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Abstract

In this paper the continuous classical boundary optimal problem of a couple linear partial dif-
ferential equations of parabolic type is studied, The Galerkin method is used to prove the ex-
istence and uniqueness theorem of the state vector solution of a couple linear parabolic partial
differential equations for given (fixed) continuous classical boundary control vector. The
proof of the existence theorem of a continuous classical optimal boundary control vector asso-
ciated with the couple linear parabolic is given. The Frechet derivative is derived; finally we
give a proof of the necessary conditions for optimality (boundary control) of the above prob-
lem.
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Introduction

Control theory is a mathematical study of in-
fluence the behavior of dynamical system to
achieve a desired goal. The subject of the op-
timal control theory developed in the latter half
of 20" century in response to diverse applied
problem [1].

Control theory is an application-oriented math-
ematics that deals with the basic principles un-
derlying the analysis and design of (control)
system. Systems can be engineering (air condi-
tioner, air craft, and CD player etcetera), eco-
nomic, and biological [2].

In general there are many optimal control prob-
lems, usually are governed either by ODEs as
in [3] or by different type PDEs and are subject
to control and state constraints, in 2010 [4], and
in 2015 [5] studied an optimal control of para-
bolic partial differential equations,. in 2014[6]
studied an optimal control of hyperbolic partial
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differential equations, in 2012 [7] studied an
optimal control of elliptic partial differential
equations, in 2014 [8] studied an optimal con-
trol of a coupled of nonlinear elliptic partial
differential equations and in 2016 [9] studied
optimal control of a coupled of nonlinear para-
bolic partial differential equations while, in
2016 [10] studied an optimal control of a cou-
pled of nonlinear hyperbolic partial differential
equations.

In this paper, the existence and uniqueness the-
orem of the state vector solution of couple line-
ar parabolic partial differential equations for
given (fixed) continuous classical boundary
control vector is studied, the existence theorem
of a continuous classical boundary optimal
control vector associated with a couple linear
partial differential equations of parabolic type
is developed and proved, also the derivation of
the Frechet derivative is done, the existence
and uniqueness of the solution of the adjoint
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equations which corresponds to the state vector
is studied. Finally the necessary conditions for
optimality of the above considered problem is
developed and proved.

Description of the problem:

Let/ = (0,T), T <o and Q c R? be an open
and bounded region with Lipschitz boundary
=00, =Q0x1,2=Tx1. Consider the
following continuous classical boundary opti-
mal control problem:

The state equation is given by the following
linear parabolic equations with the initial and
boundary conditions:

Yie = Ehjm1 5y (@ (0 O 32 + by (v, 01 -
b(x, t))’z f1(x t) (1)
Yar = Ehje1 5y, by (6 0 52 + by(x 07, +
b(x )y = f(x,t) (2)

U a;j % = u4(x, t),0nZ (3)
¥1(x,0) = y?(x) ,onQ (4)

o1 by 22 = uy(x, £),0n% (5)
¥2(x,0) = y9(x),0n (6)

Where (yl,yz) = (11 (,5,(0) € (H'(®)°
is the state vector, (uy, uy) = (u(x),u,(x)) €

(L2 (Z))2 is the classical boundary control vec-

2.
torand (f3, f2) = (LX), () € (L*(Q)" is
a vector of a given functions, for all x =
(x1,%7) € Q since a;; ,b;j ,b(x,t) and b;(x, t)
€ C*(Q) Let WA be the set of admissible clas-
sical controls, where
W,={te(?®) /iev,xu,c
R?a.e.in 0}

While G, () be the cost function, such that
Min.Go (@) =1 Iy = yqll§ +Elwllg, v € W,
(7)

Where is a positive real number,(y14, V24)i1S
the desired data and (y4,v2) = (Vu1, Yu2)is the
solution of (1-6) corresponding to the boundary
control vector .

