Adjoint representations for $\mathrm{SU}(2), \mathrm{su}(2)$ and $\mathrm{sl}(2)$

Saad Owaid, Zainab Subhi
Department of Mathematics, Faculty of Science, Al-Mustansiriyah University, IRAQ
Email: Zainabs.math@yahoo.com

ArticleInfo	Abstract
Received	This work, presents four kinds of adjoint representations $\operatorname{Ad}_{1}, \operatorname{Ad}_{2}, \operatorname{ad}_{1}$ and
$17 / 1 / 2016$	ad $_{2}$ for the special unitary matrix Lie group $\operatorname{SU}(2)$ and the special unitary, special linear matrix Lie algebras $\operatorname{su}(2)$ and $s l(2)$. In the first two we assume the Accepted $5 / 6 / 2016$
vector spaces as the matrix Lie algebras $s u(2)$ and $s l(2)$, later cases obtained by exploiting the action of $\operatorname{su}(2)$ and $\operatorname{sl}(2)$ on themselves. Also, we compute their direct sums $\operatorname{Ad}_{1} \oplus \operatorname{Ad}_{2}$ and $\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}$. The results have been displayed as Tables in a nice form.	

INTRODUCTION

In 1896 Frobenius created the general theory of representations. Representation theory of Lie groups can be described as the seek for all possible behaviors of a given group when acting on a vector space[4]. Mahmoud A. A. Sbaih and his colleagues [7] gave a new representation for the Lie unimodular group $\mathrm{SU}(4)$. Adjoint representation plays a fundamental rule in the Lie algebra theory because it enables us to transform its problems into a problem in linear algebra representations. Adjoint representations Ad_{1} and Ad_{2} associated to the conjugation actions of the special unitary matrix Lie group $\mathrm{SU}(2)$ on the matrix Lie algebras $s u(2)$ and $s l(2)$, the adjoint representations of the matrix Lie algebras ad_{1} and ad_{2} associated to their actions on themselves are obtained. Moreover, their direct sums $\mathrm{Ad}_{1} \oplus \mathrm{Ad}_{2}$ and $\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}$ are computed in details.

Preliminaries

Definition 1.1 [2]: A matrix Lie group G is a closed subgroup of the general linear groupGL($\mathrm{n}, \mathbb{\mathbb { C }}$), that is every sequence $\left\{A_{m}\right\}_{m=1}^{\infty}$ of matrices in G with $A_{m} \rightarrow A \in$ $M_{n}(\mathbb{C})$ satisfy either $A \in G$ or A is not invertible.
The general linear groupGL(n, \mathbb{C}) itself and most of its subgroups are matrix Lie groups. In particular those which we are considered in our present work, namely; $\operatorname{SL}(\mathrm{n}, \mathbb{C})$, and $\operatorname{SU}(\mathrm{n}, \mathbb{C})$.See [1-5].

Definition 1.2 [8]: A finite dimensional real (complex) representation of matrix Lie group G is a Lie group homomorphismП: $\mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$, where V is a finite dimensional real (complex) vector space with $\operatorname{dim} \mathrm{V} \geq 1$.

The adjoint map of matrix Lie group G into the general linear group acting on the spacegform a representation called the adjoint representation of G usually denoted by Ad, where Ad: $\mathrm{G} \rightarrow$ $\mathrm{GL}(\mathrm{g})$, defined by the formula $\operatorname{Ad}_{\mathrm{A}}(\mathrm{X})=$ AXA^{-1}, for $\mathrm{A} \in \mathrm{G}, \mathrm{X} \in \mathrm{g}$.

Definition 1.3 [5]

A representation of the Lie algebra g is a (finite-dimensional) real or complex vector space V together with a homomorphism of Lie algebra i.e. $\pi: ~ g \rightarrow g l(V)$ is a representation of Lie algebra g . If π is a linear map satisfying the following:
$\pi([\mathrm{x}, \mathrm{y}])=\pi(\mathrm{x}) \pi(\mathrm{y})-\pi(\mathrm{y}) \pi(\mathrm{x})$; for all x, y $\in \mathrm{g}$.
The adjoint map of matrix Lie algebra \mathfrak{g} into general linear algebra acting on the space g is a representation of g, called the adjoint representation of \mathfrak{g}, denoted by ad: $\mathfrak{g} \rightarrow g l(g)$ and defined $\operatorname{as:~}_{\operatorname{ad}_{\mathrm{X}}}(\mathrm{Y})=[\mathrm{X}, \mathrm{Y}]$, for all $X, Y \in g$.

