,7] 6: 24 

3 [84,144,36,3] 98: 4, 32: 3 , 2: 6 

4 [86,138,42,1] 216: 1 , 33: 2 
5 [87,135,45,0] 131: 1, 13: 5 

Theorem 3.6.1. In 𝑃𝐺(2,16), there are precise-

ly 61 projectively distinct 6-arcs. The numbers 

of 6-arcs with their stabilizer group type are 

given in Table 5, as follows: 

 
Table 5: The stabilizer groups of 6-arcs 

Stabilizer 𝑰 𝒁𝟐 𝒁𝟑 𝒁𝟐 × 𝒁𝟐 𝑺𝟑 𝒁𝟓 𝑺𝟒 𝑨𝟔 

Number 24 5 10 12 2 1 6 1 
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The eight hexads Ei as given in [9]correspond 

to eight inequivalent 6-arcs 𝐸i
∗ on the conic ℂ∗. 

Each 6-arc 𝐸i
∗, i = 1, … ,8 is equivalent to one. 

This gives the following conclusion. 

 

Theorem 3.6.2. In 𝑃𝐺(2,16), there are precise-

ly 8 projectively distinct 6-arcs on a conic, as 

summarized in Table 6, as follows: 

 
Table 6: Inequivalent 6-arcs on the conics 

The conic n: G 

ℂA1 2: 𝐒𝟑  

ℂA2 3 ∶ 𝐙𝟐  

ℂA3 2: 𝐙𝟐  

ℂA4 1: 𝐙𝟓  

The 7-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the hexastigms or 6-stigms is 5154. The action 

of the stabilizer group of each inequivalent 6-

arc on the corresponding set ∁0
6 splits the 5154 

points into orbits. There are twelve different 

classes of 7-arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3] and six 

different sizes of stabilizer groups. A cell 

n:│𝐺│denote the number n of 7-arcs with sta-

bilizer group size │𝐺│. The constants 𝑐𝑖 of 7-

arcs are given in Table 7, as follows: 

 
Table 7: Statistics of the constants 𝑐𝑖 of 7-arcs 

No. [𝑐0, 𝑐1, 𝑐2, 𝑐3] n: │𝐺│ 

1 [41,150,60,15] 74: 5 

2 [43,144,66,13] 52: 1 , 46: 2 , 20: 3 

3 [44,141,69,12] 184: 1 

4 [45,138,72,11] 1066: 1 , 50: 2  
5 [46,135,75,10] 1012: 1 , 38: 3 

6 [47,132,78,9] 653: 1 , 123: 3 , 10: 3 

7 [48,129,81,8] 754: 1 

8 [49,126,84,7] 598: 1 , 120: 2 

9 [50,123,87,6] 124: 1 

10 [51,120,90,5] 136: 1 , 48: 2 , 2: 10 

11 [52,117,93,4] 11: 1  
12 [53,114,96,3] 14: 1 , 16: 2 , 4: 6 

 

Theorem 3.7.1. In 𝑃𝐺(2,16), there are precise-

ly 454 projectively distinct 7-arcs. 

The number n of inequivalent 7-arcs with stabi-

lizer group of type 𝐺 with respect to the con-

stants 𝑐𝑖 are given in Table 8, as follows: 
 

Table 8: Statistics of the constants 𝑐𝑖 of in equivalent 7-

arcs 

No. [𝑐0, 𝑐1, 𝑐2, 𝑐3] n: 𝐺 

1 [41,150,60,15] 1: 𝒁𝟓 

2 [43,144,66,13] 4: 𝑰 , 5: 𝒁𝟐 , 2: 𝒁𝟑 

3 [44,141,69,12] 8: 𝑰 

4 [45,138,72,11] 60: 𝑰 , 7: 𝒁𝟐 

5 [46,135,75,10] 79: 𝑰 , 3: 𝒁𝟑 

6 [47,132,78,9] 58: 𝑰 , 20: 𝒁𝟐 , 2: 𝒁𝟑 

7 [48,129,81,8] 70: 𝑰 

8 [49,126,84,7] 66: 𝑰 , 18: 𝒁𝟐 

9 [50,123,87,6] 12: 𝑰 

10 [51,120,90,5] 17: 𝑰 , 12: 𝒁𝟐 , 1: 𝑫𝟓 

11 [52,117,93,4] 1: 𝑰 

12 [53,114,96,3] 2: 𝑰 , 4: 𝒁𝟐 , 2: 𝑺𝟑 

 