Let V=V, xV,=H{(Q)xH(Q)
(v, v2) = (U1 (x), v, (X))

We denoted (v, v), and ||v||, the inner product
and the norm in H1(Q), by (¥, ) and ||#||, the
inner product and the norm in (L?(Q))? by

and
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W, 1)1 = W, v)1 + (v, v5); and |9, =
llv1ll; + llv,]l; the inner product and the norm
in V and V7* (is the dual of V7).

Weak Formulation of the State Equations:
The weak forms (1-6) is obtained through mul-
tiplying both sides of equations (1 & 4) and (2
&6) by v; € V and v, € V respectively, then
taking the integral for both sides and finally
using the generalize Green theorem in Hilbert
space for the term which have the 24 deriva-
tives in the L.H.S. of the obtained equations
from (1&2), to get Vv,,v, €V

(V1o 1) + a1 (8, y1,v1) + (b1 (D) Y1, v1) —
(b(®)yz,v1) = (f1, v1) + (ug, v1)r (82)

(v, v1) = (¥1(0),v,) (8b)

and

(Vat, V2) + a2 (8, y2,v2) + (b2 (D) y2, v2) +
(b(D)y1,v2) = (f2,v2) + (uz, v2)r, (92)
(y3,v2) = (y2(0),v,), (9b)

Where
a, (t, vy, 771)3— ,
v
f Yij=1aij aj;la —dx ,a,(t,y,,v;) =

6y2 6172
fz” 1 Uy dx; 6x]d

To study the existence of unique solution of the
weak form (8-9), we consider the following

Assumptions (A):

1) f; Satisfies the following condition w.r.t. x
&t, i.e.

lfi(x, )] < 2;(x,t),Vi=1,2, where (x,t)€
Ql){i € LZ(QlR)

ila; (¢, i, v <

aillyillsllvilly, 1 (O)yi, vi)| <

Billyillollvillo Vi = 1,2

a;(t,yy) = @llyill,*, vi=12
(b:i(©yiy) = Gllyille”,Vi= 12, where
a;, B;, a,&{; are positive constants Vi = 1,2
i) c(t,y,¥) = a;(t,y1,v1) + (b1 (O)y1,¥1) +
az(t,y2,¥2) + (b1(t)y2,¥2), and

lc(t,7, D) < allFlllI#l, &5.5) =@l
where a, @ are real positive constants.

Theorem (1) :( Existence and Uniqueness So-
lution of the State Equations)

With assumptions (A), for each fixed boundary
control 7 € (12(%))”, the weak form of the
state equations (8-9) has a unique solution y =



Al-Mustansiriyah Journal of Science
1SSN: 1814-635X (print), ISSN:2521-3520 (online)

Volume 29, Issue 1, 2018

DOI: http://doi.org/10.23851/mjs.v29i1.159

tiony = (y1,y,) st ¥ € (L2A,V)°, 5 =
16 Y2¢) € (LZ(I'V*))Z

Proof:

Let , c V be the set of continuous and piece-
wise affine functions in Q, let {v,, v,, ..., v, } be
basis of V, where n = 2N, then the approxi-
mate solution y of (8-9) is approximated by
5’)11 = V1n yZn)an s.t

Yo = Xj=1 G (©OV;(x) (10)

Where V; = ((2 — Dvy, (L — Dvy) (1),

For =1,..N,l=12 (=cj,j=1..n
Il=1j=n+1.,N,j=k+n(l-1),l=
1,2 and c;(t)is unknown function of t
Vi=12..n

The weak forms of the state equations (8) and
(9) can be approximated w.r.t the space varia-
ble, using the Galerkin’s method to get:

(Yiner V1) + a1(t, Y1n, V1) + (b1 (O) Y10, V1) —
(b(O)y2n,v1) = (f1, 1) + (uy, v1)r (123)
g?n»vﬂ = (y1,v1),V vy €V, (12b)

(Vane V2) + a2 (L, Yon, v2) + (b2 () Yon, v2) +
(b(®)Y1n,v2) = (f2,v2) + (uz, v2)r (133)

Vo v2) = (¥3,12).V v, €V}, (13b)