Main Results

Theorem 2.1: Let G be a matrix Lie group, V a vector space over a field F such that Π : G $\rightarrow G L(V)$ is a representation of G over V then Π can be completely determined by generators of G and basis of V.
Proof: Let $\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right\}$ be a generators of G ,$\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}\right\}$ be a basis of V then $\prod_{s_{i}} \in$ $\mathrm{GL}(\mathrm{V}) \forall \mathrm{i}=1 \ldots \mathrm{n}$. Suppose $\mathrm{A} \in \mathrm{G}$ then $\mathrm{A}=\mathrm{S}_{1}^{\mathrm{n}_{1}} * \ldots * \mathrm{~S}_{\mathrm{j}}^{\mathrm{n}_{\mathrm{j}}}$ for some $\mathrm{j} \in\{1, \ldots, \mathrm{n}\}$ and $n_{k} \in\{1, \ldots, j\}, k \in Z$. For each $X \in V$, $X=\sum_{i=1}^{r} c_{i} v_{i}$ for some $c_{i} \in F$ we have:

$$
\begin{aligned}
& \Pi_{\mathrm{A}}(\mathrm{X})=\prod_{\mathrm{S}_{1}^{\mathrm{n}_{1} \ldots \ldots * \mathrm{~S}_{\mathrm{j}}}}^{\mathrm{n}_{\mathrm{j}}}(\mathrm{X}) \\
& =\prod_{S_{1}^{n_{1}} \ldots \ldots * \mathrm{~s}_{\mathrm{j}}}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right) \\
& =c_{1}\left[\Pi_{S_{1}^{n_{1} * \ldots * S_{j}}} n_{j}\left(v_{1}\right)\right]+c_{2}\left[\prod_{S_{1}^{n_{1}} \ldots \ldots s_{j}^{n_{j}}}\left(v_{2}\right)\right] \\
& +\cdots+c_{r}\left[\prod_{S_{1}^{n_{1}} \ldots * S_{j}}{ }^{n_{j}}\left(v_{r}\right)\right] \\
& =c_{1}\left[\prod_{s_{1}^{n_{1}}}\left(v_{1}\right) \cdot \prod_{S_{2}^{n_{2}}}\left(v_{1}\right) \ldots \Pi_{S_{j}} n_{j}\left(v_{1}\right)\right] \\
& +c_{2}\left[\Pi_{S_{1}^{n_{1}}}\left(v_{2}\right) \cdot \Pi_{S_{2}^{n_{2}}}\left(v_{2}\right) \cdots \Pi_{S_{j}} n_{j}\left(v_{2}\right)\right]+\cdots \\
& +c_{r}\left[\Pi_{S_{1}^{n_{1}}}\left(v_{r}\right) \cdot \prod_{S_{2}^{n_{2}}}\left(v_{r}\right) \ldots \Pi_{S_{j}}^{n_{j}}\left(v_{r}\right)\right]
\end{aligned}
$$

With the action of G on V we are done.

Corollary 2.2: For any matrix Lie group G the adjoint representation
Ad: $\mathrm{G} \rightarrow \mathrm{GL}(\mathrm{g})$ is completely determined by generators and basis of G and g respectively. For a given matrix Lie group G we can associate matrix Lie algebra as follows:
Definition 2.3 [3]: Matrix Lie algebra g of matrix Lie group G is the set of all matrices A such that $e^{A t}$ is in G for all real numbers t. that is:

$$
\mathfrak{g}=\left\{\mathbf{A} \in \mathbf{M}_{\mathbf{n} \times \mathbf{n}} \mid \mathbf{e}^{\mathbf{A t}} \in \mathbf{G}, \mathbf{t} \in \mathbb{R}\right\} .
$$

Lemma 2.4:

Let V be a vector space over a field F , then $\sum_{i=1}^{m} x_{i} \sum_{j=1}^{n} y_{j}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j}$ for $x_{i}, y_{j} \in V$.
Proof:
$\sum_{i=1}^{m} x_{i} \sum_{j=1}^{n} y_{j}=\left[\sum_{i=1}^{m} x_{i}\right]\left(y_{1}+y_{2}+\ldots+y_{n}\right)$
$=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{m}}\right) \mathrm{y}_{1}+\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{m}}\right) \mathrm{y}_{2}+\ldots$
$+\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{m}}\right) \mathrm{y}_{\mathrm{n}}$
$=x_{1} y_{1}+x_{1} y_{2}+\ldots+x_{1} y_{n}+x_{2} y_{1}+x_{2} y_{2}+$ $\ldots+x_{2} y_{n}+\ldots+x_{m} y_{1}+x_{m} y_{2}+\ldots+$
$\mathrm{x}_{\mathrm{m}} \mathrm{y}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$.