The ten heptads 𝐹𝑖 as given in [ 9 ] correspond 

to ten inequivalent 7-arcs 𝐹i
∗ on the conic ℂ∗. 

This gives the following conclusion. 

Theorem 3.7.2. In 𝑃𝐺(2,16), there are precise-

ly 10 projectively distinct 7-arcs on the conic 

summarized in Table 9, as follows: 

 
Table 9: Inequivalent 7-arcs on the conic 

No. [𝑐0, 𝑐1, 𝑐2, 𝑐3] Stabilizer 

1 [45,138,72,11] 1: 𝑰 

2 [47,132,78,9] 2: 𝒁𝟑 

3 [49,126,84,7] 6: 𝒁𝟐 

4 [51,120,90,5] 1: 𝑫𝟓 

The 8-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 
The total number of points not on the sides of 

the 7-stigms is 21495. The action of the stabi-

lizer group of each inequivalent 7-arc on the 

corresponding set ∁0
7 splits the 21495 points 

into orbits. There are 62 different classes of 8-

arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4]. The minimum 

and maximum value of each constant 𝑐𝑖 for all 

8-arcs is as follows: 

 6 ≤ 𝑐0 ≤ 36 , 56 ≤ 𝑐1 ≤ 135 , 
72 ≤ 𝑐2 ≤ 156 , 16 ≤ 𝑐3 ≤ 38 , 

 0 ≤ 𝑐4 ≤ 8 . 

Since 𝑐𝑜 ≠ 0 for all 8-arcs so there is no com-

plete 8-arc in 𝑃𝐺(2,16). There are eight differ-
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ent sizes of stabilizer groups of the 8-arcs. The 

details are given in Table 10, as follows: 
 

Table 10: Statistics of the stabilizer groups of 8-arcs 
Number of 8-

arcs │𝐺│ 
Number of 8-

arcs │𝐺│ 

19575 

1866 

15 

10 

1 

2 

3 

4 

24 

1 

1 

3 

6 

8 

8 

10 

 

Theorem 3.8.1. In 𝑃𝐺(2,16), there are precise-

ly 2633 projectively distinct 8-arcs. 

In Table 11, the numbers of inequivalent 8-arcs 

are listed according to the stabilizer group 

types  
Table 11: Statistics of the inequivalent 8-arcs 

Number of 8-

arcs  
𝐺  Number of 8-

arcs  
𝐺  

2228 

368 

2 

6 

𝑰 

𝒁𝟐 

𝒁𝟑 

𝒁𝟒 

8 

1 

1 

1 

𝑺𝟑 

𝒁𝟐 × 𝒁𝟐

× 𝒁𝟐 

𝒁𝟒 × 𝒁𝟐 

𝑫𝟓 

 
Table 13: Statistics of the stabilizer groups of 9-arcs 

Number of 9-

arcs 
│𝐺│ Number of 9-

arcs 
│𝐺│ 

54266 

1642 

156 

38 

1 

2 

3 

6 

19 

4 

1 
 

8 

9 

18 

 

The eleven octads 𝐻𝑖 as given in [ 9 ] corre-

spond to eleven inequivalent 8-arcs 𝐻i
∗ on the 

conic ℂ∗. This gives the following conclusion. 