Where y§, = y,(x) = yin(x,0) € V, € L2(Q)
is the projection of y?, w.r.t. the norm || . ||,
L0 v) = G0 = [yh =7, <

|v? — v, |0,Vvi €V,Vi=12

From (10-11) and (12-13), with setting
v, =v; ,l =1,2, the weak form can be writ-
ten as

Xe1 Cij(t) (vajva1) +

Z;'l=1 C1j [a1(t; V1j, V1i) + (bl (t)v1), v1i)] -
Z;'l=1 C2j (b(t)vzp Uli) = (fuv1) + (U, v1)r
&

Y og 60 (O (va),v25) +

i=1C2j [az (t: V2j V2j) + (bz(t)vzj: Vli)] +
X1 62j (b(O)v1,v27) = (fov25) +
(uz’vzj')r

The above equations are equivalent to the fol-

lowing linear system of 15¢ ordinary differen-
tial equations with its initial conditions, i.e.

A1C(t) + D, C1(t) — E;Co(t) = by
A1C1(0) = b{)
A,Co () + DG, (0) + ECi(t) = by

AZCZ(O) = bg

From assumptions (A), we can get easily
that the matrices A;&A, are positive definite
therefore system of 15¢ order differential equa-
tion has unique solution [11]

The convergence of the solution:
Let {V},} __ be a sequence of subspaces of V,

such that V¥ = (v, v,) € V, then usually

there exists a sequence {v,} with o, =

(V1) Vo) € Vi, ¥, and &, — © strongly in V

= ¥, — ¥ Strongly in (L? (Q))2

The approximation problem (12-13) with sub-

stituting v = v,, becomes.

(Vine> V1n) + a1 (& Yin Vin) + (b1(O)Y1n V1n)
— (b(O)Y2n, V1n) =

(fi, Vin) + Uy, V1)1, Yin € L2 V) ae.in |,

(15a)

(yfn' Vin) = (Y{J, V1),V V1 € V, VY (15b)

(t, Yan Van) + (b2(D)Y2n, V2n) +

(b(O)Y1n, Van) =

(f2, V2n) + (U2, V21, Yo € L2(1LV,) aeinl,

(16&) (ygn' UZn) = (yg; UZn)r V vy, €V, Vn

(16b)

Which has a sequence of solution {y,}m;,

where 5’)n = V1ns YZ_n) :
Also from Assumption (A) and the weak forms

(12a)-(13a) one can show that the norms
98], 17l 2y 1Pl and
||7n(t)||L2(1,V) are bounded. Then by Alaoglu
theorem [12], there exists a subsequence of
{Jn}nen, say again {yn}ney such that_
y, — ¥ Weakly in (LZ(Q))2 anoz "Tnlﬁf(}g)(vlj'vu)'
weakly in (L2(1,))”

Multiplying both sides of (15a) and (16a) by
@;(t) € C[0,T], such that ¢;(t) =0Vi=
1,2, integrating both sides w.r.t. t from 0 to T,

then using integrating by parts for the 1n“ terms
in each obtained equation, to get ~ 2j=1 C2;(£)(V2), v2i) -

- f0T<y1nt' vln)q),l(t)dt +
T
fo [ a‘l (tl yln; v]_n) + (bl (t)yln' vln) —_
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(bOY2n, V)01 (O)dt = [ (fr,y1) 01 (O)dt +

fOT(u1n3’1n)F§01(t)dt

+(ygnr V1n)(P1(0) (17)

&

- fOT<y2ntJ Van)@o(£)dt +

fOT[az (&, Yan, Vin) + (b2(O)Y2n, V2n) —
(b(®)Y1n, V2n) @2 (t)dt =

Jy (2 Y2m) 92 ()t + [ (uzy, y2n)rea (D)t +
(V2n V2n)92(0) , (18)

