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In this paper the continuous classical boundary optimal problem of a couple linear partial dif-

ferential equations of parabolic type is studied, The Galerkin method is used to prove the ex-

istence and uniqueness theorem of the state vector solution of a couple linear parabolic partial 

differential equations for given (fixed) continuous classical boundary control vector. The 

proof of the existence theorem of a continuous classical optimal boundary control vector asso-

ciated with the couple linear parabolic is given. The Frechet derivative is derived; finally we 

give a proof of the necessary conditions for optimality (boundary control) of the above prob-

lem. 

Keywords: boundary optimal control, couple linear parabolic partial differential equations. 

خلاصـةال  
في هذا البحث تمت دراسة المسالة التقليدية المباشرة للسيطرة الامثلية الحدودية لزوج من المعادلات التفاضلية الجزئية 

لبرهان مبرهنة وجود ووحدانية الحل لمتجه الحالة لزوج من  الخطية من النوع المكافئ .استخدمت طريقة كاليركن

كذالك تم برهان مبرهنة . المعادلات التفاضلية الجزئية الخطية من النوع المكافئ عندما يكون متجه السيطرة الحدودية ثابتا

الخطية من النوع المكافئ الحدودية المصاحبة الحدودية لزوج من المعادلات التفاضليةالجزئية  وجود متجه السيطرة امثلية

  .تم اشتقاق مشتقة فرشيه وكذالك تم برهان مبرهنة الشروط الضرورية لوجود سيطرة امثلية حدودية.

 

 

Introduction 
Control theory is a mathematical study of in-

fluence the behavior of dynamical system to 

achieve a desired goal. The subject of the op-

timal control theory developed in the latter half 

of 20
th

 century in response to diverse applied 

problem [1].  

Control theory is an application-oriented math-

ematics that deals with the basic principles un-

derlying the analysis and design of (control) 

system. Systems can be engineering (air condi-

tioner, air craft, and CD player etcetera), eco-

nomic, and biological [2].  

In general there are many optimal control prob-

lems, usually are governed either by ODEs as 

in [3] or by different type PDEs and are subject 

to control and state constraints, in 2010 [4], and 

in 2015 [5] studied an optimal control of para-

bolic partial differential equations,. in 2014[6] 

studied an optimal control of hyperbolic partial 

differential equations, in 2012 [7] studied an 

optimal control of elliptic partial differential 

equations, in 2014 [8] studied an optimal con-

trol of a coupled of nonlinear elliptic partial 

differential equations and in 2016 [9] studied 

optimal control of a coupled of nonlinear para-

bolic partial differential equations while, in 

2016 [10] studied an optimal control of a cou-

pled of nonlinear hyperbolic partial differential 

equations. 

In this paper, the existence and uniqueness the-

orem of the state vector solution of couple line-

ar parabolic partial differential equations for 

given (fixed) continuous classical boundary 

control vector is studied, the existence theorem 

of a continuous classical boundary optimal 

control vector associated with a couple linear 

partial differential equations of parabolic type 

is developed and proved, also the derivation of 

the Frechet derivative is done, the existence 

and uniqueness of the solution of the adjoint 
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equations which corresponds to the state vector 

is studied. Finally the necessary conditions for 

optimality of the above considered problem is 

developed and proved.  

Description of the problem:  
Let 𝐼 = (0, 𝑇), 𝑇 < ∞ and Ω ⊂ ℝ2 be an open 

and bounded region with Lipschitz boundary 

Γ = 𝜕𝛺, 𝑄 = Ω × 𝐼, Σ = Γ × 𝐼. Consider the 

following continuous classical boundary opti-

mal control problem: 

The state equation is given by the following 

linear parabolic equations with the initial and 

boundary conditions: 

𝑦1𝑡 − ∑
𝜕

𝜕𝑥𝑖
(𝑎𝑖𝑗(𝑥, 𝑡)

𝜕𝑦1

𝜕𝑥𝑗

𝑛
𝑖,𝑗=1 ) + 𝑏1(𝑥, 𝑡)𝑦1 −

𝑏(𝑥, 𝑡)𝑦2 = 𝑓1(𝑥, 𝑡) (1)  

𝑦2𝑡 − ∑
𝜕

𝜕𝑥𝑖
(𝑏𝑖𝑗(𝑥, 𝑡)

𝜕𝑦2

𝜕𝑥𝑗

𝑛
𝑖,𝑗=1 ) + 𝑏2(𝑥, 𝑡)𝑦2 +

𝑏(𝑥, 𝑡)𝑦1 = 𝑓2(𝑥, 𝑡) (2)  

∑ 𝑎𝑖𝑗
𝑛
𝑖𝑗

𝜕𝑦1

𝜕𝑛
= 𝑢1(𝑥, 𝑡),onΣ (3)  

𝑦1(𝑥, 0) = 𝑦1
0(𝑥) ,onΩ (4) 

∑ 𝑏𝑖𝑗
𝜕𝑦2

𝜕𝑛

𝑛
𝑖𝑗=1 = 𝑢2(𝑥, 𝑡),onΣ (5)  