Theorem 3.8.2. In 𝑃𝐺(2,16), there are precise-

ly 11 projectively distinct 8-arcs on a conic, as 

summarized in Table 12, as follows: 
 

Table 12: Inequivalent 8-arcs on the conic 

No. [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4] Stabilizer 

1 [18,104,120,16,7] 1: 𝒁𝟐 × 𝒁𝟐 × 𝒁𝟐 

2 [22,98,114,30,1] 4: 𝒁𝟐 

3 [22,99,111,33,0] 2: 𝑰 

4 [26,87,123,39,0] 1: 𝑰 

5 [28,78,138,18,3] 2: 𝑺𝟑 

6 [28,80,132,24,1] 1: 𝒁𝟐 

The 9-arcs in 𝑷𝑮(𝟐, 𝟏𝟔)  

The total number of points not on the sides of 

the 8-stigms is 56126. The action of the stabi-

lizer group of each inequivalent 8-arc on the 

corresponding set ∁0
8 splits the 56126 points 

into orbits. There are 116 different classes of 

9-arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4]. The minimum 

and maximum value of each constant 𝑐𝑖 for all 

9-arcs is as follows: 

0 ≤ 𝑐0 ≤ 21 , 0 ≤ 𝑐1 ≤ 78 , 

99 ≤ 𝑐2 ≤ 216 , 0 ≤ 𝑐3 ≤ 93 , 0 ≤ 𝑐4 ≤ 17  

Since 𝑐0 = 0 for some 9-arcs so there is a 

complete 9-arc in 𝑃𝐺(2,16). There are 7 dif-

ferent sizes of stabilizer groups of the 9-arcs. 

The details are given in Table 13, as follows: 

 

Theorem 3.9.1. In 𝑃𝐺(2,16), there are precise-

ly 6014 projectively distinct 9-arcs divided 

into 608 incomplete arcs and 6 complete arcs. 

In Table 14, the numbers of inequivalent 9-arcs 

are listed according to the stabilizer group 

types 𝐺. 
 

Table 14: Statistics of the inequivalent incomplete 9-arcs 

Number of 

9-arcs 
𝐺 Number of 

9-arcs 
𝐺 

5622 

312 

44 

16 

𝑰 

𝒁𝟐 

𝒁𝟑 

𝑺𝟑 

10 

3 

 1 

𝒁𝟐 × 𝒁𝟐 × 𝒁𝟐 

𝒁𝟑 × 𝒁𝟑 

(𝒁𝟑 × 𝒁𝟑) ⋊ 𝒁𝟐 

According to the stabilizer group types 𝐺, the 

numbers of complete 9-arcs are listed in Table 

15, as follows: 
 

Table 15: Statistics of the inequivalent complete 9-arcs 

Number of 9-arc │𝐺│ 

6 𝒁𝟑 

The 10-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the 9-stigms is 47296. The action of the stabi-

lizer group of each inequivalent 9-arc on the 

corresponding set ∁0
9 splits the 47296 points 

into orbits. There are 191 different classes of 

10-arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5]. The mini-

mum and maximum value of each constant 𝑐𝑖 

for all 10-arcs is as follows: 

0 ≤ 𝑐0 ≤ 8, 0 ≤ 𝑐1 ≤ 42 , 

 56 ≤ 𝑐2 ≤ 120, 80 ≤ 𝑐3 ≤ 156 , 
8 ≤ 𝑐4 ≤ 42, 0 ≤ 𝑐5 ≤ 15. 

Since 𝑐0 = 0 for some 10-arcs so there is a 

complete 10-arc in 𝑃𝐺(2,16). There are 7 dif-
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ferent sizes of stabilizer groups of the 10-arcs. 

The details are given in Table 16, as follows: 
 

Table 16: Statistics of the stabilizer groups of 10-arcs 
Number of 10-

arcs 
│𝐺│ Number of 10-

arcs 
│𝐺│ 

42407 

4607 

30 

67 

1 

2 

3 

4 

44 

132 

9 

6 

8 

10 

Theorem 3.10.1. In 𝑃𝐺(2,16), there are pre-

cisely 4899 projectively distinct 10-arcs divid-

ed into 2955 incomplete arcs and 1944 com-

plete arcs. 