Since Vi =12, vy —v; strongly in L*(Q)
and in V then vy, @, — v;p;and vy,@; —
v;; strongly in L2(Q) and L2(I, V) respective-
ly, and since y;, — y; weakly in L2(Q), also
since yp, — y? strongly in L2(Q) Vi = 1,2,
th(;n , )

Jo Y1ne i) (O)dt + [ [ay(t, yin, v1n) +
(b1 (O)Y1n V1n) — (B(D)Y2n, V1n) @1 (D)dE —
f0T<y1t» v1)os (t)dt + foT[ a1 (t,y1,v1) +
(b1()y1,v1) — (b(D)y2, v1)]e1(8)dt, (199)
2 V1) 91(0) = (v1, v1)91(0), (19D)

Jy Yane V)02 (Dt + [T a2 (6,Y2n Vi) +
(b2(D)Y2n, V2n) — (B(O)Y1n, Van) @2 (D)d t —
[} 20 v2)05(Odt + [ [as (6, y5v1) +
(b2 (D)y2,v2) — (b(D)y1, v2) @2 (B)dt,
(V3 V2n)92(0) = (v2, v2)92(0) (20b)
fOT[(fp)’m) + Uy, yi)rlea (O)dt -

1) + v rles (D)t (19¢)
And

fOT[(fz»)’Zn) + (Uz,, Yon)r]@2(D)dt -

Iy [(f2v2) + (ua,, y2)rl @2 (D)dt (200)

From (19 a, b& c), (17) becomes

- fOT(Yw V1)@, (t)dt + fOT[Ch(t, Y1, v1) +
(b1 (Dy1,v1) —

(b(0)y2, v)]ps(B)dt = [ (f1, y1)e1()dt +
[T G y)re1 (D de + (72, v1)94(0) (21)
And from (20 a, b & ¢), (18) becomes

— [y V20 v2) @2 (Ot + [[[az(t,y2,v1) +
(b2 (D)y2,v2) + (b(D)yy1, v2) ], ()dt =
fOT(fo.VZ)q)Z (O)dt + fOT(usz’z)rfpz (Odt +
(yg' v,)92(0) (22)

(20a)
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Casel: Choose ¢; € D[0,T]with ¢;(0) =
@;(T) =0 in (21) and (22), and then using in-
tegrating by parts for each 15t term in the
L.H.S. of each equation

fOT(Yw v, (D)dt + fOT[ a,(t,y,v1) +

(b1 (D)y1,v1) — (b(D)y,, v1)]@.(D)dt =

Jy oy @: (Ode + [ (s, y)res (Ddt (23)
We get that y; is a solution for (8a) by the
same technique y, is solution for (9a).
Case2: Choose @; € C1[0,T], such
(pl(T) = 0, and (pl(O) * O,Vl = 1,2
The initial condition (8 b) is obtained through
using integrating by part in equation (23) and
subtracting the obtained equation from equa-
tion (21).

And by the same technique gives the initial
condition (9 b) holds

The strong convergence for y,, :

By substituting v; = y; and v; = y;, in (8a)
and (12a) respectively and also substituting
v, =y, and v, = y,, in (9a) and (13a) respec-
tively, integrating these four equations from 0
to T, finally adding the equations which is ob-
tained from (8a) with that obtained from (12a)
to gather and the same happened for (9a)-(13a),
to get

Jy G = Fne F = Fa) At + [ (6,5 = T 7 -
Vo) dt =

foT(fp}ﬁ — Y1n)dt + fOT(u1HJ’1_Y1n)th +
foT(fZ:YZ — Yan)dt + fOT(uz; ) Y2=Yan)rdt
=y, — y Strongly in (L2, V))2 :

that

Uniqueness of the Solution :

Let (v, y,) and (9, ¥,) be two solutions for
(8-9). Substituting once y, in (8a) and y;once
again then subtracting each equation from the
other, then substituting v; = y; — y;, to get .
(1 = 9)ey1 =)+ a6, y1 — 91,91 —

1) + (b1 (Oy1 = I, y1 — 1) — (b(®)y, —
V2,y1 —¥1) = 0(24)