Theorem 2.5:

The adjoint representation of matrix Lie algebra g given in definition (1.3) is completely determined by elements of its basis.
Proof: Let $\mathrm{B}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a basis for a given Lie algebra. Take $\mathrm{X} \in \mathfrak{g}$, then $\mathrm{X}=$ $\sum_{i=1}^{n} c_{i} x_{i}$ for some $c_{i} \in F$.
Now, $\forall \mathrm{y} \in \mathrm{g}, \mathrm{y}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{k}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}$ for some $\mathrm{k}_{\mathrm{j}} \in \mathrm{F}$.

$$
\begin{aligned}
\operatorname{ad}_{x}(y)=[x, y] & =x y-y x \\
& =\sum_{i=1}^{n} c_{i} x_{i} \sum_{j=1}^{n} k_{j} x_{j} \\
& -\sum_{j=1}^{n} k_{j} x_{j} \sum_{i=1}^{n} c_{i} x_{i}
\end{aligned}
$$

by lemma (2.4) $\quad=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} k_{j} x_{i} x_{j}-$
$\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k}_{\mathrm{j}} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}}$
last expression depends only on the action of g on itself by the elements B.

We define $\operatorname{ad}_{1}: s u(2) \rightarrow g l(s u(2))$ and $\mathrm{ad}_{2}: \operatorname{sl}(2) \rightarrow \mathrm{gl}(\operatorname{sl}(2))$. Then theorem (2.5) ,shows that those representations can be
completely determined using basis and generators of $s u(2)$ and $s l(2)$.

Definition 2.6 [5]: Let G be a matrix Lie group and Let $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{m}$ be a representations of Lie group G acting on a vector spaces $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{m}}$.Then, the direct sum of $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{m}$ is a representation $\Pi_{1} \oplus \ldots \oplus \Pi_{m}$ of G acting on the space $V_{1} \oplus \ldots \oplus V_{m}$, defined by:
$\left[\Pi_{1} \oplus \ldots \oplus \Pi_{\mathrm{m}}(\mathrm{A})\right]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right)=$
$\left(\Pi_{1}(A) v_{1}, \ldots, \Pi_{m}(A) v_{m}\right)$ for all $A \in G$.

Definition 2.7 [5]: If g is a Lie algebra and $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ are representations of g acting on $\mathrm{V} 1, \mathrm{~V} 2,$. . ., Vn then we define the direct sum representation of $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ acting on $\mathrm{V} 1 \oplus \mathrm{~V} 2 \oplus \ldots \oplus \mathrm{Vn}$ by:
$\left(\pi_{1} \oplus \pi_{2} \ldots \oplus \pi_{n}\right)(\mathrm{V} 1, \mathrm{~V} 2, . \quad ., \mathrm{Vn})=\left(\pi_{1}(\mathrm{X})\right.$ $\mathrm{V} 1, \pi_{2}(\mathrm{X}) \mathrm{V} 2$, . . ., $\left.\pi_{\mathrm{n}}(\mathrm{X}) \mathrm{Vn}\right)$, for all $\mathrm{X} \in \mathrm{g}$ where (V1, V2,. . ., Vn) \in V1, V2,. . ., Vn.

Theorem 2.8: Let $\left\{\pi_{i}\right\}_{i=1}^{n}$ be a representations of a Lie algebra g on the vector space $\left\{V_{i}\right\}_{i=1}^{n}$ over a field F. The direct sum $\oplus_{\mathrm{i}=1}^{\mathrm{n}} \pi_{\mathrm{i}}$ in definition (2.7) below is completely determined by the elements of the basis of $\oplus_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{V}_{\mathrm{i}}$.

Proof: Let $B_{i}=\left\{b_{i j}\right\}_{j=1}^{f_{i}}$ be a basis of $V_{i}, i \in$ $[1, \ldots, n]$ where $f_{i}=\operatorname{Dim}\left(V_{i}\right), \forall i$
fix $X \in g, \forall Y \in \bigoplus_{i=1}^{n} V_{i}, Y$

$$
=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { with } y_{i} \in V_{i} .
$$

we have : $y_{i}=\sum_{j=1}^{f_{i}} c_{i j} b_{i j}$ and $\left[\bigoplus_{\mathrm{i}=1}^{\mathrm{n}} \pi_{\mathrm{i}}(\mathrm{x})\right] \mathrm{Y}=$
$\left[\oplus_{\mathrm{i}=1}^{\mathrm{n}} \pi_{\mathrm{i}}(\mathrm{x})\right]\left(\sum_{\mathrm{j}=1}^{\mathrm{f}_{1}} \mathrm{c}_{1 \mathrm{j}} \mathrm{b}_{1 \mathrm{j}}, \ldots, \sum_{\mathrm{j}=1}^{\mathrm{f}_{\mathrm{n}}} \mathrm{c}_{\mathrm{nj}} \mathrm{b}_{\mathrm{nj}}\right), \quad$ by definition (2.6)