In Table 17, the numbers of inequivalent in-

complete10-arcs are listed according to the sta-

bilizer group types 𝐺. 
 

Table 17: Statistics of the inequivalent incomplete 10-

arcs 

Number of 10-

arcs 
𝐺 Number of 10-

arcs 
𝐺 

2642 

289 

6 

6 

𝑰 

𝒁𝟐 

𝒁𝟑 

𝒁𝟒 

6 

1 

5 

𝑺𝟑 

𝒁𝟐 × 𝒁𝟐

× 𝒁𝟐 

𝑫𝟓 

According to the stabilizer group types 𝐺, the 

numbers of complete 10-arcs are listed in Table 

18, as follows: 
 

Table 18: Statistics of the inequivalent complete 10-arcs 

Number of 10-

arcs 
𝐺 Number of 10-

arcs 
𝐺 

1503 

374 

9 

𝑰 

𝒁𝟐 

𝒁𝟒 

12 

44 

2 

𝑺𝟑 

𝒁𝟐 × 𝒁𝟐

× 𝒁𝟐 

𝑫𝟓 

The 11-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the 10-stigms is 12280. The action of the stabi-

lizer group of each inequivalent 10-arc on the 

corresponding set ∁0
10splits the 12280 points 

into orbits. There are 23 different classes of 11-

arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5]. The minimum 

and maximum value of each constant 𝑐𝑖 for all 

11-arcs is as follows: 

0 ≤ 𝑐0 ≤ 7, 𝑐1 = 0, 

 30 ≤ 𝑐2 ≤ 80, 70 ≤ 𝑐3 ≤ 150, 

 60 ≤ 𝑐4 ≤ 105, 3 ≤ 𝑐5 ≤ 21. 

Since 𝑐0 = 0 for some 11-arcs so there is a 

complete 11-arc in 𝑃𝐺(2,16). There are six 

different sizes of stabilizer groups of the 11-

arcs. The details are given in Table 19, as fol-

lows: 
 

Table 19: Statistics of the stabilizer groups of 11-arcs 

Number of 11-

arcs 
│𝐺│ Number of 11-

arcs 
│𝐺│ 

11172 

1047 

16 

1 

2 

3 

22 

21 

2 

5 

6 

10 

Theorem 3.11.1. In 𝑃𝐺(2,16), there are pre-

cisely 1171 projectively distinct 11-arcs divid-

ed into 1058 incomplete arcs and 113 com-

plete arcs. 

In Table 20, the numbers of inequivalent 11-

arcs are listed according to the stabilizer group 

types 𝐺. 
 

Table 20: Statistics of the inequivalent incomplete 11-

arcs 

Number of 11-arcs 𝐺 Number of 11-arcs 𝐺 

921 

123 

2 

𝑰 

𝒁𝟐 

𝒁𝟑 

5 

6 

1 

𝒁𝟓 

𝑺𝟑 

𝑫𝟓 

According to the stabilizer group types 𝐺, the 

numbers of complete 11-arcs are listed in Table 

21, as follows: 
 

Table 21: Statistics of the inequivalent complete 11-arcs 

Number of 11-arc 𝐺 

80 

33 

𝑰 

𝒁𝟐 

The 12-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the 11-stigms is 6640. The action of the stabi-

lizer group of each inequivalent 11-arc on the 

corresponding set ∁0
11 splits the 6640 points 

into orbits. There are 8 different classes of 12-

arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6] as given 

below:  

[0, 0, 0, 126, 72, 54, 9 ], 
[0, 0, 0, 130, 60, 66, 5 ], 
[1, 0, 0, 120, 75, 60, 5 ], 
[6, 0, 0, 60, 180, 0, 15 ], 
 [6, 0, 0, 68, 156, 24, 7 ], 
 [6, 0, 0, 72, 144, 36, 3 ], 
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[6, 0, 0, 74, 138, 42, 1 ], 
 [ 6, 0, 0, 75, 135, 45, 0] . 