By the same way which can used in above
steps, one have that

(V2 =)0 y2 — V) + ax(t, Y2 — V2,2 —
92) + (b, (Dy2 — 92,¥2 — 92) — (b(D)y, —
91, Y2 — ¥2) = 0(25)

Adding (24) and (25) and, then using Lemma
1.2 in [12]. In the 15tand2™¢ terms and using
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Assumption (A-ii) for the 3"%and4", one ob-
tains that

= 124l5 -3, +ally - 3Il; =0 26)
Using that the fact the 2™¢ term of the L.H.S.
of (26) is positive, then integrating both sides
of (26) from 0 to T, using Bellman- Gronwall
inequality in [11] to get ¥ = y
Lemma (1):
a-Consider all the hypotheses in (A) are hold,
and y and y + Kf/ are the states corresponding
to the controls % and % + Au respectively
where % and Au are bounded in L2(Z) x L2(X),
then

”A_y)”Lw( LZ(Q)) = K”A—)u”z;
187 2, < KIBull,

”Ay”LZ(I,V) = K”Aullz
b-The operator u ~ y; from (L2(Z))% into
(L*(1,12())? or in to (L*(1,V))? or into
(L?(Q))? is continuous.
Proof:
a-Letl = (ug, up), & = (i1, 0,) € L2(X), Au =
i — 7 then hence by theorem(3.1), there exists
a solutions y = (y,,y,) and 37/ = (9,,9,) of
(8-9) (corresponding to the boundary controls
#and @
(D16, v1) + a1 (t, 91, v1) + (b1 ()1, v1) —
(b()P2,v1) = (f1,v1) + (ug + Auy, vy)r (27a)
8(371(0);171) = (y{)' v;) (27b)
(D26, V2) + ax(t, 92, v3) + (b2 (D)2, v2) +
(b(D)P1,v2) = (f2,v2) + (uz + Auy, v,)r(28a)
(52(0),v;) = (y3,v,) (28b)
By subtracting (8a&b) from (27a&b), and
(9a&b) from (28a&Db), then settingAy, = y; —
Y1, Ay, =9, —y,, In each one of obtained
equations to get.
(Ayy1e,v1) + a1 (¢, Ay, v1) + (b1 (D)Ayy,v1) —
(g(t)A}’z: v1) = (Auy,vy)r (30)
(Ayze , v2) + ay(t, Ay, v2) + (b (t)Ay,, ;) +
(b(t)Ayy,v2)=(Auy, vy)r (29)
Substituting v; = Ay, and v, = Ay, in (29)
and (30) respectively, using Lemma 1.2 in

[12]. For the 15¢ terms in the L.H.S. of each
one of the above obtained equation, then add-
ing the resulting equations to get

= %EHAJ’” +“”AJ’” = (Auy, Ay,) +
(Auy, Ay,) (31)
Since the 2% term of (31) is positive, then (31)

become

., dtIIAyII < (Bug, Ayy) + (Auy, Ay,)
Integrating both sides for ¢ from O to t, then
for the R.H.S we use the Cuschy Schwarz ine-
quality and the trace theorem ,and finally using
Bellman- Gronwall inequality in [11]to get,

185 ) < K18,
Then easily, one can get

18y [l 2y, < KllAu | And][Ay |
K|lau]

b-Let Au =1, —u, and Ay =y, — y, where
y,and y, are the correspond states to the con-
trols 2;and ,, then using part (a) of this theo-
rem, to get that

”5}1 - }72||L°°(1,L2(Q.)) < K”ﬁl - ﬁZ ”2

Which means the operator 1 +— y is Lipschitz
continuous from (L2(2))? in
to( L”(1,L2(Q)))? .The other result are ob-
tained easily

Lemma (2): The cost function (7) is weakly
lower semi continuous [13]

Theorem (2)

The cost function (7) has a classical boundary
optimal control if it is coercive.