$$
=\left(\pi_{1}(x)\left(\sum_{j=1}^{f_{1}} c_{1 j} b_{1 j}\right), \ldots, \pi_{n}(x) \sum_{j=1}^{f_{n}} c_{n j} b_{n j}\right)
$$

$$
=
$$

$$
\left(\sum_{j=1}^{f_{1}} c_{1 j} \pi_{1}(x)\left(b_{1 j}\right), \ldots, \sum_{j=1}^{f_{n}} c_{n j} \pi_{n}(x)\left(b_{n j}\right)\right)
$$

By the action of g on $V_{i} \forall i$ last expression belongs to $\oplus_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{V}_{\mathrm{i}}$. Matrix Lie algebras are vector spaces, we consider the associated matrix Lie algebras $s l(2)$ and $s u(2)$ of the
matrix Lie groups $\mathrm{SL}(2)$, $\mathrm{SU}(2)$ respectively. In the rest of this section, we compute adjoint representations of $\mathrm{SU}(2)$ acting on $\operatorname{sl}(2)$ and $s u(2)$ and the adjoint representations of $s u(2)$ and $s l(2)$, then find their direct sum, we have:
Case (I): $\mathbf{A d}_{1}: \mathbf{S U}(2) \rightarrow \mathbf{G L}(s u(2))$
First recall that a square matrix A is called Hermitian if $A=A^{*}$, where $\left(A^{*}=\overline{A^{\operatorname{tr}}}\right.$ is the adjoint matrix of A).
The unitary group $U(n)$ is a subgroup of GL(n, C) satisfy:
$\mathbf{U}(\mathbf{n})$
$=\left\{\mathbf{A}_{\mathbf{n} \times \mathbf{n}} \in \mathbf{G L}(\mathbf{n}, \mathbb{C}) \mid \mathbf{A} \cdot \mathbf{A}^{*}=\mathbf{I}_{\mathbf{n}}\right.$, i. $\left.\mathbf{e}, \mathbf{A}^{*}=\mathbf{A}^{\mathbf{- 1}}\right\}$
The special unitary group $\mathbf{S U (n)}$ is a set of all $\mathbf{n} \times \mathbf{n}$ unitary matrices with determinant one ,this is a subgroup of $\mathbf{U}(\mathbf{n})$, and hence $\mathbf{G L}(\mathbf{n}, \mathbb{C})$.
$\mathbf{S U}(\mathbf{n})=\{\mathbf{A} \in \mathbf{U}(\mathbf{n}) \| \mathbf{A} \mid=\mathbf{1}\}$, see [6].
$\mathbf{S U}(\mathbf{2})$ is the set of all two dimensional, complex unitary matrices with generators is the set of three linearly independent, traceless 2×2

Hermitian
matrices; $\mathrm{F}_{1}=\left(\begin{array}{cc}0 & 1 / 2 \\ 1 / 2 & 0\end{array}\right), \mathrm{F}_{2}=$
$\left(\begin{array}{cc}0 & -\mathrm{i} / 2 \\ \mathrm{i} / 2 & 0\end{array}\right)$,
$\mathrm{F}_{3}=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)$.
the Lie algebra of $\operatorname{SU}(\mathrm{n})$ is the space of all $\mathrm{n} \times \mathrm{n}$ complex matrices A such that $\mathrm{A}^{*}=$ -A and trace $(\mathrm{A})=0$, denoted $s u(n)$.
$\boldsymbol{s u}(n)$
$=\left\{\mathbf{A}_{\mathbf{n} \times \mathbf{n}} \in \mathbf{G L}(\mathbf{n}, \mathbb{C}) \mid \mathbf{A}^{*}=-\mathbf{A}, \operatorname{trace}(\mathbf{A})=\mathbf{0}\right\}$.
The basis for $\operatorname{su}(2)$ is:
$\mathrm{H}_{1}=\left(\begin{array}{cc}\mathrm{i} / 2 & 0 \\ 0 & -\mathrm{i} / 2\end{array}\right), \mathrm{H}_{2}=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)$,
$H_{3}=\left(\begin{array}{cc}0 & \mathrm{i} / 2 \\ \mathrm{i} / 2 & 0\end{array}\right)$. Therefore using corollary (2.2) we can compute Ad_{1} as follows:
$\operatorname{Ad}_{1 A}(U)=A U A^{-1}=A U A^{*}$ for all $A \in$
$\mathbf{S U}(\mathbf{2})$ and $U \in \boldsymbol{s u}(\mathbf{2})$. Our computations illustrated in Table (1) below.