Since 𝑐0 = 0 for some 12-arcs so there is a 

complete 12-arc in 𝑃𝐺(2,16).There are ten dif-

ferent sizes of stabilizer groups of the 12-arcs. 

The details are given in Table 22, as follows: 
 

Table 22: Statistics of the stabilizer groups of 12-arcs 

Number of 12-arcs │𝐺│ Number of 12-arcs │𝐺│ 

6168 

337 

20 

12 

12 

1 

2 

3 

4 

4 

7 

64 

11 

8 

1 

5 

6 

10 

18 

61 

Theorem 3.12.1. In 𝑃𝐺(2,16), there are pre-

cisely 587 projectively distinct 12-arcs divided 

into 555 incomplete arcs and 32 complete arcs. 

In Table 23, the numbers of inequivalent in-

complete 12-arcs are listed according to the 

stabilizer group types 𝐺. 
 

Table 23: Statistics of the inequivalent incomplete 12-

arcs 

Number of 12-

arc 
𝐺 Number of 12-

arc 
𝐺 

499 

37 

3 

2 

𝐈 
𝒁𝟐 

𝒁𝟑 

𝒁𝟐

× 𝒁𝟐 

4 

1 

8 

1 

𝒁𝟒 

𝒁𝟓 

𝑺𝟑 

𝒁𝟔𝟏 

According to the stabilizer group types 𝐺, the 

numbers of complete 12-arcs are 

listed in Table 24, as follows: 

 
Table 24: Statistics of the inequivalent complete 12-arcs 

Number of 12-arcs 𝐺 

8 

2 

14 

4 

4 

𝒁𝟐 

𝒁𝟑 

𝑺𝟑 

𝑫𝟓 

(𝒁𝟑 × 𝒁𝟑) ⋊ 𝒁𝟐 

The 13-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the 12-stigms is 3325. The action of the stabi-

lizer group of each inequivalent 12-arc on the 

corresponding set ∁0
12 splits the 3325 points 

into orbits. There are only two different classes 

of 13-arcs of type [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6] as 

given below: 

[0, 0, 0, 0, 195, 0, 65 ], 
[5, 0, 0, 0, 120, 120, 15 ]. 

Since the value of 𝑐0 = 0 for some 13-arcs so 

there is a complete 13-arc in 𝑃𝐺(2,16).There 

are six different sizes of stabilizer groups of the 

13-arcs. The details are given in Table 25, as 

follows: 
 

Table 25: Statistics of the stabilizer groups of 13-arcs 

Number of 13-

arcs 
│𝐺│ Number of 13-

arcs 
│𝐺│ 

3094 

94 

28 

1 

2 

4 

6 

1 

2 

12 

39 

60 

Theorem 3.13.1. In 𝑃𝐺(2,16), there are pre-

cisely 260 projectively distinct 13-arcs divided 

into 259 incomplete arcs and one complete arc. 

In Table 26, the numbers of incomplete 13-arcs 

are listed according to their stabilizer group 

types. 
 

Table 26: Statistics of the inequivalent incomplete 13-

arcs 

Number of 13-

arcs 
𝐺 

Number of 13-

arcs 
𝐺 

224 

30 

3 

𝑰 

𝒁𝟐 

𝒁𝟐

× 𝒁𝟐 

1 

1 

𝑨𝟒 

𝑨𝟓 

According to the stabilizer group types 𝐺, the 

numbers of complete 13-arcs are 

listed in Table 27, as follows: 
 

Table 27: Statistics of the inequivalent complete 13-arcs 

Number of 13-arcs 𝐺 

1 𝒁𝟑 × 𝒁𝟏𝟑 

Theorem 3.13.2. In 𝑃𝐺(2,16), there are pre-

cisely 3 projectively distinct 13-arcs on a con-

ic, as summarized in Table 28, as follows: 
 

Table 28: Inequivalent 13-arcs on the conics 

The 

13-arc 

Stabi-

lizer 
[𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6] 