Proof:

Since G, () is non-negative and coercive, then
there exists a minimizing sequence {u;} =
{(uyp, uzp )} € WA,Vk such that
lim,,_, o Go(Uy) = infp g Go(ﬁ),
c,Vk.

By the Alaoglu theorem there exists a subse-
quence of {u,} say again {u,} such that
), — u weakly in(L? (Z))2

Then there exist a sequence of solution {y;},
corresponding to the sequence of the control
{u,} and the norms

195l 12 on) 192 a2 e

L2(1, V) -

2|l <
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bounded, then by the Alaoglu theorem there
exist a subsequence of of {y,} say again {y,},

such that y, — y Weakly in(L°°(1, LZ(Q)))Z,
(12(Q))* and in (L2(1,V))’

The weak forms of the state equations (12a) &
(13a) can be rewritten as
(Vike V1) = —a1 (6, Y1 V1) — (b1 (O) Y1k V1)
+ (b(O)y2k,v1) + (f1, V1)
+ (uli vl)l"
&
(Yot V2) = —a2(6, Yan v2) — (b2(D)Y2n v2)
—(b(®)y1n, v2) + (f2,v2) + (U, v2)r
By adding the above equality and integrating
both sides of the obtained equation w.r.t. t from
0 to T, taking the absolute value, using Cauchy
Schwartz inequality, and finally using assump-
tions (A-iii), one obtain

| G ¥t = | = [ c (&5, 7) dt +
[y oo yDde + [ (uy,, y)rdt +

[y (fory2)dt + [ (ua,, y,)r 1dt]
<|fy c(t3e8)de| + |f (R v)ae| +
|f0T(u1’ V1)dt| + |f0T(f2:V2) dt| +

|y u, v2) de| = Fiellizgpmy < by

VYVt EV* X V*, where h, =0

Since for each k, y;, and y,; are solutions of
the state equations, then

(Vike: V1) + a1 (6, Y1k v1) + (b1 (D) Y1k, V1) —
gj(t)yzmvﬂ = (fu,v1) + (uk, v1)r (32)

(Vo V2) + a2 (8, Yar, v2) + (b2 ()Y, v2) +
(b(®)y11v2) = (f2,V2) + (Ugk, v2)r (33)

Let ¢; € C1[0,T], such thate;(T) =0,Vi =
1,2. Rewriting the 15t terms in the L.H.S. of
(32) & (33), multiplying both sides of them by
@,(t) and @, (t) respectively, and integrating
for both sides for t From 0 to, finally using in-
tegration by parts for the 15¢ terms in the
L.H.S. of each one of the above obtained equa-
tions, using the converges y, — y weakly in
(12(Q)) and 5, — 7 weakly in(L2(,V))’
to get

~ Jo O v (Odt + [ Tas (6, yipve) +
(b1 (D Y1k, v1) — (B(O) Y2k, V)1 (D)dE -

— s O1vD)@1 (Ot + [ [az(t,y1,v) +

(b2 (t)y1,v1) — (b(V)y2, v1) |1 (D) dt (34a)
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&

— Jy G2 v2) @2 (0t + f) [az(t, Yo v1) +
(sz(t)YZk, vz)l - (b(t))ﬁ?lg» v)]pa(t)dt -
— Jy 02 v2) @ (O)dt + [ [az(t, yz,v1) +

(b2 (1) y2, v2) — (b(D)y1, v2)]@2 (t)dt (353)
Since v1,(0),y,,(0) are bounded in L?(()
and from the Projection theorem, one has

gfkrvl)fpl(o) - (}’f'v1)<P1(0) (34b)

Vi v2)92(0) = (y3, ;) 9,(0) (35b)
Since i, — 1 weakly in (L2(£))”, then
Jy (oo v)dt + [ (i, vy)rdt -

[y (o w)dt + J) (uy,, v1)rdt (34c)
&
Jy (oo v2)dt + f, (e, v5)rdt -

fOT(fZ' ’ vz)dt + fOT(uZJ ’ vZ)th (350)
Finally, from the converges (34a, b& c) and
(35a, b& c), one get that
- fOT(yp v1) o, (t)dt + foT[ a,(t, y1,v1) +
(b1 (Dy1,v1) — .