$$
\begin{array}{llll}
& \begin{array}{l}
\mathbf{F} \\
\mathbf{1}
\end{array} & \frac{-1}{4} \mathrm{H}_{1} & \frac{-1}{4} \mathrm{H}_{2} \\
\mathbf{F}_{2} & \frac{-1}{4} \mathrm{H}_{1} & \frac{1}{4} \mathrm{H}_{3} \\
\mathbf{F}_{3} & \frac{1}{4} \mathrm{H}_{2} & \frac{-1}{4} \mathrm{H}_{3} \\
\mathrm{H}_{1} & \frac{-1}{4} \mathrm{H}_{2} & \frac{-1}{4} \mathrm{H}_{3}
\end{array}
$$

Table (1) Adjoint representation Ad_{1} of $\mathrm{SU}(2)$ acting on space $s u(2)$

Case (II): $\mathbf{A d}_{\mathbf{2}}: \mathbf{S U}(\mathbf{2}) \rightarrow \mathbf{G L}(\boldsymbol{s l}(2))$
The associated Lie algebra of the matrix Lie group $\operatorname{SL}(\mathbf{n}, \mathbb{C})$ is the space of all $\mathbf{n} \times \mathbf{n}$ complex matrices with trace zero, denoted by $\operatorname{sl}(\mathbf{n}, \mathbb{C})$.

$$
\operatorname{sl}(\mathbf{n}, \mathbb{C})=\left\{\mathbf{A} \in \mathbf{M}_{\mathbf{n} \times \mathbf{n}}(\mathbb{C}) \mid \operatorname{trace}(\mathbf{A})=\mathbf{0}\right\} .
$$

The following matrices form a basis for $\boldsymbol{s l}(2, \mathbb{C}): \quad \mathrm{X}_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathrm{X}_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \mathrm{X}_{3}=$ $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
Using the formula:
$A d_{2 A}(V)=A V A^{-1}=A V A^{*}$ for all $A \in$
$\mathbf{S U}(\mathbf{2})$ and $\mathrm{V} \in \boldsymbol{s l} \mathbf{l}(\mathbf{2})$, we get Table (2) below.

Table (2) Adjoint representation of $\operatorname{SU}(2)$ acting on $s l(2)$.

Case III: $\operatorname{ad}_{1}: s u(2) \longrightarrow g l(s u(2))$.

$\begin{array}{lll}\mathrm{H}_{1} & \mathrm{H}_{2} & \mathrm{H}_{3}\end{array}$
Generators
of $s u(2)$

$\mathbf{H}_{\mathbf{1}}$	0	H_{3}	$-\mathrm{H}_{2}$
$\mathbf{H}_{\mathbf{2}}$	$-\mathrm{H}_{3}$	0	H_{1}
$\mathbf{H}_{\mathbf{3}}$	H_{2}	$-\mathrm{H}_{1}$	0

Table (3): Adjoint representation ad_{1} of $s u(2)$ acting on itself.

Case IV: $\mathrm{ad}_{2}: \operatorname{sl}(2) \rightarrow \operatorname{gl}(s l(2))$.

Table (4): Adjoint representation ad_{2} of $s l(2)$ acting on itself.

Case $\quad V: \quad A d_{1} \oplus$ Ad $_{2}: \mathbf{S U}(2) \longrightarrow$ $\mathbf{G L}(s u(2) \oplus s l(2))$
Let $\mathrm{SU}(2)$ be the special unitary matrix Lie group and Let $\operatorname{Ad}_{1}, \mathrm{Ad}_{2}$ be an adjoint representations of $\mathrm{SU}(2)$ acting on vector spaces $s u(2), s l(2)$ respectively. Then according to definition (2.6) the direct sum of $\operatorname{Ad}_{1}, \mathrm{Ad}_{2}$ is a representation $\mathrm{Ad}_{1} \oplus \mathrm{Ad}_{2}$ of $\mathrm{SU}(2)$ acting on the space $s u(2) \oplus s l(2)$ is defined by:
$\operatorname{Ad}_{1} \oplus$ Ad $_{2}: \mathbf{S U}(2) \rightarrow \mathbf{G L}(s u(2) \oplus s l(2))$
$\left[\operatorname{Ad}_{1} \oplus \operatorname{Ad}_{2}(\mathrm{~F})\right](\mathrm{H}, \mathrm{X})=$
$\left(\operatorname{Ad}_{1}(F) H, A d_{2}(F) X\right)$ for \quad all $\quad F \in G, H \in$ $s u(2), X \in s l(2)$.
Together with the results obtained in case (I) and Case (II) we have:

$$
\begin{aligned}
& {\left[\mathrm{Ad}_{1} \oplus \mathrm{dA}_{2}\left(\mathrm{~F}_{\mathrm{i}}\right)\right]\left(\mathrm{H}_{\mathrm{j}}, \mathrm{X}_{\mathrm{k}}\right)} \\
& \quad=\left(\mathrm{Ad}_{1}\left(\mathrm{~F}_{\mathrm{i}}\right) \mathrm{H}_{\mathrm{j}}, \mathrm{dA}_{2}\left(\mathrm{~F}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{k}}\right) \\
& \\
& 1 \leq \mathrm{i}, \mathrm{j}, \mathrm{k} \leq 3
\end{aligned}
$$

Table (5) Direct sum of adjoint representations $\left(\operatorname{Ad}_{1} \oplus \operatorname{Ad}_{2}\right)$.

Case

VI: ad $_{1} \oplus$ ad $_{2}: s u(2) \oplus s l(2) \longrightarrow$

$\mathbf{g L}(s u(2) \oplus s l(2))$

Let $g=s u(2) \oplus s l(2)$ is a Lie algebra and ad_{1} is an adjoint representation of $s u(2)$ acting on vector space $s u(2)$ and ad_{2} is adjoint representation of $s l(2)$ acting on vector space $s l(2)$, then we define the direct sum $\operatorname{ad}_{1} \oplus$ ad_{2} acting on $s u(2) \oplus s l(2)$ by :
$\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)\right]\left(\mathrm{H}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)$

$$
=\left[\operatorname{ad}_{1 \mathrm{H}_{\mathrm{i}}} \oplus \mathrm{ad}_{2 \mathrm{X}_{\mathrm{i}}}\right]\left(\mathrm{H}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)
$$

$=\left(\operatorname{ad}_{1 \mathrm{H}_{\mathrm{i}}}\left(\mathrm{H}_{\mathrm{i}}\right), \mathrm{ad}_{2 \mathrm{X}_{\mathrm{i}}}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$, where $1 \leq \mathrm{i} \leq 3$.
Together with the results obtained in case (III) and Case (IV) we have
The sum $\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}$ illustrated by the following: 1- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=(0,0)$.
2-
$\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)=$
$\left[\mathrm{ad}_{\mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(0,2 \mathrm{X}_{2}\right)$.
3-
$\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)=$
$\left[\mathrm{ad}_{\mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(0,-2 \mathrm{X}_{3}\right)$.
$4-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)$

$$
\begin{aligned}
& \left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=\left(\mathrm{H}_{3}, 0\right) . \\
& 5-\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)= \\
& {\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)} \\
& =\left(\mathrm{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(\mathrm{H}_{3}, 2 \mathrm{X}_{2}\right) . \\
& 6- \\
& {\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)=} \\
& {\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)} \\
& =\left(\mathrm{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{XX}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(\mathrm{H}_{3},-2 \mathrm{X}_{3}\right) .
\end{aligned}
$$

7- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)$

$$
=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=\left(-\mathrm{H}_{2}, 0\right)
$$

$$
8-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)=
$$

$$
\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)
$$

$$
=\left(\mathrm{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{2}, 2 \mathrm{X}_{2}\right) .
$$

$$
\text { 9- }\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)=
$$

$$
\left[\mathrm{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)
$$

$$
=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(-\mathrm{H}_{2},-2 \mathrm{X}_{3}\right)
$$

$$
10-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)=
$$

$$
\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)
$$

$$
\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \operatorname{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{1}\right)\right)=\left(0,-2 \mathrm{X}_{2}\right)
$$

11- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\right)=(0,0)$.
$12-\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)=$
$\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{3}\right)\right)=\left(0, \mathrm{X}_{1}\right)$.
13- $\quad\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{1}\right)\right)=\left(\mathrm{H}_{3},-2 \mathrm{X}_{2}\right)$.
14- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)=$ $\left[\operatorname{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \operatorname{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\right)=\left(\mathrm{H}_{3}, \overline{0}\right)$.

15- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)=$ $\left[\mathrm{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \operatorname{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{3}\right)\right)=\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)$.
16- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{1}\right)\right)=\left(-\mathrm{H}_{2},-2 \mathrm{X}_{2}\right)$.
17- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)=$ $\left[\operatorname{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)$
$=$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \operatorname{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{2}, 0\right)$.
$18-\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{3}\right)\right)=\left(-{ }_{-}^{=}\right.$,
19- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \operatorname{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{1}\right)\right)=\left(0,2 \mathrm{X}_{3}\right)$.
20- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{2}\right)\right)=\left(0,-\mathrm{X}_{1}\right)$.
$21-\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)=$ $\left[\mathrm{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{1}\right), \operatorname{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{3}\right)\right)=(0,0)$.
22- $\quad\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \operatorname{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{1}\right)\right)=\left(\mathrm{H}_{3}, 2 \mathrm{X}_{3}\right)$.
23- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\right)=\left(\mathrm{H}_{3},-\mathrm{X}_{1}\right)$.
24- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)=$ $\left[\mathrm{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)$
$=$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{2}\right), \operatorname{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{3}\right)\right)=\left(\mathrm{H}_{3}, 0\right)$.
$25-\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)=$
$\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}}\right]\left(\mathrm{H}_{3} \mathrm{X}_{1}\right)$ $\left[\operatorname{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{1}\right)\right)=\left(-\mathrm{H}_{2}, 2 \mathrm{X}_{3}\right)$.

26- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)=$ $\left[\mathrm{ad}_{\mathrm{H}_{1}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{2},-\mathrm{X}_{1}\right)$.
27- $\quad\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{1}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{1}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{3}\right)\right)=\left(-\mathrm{H}_{2}, 0\right)$.
28- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{2}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=\left(-\mathrm{H}_{3}, 0\right)$.
$29-\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)=$ $\left[\mathrm{ad}_{\mathrm{H}_{2}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)$
$=\left(\operatorname{ad}_{1_{2}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{3}, 2 \mathrm{X}_{2}\right)$.
$30-\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)=$
$\left[\operatorname{ad}_{\mathrm{H}_{2}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(-\mathrm{H}_{3},-2 \mathrm{X}_{3}\right)$.
31- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{2}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=(0,0)$.
32- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)=$ $\left[\mathrm{ad}_{1 \mathrm{H}_{2}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(0,2 \mathrm{X}_{2}\right)$.
33- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{2}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{2}\right), \operatorname{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(0,-2 \mathrm{X}_{3}\right)$.
34- $\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)=$ $\left[\operatorname{ad}_{1 \mathrm{H}_{2}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=\left(\mathrm{H}_{1}, 0\right)$.
35- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)=$ $\left[\mathrm{ad}_{1 \mathrm{H}_{2}} \oplus \mathrm{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)$
$\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(\mathrm{H}_{1}, 2 \mathrm{X}_{2}\right)$.
36- $\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)=$ $\left[\mathrm{ad}_{1 \mathrm{H}_{2}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{2}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(\mathrm{H}_{1},-2 \mathrm{X}_{3}\right)$.