The 

con-

ic 

𝒥
∪ {52} 

 

𝒥
∪ {183} 

 

𝒥
∪ {213} 

𝑨𝟒 

 

𝒁𝟐 × 𝒁𝟐 

 

𝒁𝟐 × 𝒁𝟐 

[5, 0, 0, 0, 120, 120, 15 ] 
 

[5, 0, 0, 0, 120, 120, 15 ] 
 

[5, 0, 0, 0, 120, 120, 15 ] 

ℂA2 

 

ℂA2 

 

ℂA2 
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Where, 

𝒥 =
{0,1,2,253,12,162,169,149,250,18,226,207}.  

The 14-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the 13-stigms is 1295. The action of the stabi-

lizer group of each inequivalent 13-arc on the 

corresponding set ∁0
13 splits the 1295 points 

into orbits. There is one class of 14-arcs of type 

[𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7] as given below: 

[4,0,0,0,0,168,84,3]. 
Since the value of 𝑐0 ≠ 0 for all 14-arcs so 

there is no complete 14-arc in 𝑃𝐺(2,16).There 

are six different sizes of stabilizer groups of the 

14-arcs. The details are given in Table 29, as 

follows: 
Table 29: Statistics of the stabilizer groups of 14-arcs 

Number of 14-

arcs │𝐺│ 
Number of 14-

arcs │𝐺│ 

1121 

123 

16 

1 

2 

4 

16 

10 

9 

4 

6 

12 

Theorem 3.14.1. In 𝑃𝐺(2,16), there are pre-

cisely 100 projectively distinct incomplete 14-

arcs, as summarized in Table 30, as follows: 
 

Table 30: Statistics of the inequivalent incomplete 14-

arcs 

Number of 14-

arcs 
𝐺 

Number of 14-

arcs 
𝐺 

76 

16 

2 

𝑰 

𝒁𝟐 

𝒁𝟐

× 𝒁𝟐 

4 

1 

1 

𝒁𝟒 

𝑺𝟑 

𝑨𝟒 

 

Theorem 3.14.2. In 𝑃𝐺(2,16), there is precise-

ly one projectively 14-arc on a conic, as sum-

marized in Table 31, as follows: 
 

Table 31: 14-arc on the conic 

Th

e 

14-

arc 

Stabi-

lizer 
[𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7] 

The 

con-

ic 

𝒥1 𝑺𝟑 [4,0,0,0,0,168,84,3] ℂA2 

Where, 𝒥1 = 𝒥 ∪ {213,183}. 

The 15-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 
The total number of points not on the sides of 

the 14-stigms is 400. The action of the stabi-

lizer group of each inequivalent 14-arc on the 

corresponding set ∁0
14 splits the 400 points into 

orbits. There is only one class of 15-arcs of 

type of [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7] as given be-

low: 

[3,0,0,0,0,0,210,45]. 
Since 𝑐0 ≠ 0 for all 15-arcs so there is no com-

plete 15-arc in 𝑃𝐺(2,16). There are four dif-

ferent sizes of stabilizer groups of the 15-arcs. 

The details are given in Table 32, as follows: 
 

Table 32: Statistics of the stabilizer groups of 15-arcs 

Number of 15-

arcs 
│𝐺│ Number of 15-

arcs 
│𝐺│ 

373 

29 

1 

2 

25 

3 

6 

30 

Theorem 3.15.1. In 𝑃𝐺(2,16), there are pre-

cisely 30 projectively distinct incomplete 15-

arcs, as summarized in Table 33, as follows: 

 
Table 33: The inequivalent incomplete 15-arcs 

Number of 15-arcs 𝐺 Number of 15-arcs 𝐺 

20 

4 

𝑰 

𝒁𝟐 

5 

1 

𝑺𝟑 

𝑫𝟏𝟓 

Theorem 3.15.2. In 𝑃𝐺(2,16), there is precise-

ly one projectively 15-arc on a conic, as sum-

marized in Table 34, as follows: 
 

Table 34: 15-arc on the conic 

Th

e 

15-

arc 

Stabi-

lizer 
[𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7] 

The 

con-

ic 

𝒥2 𝑮𝟑𝟎 [3,0,0,0,0,0,210,45] ℂA2 

Where, 𝒥2 = 𝒥1 ∪ {157}. 