(b()y2, v)]@1(B)dt = [ (f1, y1) e ()dt +
[y @y, y)r@a (Bt + (2, v1)01(0) (36)

&

— Jy 02, v)02(Ddt + [ [az(t,y2,v1) +
(b2 (D)y2,v2) — .

(b(O)y1, vl (B)dt = [ (f2, y2)p2(t)dt +
(120, 7,)95(0) + [ (u, y2)rep2(£)dt (37)
Now, one has the following two cases:

Case 1: Choose ¢; € D[0,T],i.e. ;(0) =
@;(T)=0,vi=1,2

Now, integration by parts for the 15¢ terms in
the L.H.S. of (36) and (37), once get

fOT(}’m V1)1 (8)dt + fOT[ a1 (t, y1,v1) +

(b1 (t)y1,v1) —

(b)Y v)]e1(Odt = [ (f1, )@, ()dt +
[ (un yDre: (Ddt v, €V, (38) &
fOT(th' V)2 (t)dt + fOT[ ay(t,y2,v2) +
(b2()y2, v2) +

(b1, v)]0:(Odt = [J (o, y)92(D)dt +
[ (U, y2)r2 (6)dt (39)

Case 2: Chooseg; € C*[I], such that ¢;(T) =
0 &¢;(0) = 0,Vi = 1,2
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Integrating by parts for the 15¢ terms in the
LHS. of (38) and (39), one has
2, v1)91(0) = (3,(0), v1)1(0), 9, (0) #
OV, € Cl[O,T]

= ¥ = y,(0) = y? (%)

&

()’g» v2)92(0) = (y2(0),v2)9,(0), 9, (0) #
0V @, € C0,T]

= y3 = y,(0) =y (x)

Then y, = y,1 & y, = y,» are the solutions of
the state equations (from case 1& case2)

Since G,(u) is W.L.S.C,, i.e.

GO (‘lj) < limk_)oo infﬁkEWA GO ('l_l,)k)

= GO ('l_i) - infﬁeVT/’A GO (lzl))
=~ U is a continuous classical boundary optimal
control .
Theorem (3):
Consider the cost function (7), and the follow-
ing adjoins equations (zq,2;) = (Zy1, Zu2) (
where (y1,¥2) = (Yu1, Yuz))of the state equa-
tions (1-6) are given by

d ]
21 = Eljm15, (@ (6 0 32 + bi(x, 071 +
b(x,t)z; = ()’16— Y1a), In %(40)

V4

—Zyt — ZZj:l 9% (bij(x, 1) a_xj) + by(x,t)z; —
b(x,t)z; = (y2 — y24) ,0nQ (41)
z,(x,T) = 0 onQd (42)
9z 0,0n X (43)

an

2,(x,T) = 0 on Q (44) 22 = 0,0n% (45)

Then for (uq,uy) € WA, the Frechet deriva-
tive of G, is given by

(Go(w), b)) = (Z + i, M)

Proof :

So as in the state equation (1-6) the weak form
of the adjoint equations is:

—(214, V1) + a1 (¢, 21, V1) + (b1 (t)Z1, V1) —
g:(t)zz’ V1) = (V1 — Y1a, V1), V1 € V (46)
—(2Z2¢, V2) + a5(L, 25, V) + (b2 ()2, v7) +
(b(t)z1,v2) = (Y2 — Y2a,V2), YV, €V (47)
Now, substituting v; = z;and v, = z, in (29)
and (30) respectively, yield

(Ay1e, z1) + a1 (L, Ayy, 1) + (b1 (£)Ay1, 21) —
gj(t)AYZ;Zl) = (A, z,) (48)

(Ayar, 22) + ax(t, Ay,, z) + (b2(0)Ay,, 2,) +
(b(t)AYLZz) = (AuZ'ZZ) (49)