$=\left(\mathrm{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{1}, 2 \mathrm{X}_{2}\right)$.	$=\left(\mathrm{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{1}\right)\right)=\left(0,-2 \mathrm{X}_{2}\right)$.
$\begin{aligned} & 60-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)= \\ & {\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)} \end{aligned}$	$\begin{aligned} & 71- \\ & {\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)} \end{aligned}$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(-\mathrm{H}_{1},-2 \mathrm{X}_{3}\right)$.	$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\right)=(0,0) .$
$\begin{aligned} & 61- \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)} \end{aligned}$	$\begin{aligned} & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)} \end{aligned}$
$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{1}\right)\right)=(0,0) .$	$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{3}\right)\right)=\left(0, \mathrm{X}_{1}\right)$.
$\begin{aligned} & 62- \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)} \end{aligned}$	$\begin{aligned} & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)} \end{aligned}$
$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{2}\right)\right)=\left(0,2 \mathrm{X}_{2}\right) .$	$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{1}\right)\right)=\left(\mathrm{H}_{2}, 2 \mathrm{X}_{3}\right)$.
$\begin{aligned} & \text { 63- }\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right) \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{1}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)} \end{aligned}$	$\begin{aligned} & 74- \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)} \end{aligned}$
$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{1}}\left(\mathrm{X}_{3}\right)\right)=\left(0,-2 \mathrm{X}_{3}\right)$.	
64- $\quad\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{1}\right.$	$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{2}\right)\right)=\left(\mathrm{H}_{2},-\mathrm{X}_{1}\right)$.
$\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \mathrm{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{1}\right)$	$\begin{aligned} & 75-\left[\operatorname{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)= \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)} \end{aligned}$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{XX}_{2}}\left(\mathrm{X}_{1}\right)\right)=\left(\mathrm{H}_{2},-2 \mathrm{X}_{2}\right)$.	$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{3}\right)\right)=\left(\mathrm{H}_{2}, 0\right)$.
$\begin{aligned} & \text { 65- } \quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)= \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{2}\right)} \end{aligned}$	$\begin{aligned} & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)} \end{aligned}$
$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{XX}_{2}}\left(\mathrm{X}_{2}\right)\right)=\left(\mathrm{H}_{2}, 0\right)$.	$=\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{1}\right)\right)=\left(-\mathrm{H}_{1}, 2 \mathrm{X}_{3}\right)$.
$\begin{aligned} & 66-\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)= \\ & {\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{1}, \mathrm{X}_{3}\right)} \end{aligned}$	$\begin{aligned} & 77-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)= \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)} \end{aligned}$
$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{1}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{3}\right)\right)=\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)$.	$=\left(\mathrm{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{1},-\mathrm{X}_{1}\right)$.
$\text { 67- } \quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)=$	78- $\quad\left[\mathrm{ad}_{1} \oplus \mathrm{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)=$
$\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \mathrm{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{1}\right)$	$\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{1}\right)\right)=\left(-\mathrm{H}_{1},-2 \mathrm{X}_{2}\right)$	$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{3}\right)\right)=\left(-\mathrm{H}_{1}, 0\right)$.
$\begin{aligned} & \text { 68- } \quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)= \\ & {\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{2}\right)} \end{aligned}$	$\begin{aligned} & {\left[9-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)=\right.} \\ & {\left[\operatorname{ad}_{1 \mathrm{H}_{3}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)} \end{aligned}$
$\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{XX}_{2}}\left(\mathrm{X}_{2}\right)\right)=\left(-\mathrm{H}_{1}, 0\right)$.	$\left(\mathrm{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{1}\right)\right)=\left(0,2 \mathrm{X}_{3}\right)$.
$69-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)=$	$80-\quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)=$
$\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{2}, \mathrm{X}_{3}\right)$	$\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)$
$=\left(\operatorname{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{2}\right), \mathrm{ad}_{2 \mathrm{X}_{2}}\left(\mathrm{X}_{3}\right)\right)=\left(-\mathrm{H}_{1}, \mathrm{X}_{1}\right)$.	$\left(\mathrm{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{2}\right)\right)=\left(0,-\mathrm{X}_{1}\right)$.
$\begin{aligned} & 70-\quad\left[\mathrm{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{2}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)= \\ & {\left[\mathrm{ad}_{1 \mathrm{H}_{3}} \oplus \operatorname{ad}_{2 \mathrm{X}_{2}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{1}\right)} \end{aligned}$	$\begin{aligned} & \text { 81- } \quad\left[\operatorname{ad}_{1} \oplus \operatorname{ad}_{2}\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)= \\ & {\left[\mathrm{ad}_{2 \mathrm{X}_{3}}\right]\left(\mathrm{H}_{3}, \mathrm{X}_{3}\right)} \end{aligned}$

$$
\left(\mathrm{ad}_{1 \mathrm{H}_{3}}\left(\mathrm{H}_{3}\right), \mathrm{ad}_{2 \mathrm{X}_{3}}\left(\mathrm{X}_{3}\right)\right)=(0,0)
$$

REFERENCES

[1] Baker A., " An introduction to matrix groups and their applications ", Scotland, University of Glasgow, 2000.
[2] Bourbaki, N., "General Topology", $2^{\text {nd }}$ edSpringer-Verlag, New York, London, 1989.
[3] Curtis, M., "Matrix Groups", $2^{\text {nd }}$ ed. Springer-Verlag, New York, 1984.
[4] Fulton, W., and Harris, J.," Representation Theory", Springer-Verlag, New York, INC, 1991.
[5] Hall, B. C., "Lie Groups, Lie Algebras and Representations, An Elementary Introduction", Springer, USA, May, 2004.
[6] Helmer A.,"Determining summands in tensor products of Lie algebra representations", National University of Singapore, Singapore 0511, Singapore, 15 June 1992.
[7] Mahmoud A. A. Sbaih, Moeen KH. Srour, M. S. Hamada and H. M. Fayad, "Lie Algebra and Representation of SU(4)", Al Aqsa University, P. O. Box 4501, Gaza, Palestine, EJTP 10, No. 28 (2013) 9-26.
[8] Sattinger, D. H., "Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics", Springer-Verlag, New York, Applied Mathematical Sciences, Volume 61, (1985), pp.164-180.