The 16-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 
The total number of points not on the sides of 

the 15-stigms is 90. The action of the stabilizer 

group of each inequivalent 15-arc on the corre-

sponding set ∁0
15splits the 90 points into orbits. 

There is only one class of 16-arcs of type 

of [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8] as given be-

low: 

[2,0,0,0,0,0,0,240,15]. 

http://creativecommons.org/licenses/by-nc/4.0/
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Since 𝑐0 ≠ 0 for all 16-arcs so there is no com-

plete 16-arc in 𝑃𝐺(2,16). There are five differ-

ent sizes of stabilizer groups of the 16-arcs. 

The details are given in Table 35, as follows: 
 

Table 35: Statistics of the stabilizer groups of 16-arcs 

Number of 16-

arcs 
│𝐺│ Number of 16-

arcs 
│𝐺│ 

36 

44 

4 

1 

2 

4 

4 

2 

30 

240 

Theorem 3.16.1. In 𝑃𝐺(2,16), there are pre-

cisely 9 projectively distinct incomplete 16-

arcs, as summarized in Table 36, as follows: 
 

Table 36: The inequivalent 16-arcs 

Number of 16-

arcs 
𝐺 Number of 16-

arcs 
𝐺 

2 

4 

1 

𝑰 

𝒁𝟐 

𝒁𝟒 

1 

1 

𝑮𝟑𝟎 

𝑮𝟐𝟒𝟎 

The group 𝑮𝟐𝟒𝟎 in Table 36, satisfies the fol-

lowing properties: 

 |𝐺240| = 240 ; 

 𝐺240 contains 15 matrix of order 2 ; 

 𝐺240 contains 32 matrix of order 3 ; 

 𝐺240 contains 64 matrix of order 5 ; 

 𝐺240 contains 128 matrix of order 15 ; 

 𝐺240 contains an identity matrix . 

Theorem 3.16.2. In 𝑃𝐺(2,16), there are pre-

cisely one projectively 16-arc on a conic, as 

summarized in Table 37, as follows: 
 

Table 37: 16-arc on the conic 

Th

e 

16-

arc 

Stabi-

lizer 
[𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8] 

The 

con-

ic 

𝒥3 𝑮𝟑𝟎 [2,0,0,0,0,0,0,240,15] ℂA2 

Where, 𝒥3 = 𝒥2 ∪ {121}. 

The 17-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 
The total number of points not on the sides of 

the 16-stigms is 18. The action of the stabilizer 

group of each inequivalent 16-arc on the corre-

sponding set ∁0
16splits the 18 points into orbits. 

There is only one class of 17-arcs of type 

of [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8] as given be-

low: 

[1,0,0,0,0,0,0,0,255]. 

Since 𝑐0 ≠ 0 for all 17-arcs so there is no com-

plete 17-arc in 𝑃𝐺(2,16). There are three dif-

ferent sizes of stabilizer groups of the 17-arcs. 

The details are given in Table 38, as follows: 
 

Table 38: Statistics of the stabilizer groups of 17-arcs 

Number of 17-arcs │𝐺│ 

14 

3 

1 

2 

240 

4080 

Theorem 3.17.1. In 𝑃𝐺(2,16), there are pre-

cisely three projectively distinct incomplete 17-

arcs, as summarized in Table 39, as follows: 
 

Table 39: The inequivalent 17-arcs 

Number of 17-arcs 𝐺 

1 

1 

1 

𝒁𝟐 

𝑮𝟐𝟒𝟎 

𝑷𝑮𝑳(𝟐, 𝟏𝟔) 

Theorem 3.17.2. In 𝑃𝐺(2,16), there is precise-

ly one projectively 17-arc on a conic, as sum-

marized in Table 40, as follows: 
 

Table 40: 17-arc on the conic 

Th

e 

17-

arc 

Stabilizer [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8] 
The 

con-

ic 

𝒥4 𝑷𝑮𝑳(𝟐, 𝟏𝟔) [1,0,0,0,0,0,0,0,255] ℂA2 

Where, 𝒥4 = 𝒥3 ∪ {52}. 