Also, substituting v; = Ay, and v, = Ay, in
(46) and (47) respectively, one get

—(z1, Ay1) + a4 (t, 21, Ay,) +

(b1(t)z1,Ay1) + (b(t)zp, Ay,) =

gﬁ — Y14, Ay1) (50)

—(Z2t, Ay,) + ay(t, 2, Ay,) +

(b2(t)z3,Ay,) — (b(t)z1,Ay,) =

(V2 — ¥2a,4y2) (51)

Now, integrating both sides of (48-51), for t

from 0 to T, using integration by parts for the
15tterms of the L.H.S. of each obtained equa-
tions, to get

foT (Ay1p, z1)dt + fOT[a1(t; Ays,z1) +
(21(t)AY1:Z1) — (b(D)Ay,, z,)]dt =

Jy (Buy,zy)dt, (52)

foT (Ayye, z)dt + fOT[ az(t,Ay,, z;) +
(I;Z(t)AYLZz) + (b(t)Ayy, z5)]dt =

Jy (Buy,z;)dt, (53)

fOT(AYw zy)dt + fOT[ a,(t, 21, Ay,) +
(21(t)z1,A3’1) + (b(t)z,, Ay,)]dt =

fo (Y1 — Y10, Ay1)dt , (54)

foT(Ath' z) dt + fOT[az (t, z2, Ay,) +
(l;z(t)ZZ,AYZ) — (b(t)z,,Ay,)]dt =

Jo @2 = 24, Ay2)dt (55)

And

By subtracting (52) and (53) from (54) and (55)

respectively and by adding the two resulting
equations, yields
T T

- fO (Aul,Zl)dt - fO (AuZ,Zz)dt =

T T
Jo @1 = y1a,8y1)dt + [ (V2 = ¥2a, Ayz)dt
(56)
y1 + Ay, y, + Ay, are the corresponding solu-

tions of the control u; + Au, andu, + Au,,
then

Go(l7 + H) — Go(W) =3Iy, — Y1d”é +

foT fQ (y1 — Y1) Ay dxdt + 2| Ay, |5 +

MNyz = v2ally + fOT Jo 2 = y20)Ay,dxdt +
Ny 113 + EllugliZ + f, [ fuy Auydxdt +
BT [(Auy)? dxdt + Ellu,lIE +
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[ [ Bua buy dxdt + £ [ [ (Au,)? dxdt —
%”}’1 - Y1d”é - %”3’2 - J’Zd”é - §IIu1II§ -
Pl 11
Go(ﬁ + Au) - Go(ﬂ) = (Aul, Zl) +
B (uy, Auy) + (Auy, z) + F(uy, Auy) +
M Throne 2 Bl 2
llayll, + Zllaw]l;
w Go(U + Du) — Go(@) = (Z+ B, bu ) +
— 2 — 2
218y [, + Sllaw ]l 57)
Ay, < kllawf], & >0
(Go(w),Au) = (7 + B, Au)
Theorem (4):
The classical boundary optimal control of the
above problem is G,(i) = Z+ Bu = 0 with
y=ygandZ = Zy .
Proof:
If 1 is an boudary optimal control of the prob-
lem
Go(@) = minggy, Go(@), Vi € (1*(D))’, ie.
Go(W) =0

_z,
. ~ B

Au =w —u = The necessary optimality is
(Go(@),Au) = 0

= (Z+ Bu,Au) =0

> (Z+ pu,3) < (Z + p,w), vw € (I2(D))°

Conclusion

The Galerkin method is suitable to prove the
existence of a unique solution of a couple of
linear parabolic partial differential when the
continuous boundary control vector is fixed.
The existence theorem of a continuous classical
boundary optimal control vector governing by
the considered couple of linear partial differen-
tial equations of parabolic type is developed
and proved. The existence and uniqueness so-
lution of the couple of adjoint equations asso-
ciated with the considered couple equations of
the state are studied through derivation the Fré-
chet derivative. The necessary conditions theo-
rem for optimality of the problem is developed
and proved.
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