The 18-arcs in 𝑷𝑮(𝟐, 𝟏𝟔) 

The total number of points not on the sides of 

the 17-stigms is three. The action of the stabi-

lizer group of each inequivalent 17-arc on the 

corresponding set ∁0
17splits the three points into 

orbits. There is only one class of 18-arcs of 

type of [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑐9] as giv-

en below: 

[0,0,0,0,0,0,0,0,0,225]. 
Since the value of 𝑐0 = 0 for all 18-arcs so all 

18-arcs in 𝑃𝐺(2,16) are complete. There are 

two different sizes of stabilizer groups of the 

18-arcs. The details are given in Table 41, as 

follows: 
 

Table 41: Statistics of the stabilizer groups of 18-arcs 

Number of 18-arcs │𝐺│ 

1 

2 

36 

4080 
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Theorem 3.18.1. In 𝑃𝐺(2,16), there are pre-

cisely two projectively distinct complete 18-

arcs, as summarized in Table 42, as follows: 
 

Table 42: The inequivalent 18-arcs 

Number of 18-arcs 𝐺 

1 

1 

𝑮𝟑𝟔 

𝑷𝑮𝑳(𝟐, 𝟏𝟔) 

 

The tangent lines 𝐏𝟏𝟔𝟕𝐏𝒊  , for all 𝑖 in 

{0,1,2,253,12,162,169,149,250,18,226,207 

, 213,183,157,121,52} 

to a conic ℂA2
 are concurrent.The point 𝐏167 of 

intersection of the tangents to a conic ℂA2
 the 

nucleus. The following figure is shown that. 

 
Figure 1: The tangent lines to a conic ℂA2

 

MDS Codes of Dimension Three 

According to Theorem 2.11, an (𝑛; 𝑛 − 𝑑)-arc 

in 𝑃𝐺(𝑘 − 1, 𝑞) is equivalent to a projective [n; 

k; d]q-code. Now, if 𝑘 = 3; 𝑛 − 𝑑 = 2, and 

𝑞 = 16, then there is a one-to-one correspond-

ence between 𝑛-arcs in 𝑃𝐺(2,16) and projec-

tive [𝑛, 3, 𝑛 − 2]16-code 𝐶. Since 𝑑(𝐶) of the 

code 𝐶 is equal to 𝑛 − 𝑘 + 1, thus the projec-

tive code 𝐶 is MDS. In Table 43, the MDS 

codes corresponding to the 𝑛-arcs in 𝑃𝐺(2,16) 

and the parameter 𝑒 of errors corrected are giv-

en. 
Table 43: MDS code over PG(2,16) 

𝑛-arc MDS code 𝑒 𝑛-arc MDS code 𝑒 

4-arc 

5-arc 

6-arc 

7-arc 

8-arc 

9-arc 

10-arc 

11-arc 

[4, 3, 2]16 

[5, 3, 3]16 

[6, 3, 4]16 

[7, 3, 5]16 
[8, 3, 6]16 
[9, 3, 7]16 

[10, 3, 8]16 

[11, 3, 9]16 

0 

1 

1 

2 

2 

3 

3 

4 

12-arc 

13-arc 

14-arc 

15-arc 

16-arc 

17-arc 

18-arc 

 

[12, 3, 10]16 
[13, 3, 11]16 
[14, 3, 12]16 
[15, 3, 13]16 
[16, 3, 14]16 
[17, 3, 15]16 

[18, 3, 16]16 

4 

5 

5 

6 

6 

7 

7 

 

Conclusions 
No conclusion available. 
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