𝑦2(𝑥, 0) = 𝑦2
0(𝑥),onΩ (6)  

Where (𝑦1, 𝑦2) = (𝑦1(x), 𝑦2(x)) ∈ (𝐻1(Ω))
2
 

is the state vector, (𝑢1, 𝑢2) = (𝑢1(x), 𝑢2(x)) ∈

(𝐿2(Σ))
2
 is the classical boundary control vec-

tor and (𝑓1, 𝑓2) = (𝑓1(x), 𝑓2(x)) ∈ (𝐿2(Q))
2
 is 

a vector of a given functions, for all 𝑥 = 

(𝑥1, 𝑥2) ∈ Ω .since 𝑎𝑖𝑗 ,𝑏𝑖𝑗 ,𝑏(𝑥, 𝑡) and 𝑏𝑖(𝑥, 𝑡) 

∈ 𝐶∞(𝑄) Let �⃗⃗⃗� 
𝐴 be the set of admissible clas-

sical controls, where  

�⃗⃗⃗� 
𝐴= {�⃗� ∈ (𝐿2(Σ))

2
�⃗� ⁄ ∈ 𝑈1 × 𝑈2 ⊂

𝑅2 a. e. in Ω}  

 While 𝐺0(�⃗� ) be the cost function, such that 

𝑀𝑖𝑛. 𝐺0 (�⃗� ) = 1

2
 ‖𝑦 ⃗⃗ − 𝑦𝑑⃗⃗⃗⃗ ‖𝑄 

2 + 𝛽

2
‖𝑢 ⃗⃗⃗  ‖Σ

2, �⃗� ∈ 𝑊𝐴
⃗⃗ ⃗⃗  ⃗ 

(7)  
Where 𝛽is a positive real number,(𝑦1𝑑 , 𝑦2𝑑)is 

the desired data and (𝑦1, 𝑦2) = (𝑦𝑢1, 𝑦𝑢2)is the 

solution of (1-6) corresponding to the boundary 

control vector �⃗� . 

 Let �⃗� = 𝑉1 × 𝑉2 = 𝐻 
1(Ω) × 𝐻 

1(Ω) and 

(𝑣1, 𝑣2) = (𝑣1(x), 𝑣2(x)) 

We denoted (𝑣, 𝑣)1 and ‖𝑣‖1 the inner product 

and the norm in 𝐻1(Ω), by (𝑣 , 𝑣 ) and ‖𝑣 ‖0 the 

inner product and the norm in (𝐿2(Ω))2 by 

(𝑣 , 𝑣 )1 = (𝑣1, 𝑣1)1 + (𝑣2, 𝑣2)1 and ‖𝑣 ‖1 =
‖𝑣1‖1 + ‖𝑣2‖1 the inner product and the norm 

in �⃗�  and �⃗� ∗ ( is the dual of �⃗�  ).  
  
Weak Formulation of the State Equations:  

The weak forms (1-6) is obtained through mul-

tiplying both sides of equations (1 & 4) and (2 

&6) by 𝑣1 ∈ 𝑉 and 𝑣2 ∈ 𝑉 respectively, then 

taking the integral for both sides and finally 

using the generalize Green theorem in Hilbert 

space for the term which have the 2𝑛𝑑  deriva-

tives in the L.H.S. of the obtained equations 

from (1&2), to get ∀𝑣1, 𝑣2 ∈ 𝑉  

 〈𝑦1𝑡, 𝑣1〉 + 𝑎1(𝑡, 𝑦1, 𝑣1) + (𝑏1(𝑡)𝑦1, 𝑣1) −
(𝑏(𝑡)𝑦2, 𝑣1) = (𝑓1, 𝑣1) + (𝑢1, 𝑣1)Γ (8a)  

(𝑦1
0, 𝑣1) = (𝑦1(0), 𝑣1) (8b)  

and 

〈𝑦2𝑡, 𝑣2〉 + 𝑎2(𝑡, 𝑦2, 𝑣2) + (𝑏2(𝑡)𝑦2, 𝑣2) +
(𝑏(𝑡)𝑦1, 𝑣2) = (𝑓2, 𝑣2) + (𝑢2, 𝑣2)Γ, (9a)  

(𝑦2
0, 𝑣2) = (𝑦2(0), 𝑣2), (9b)  

Where 

𝑎1(𝑡, 𝑦1, 𝑣1) =

∫ ∑ 𝑎𝑖𝑗
𝜕𝑦1

𝜕𝑥𝑖

𝑛
𝑖,𝑗=1

𝜕𝑣1

𝜕𝑥𝑗
𝑑𝑥 

 

Ω
, 𝑎2(𝑡, 𝑦2, 𝑣2) =

∫ ∑ 𝑏𝑖𝑗
𝜕𝑦2

𝜕𝑥𝑖

𝑛
𝑖,𝑗=1

𝜕𝑣2

𝜕𝑥𝑗
𝑑𝑥 

 

Ω
  

To study the existence of unique solution of the 

weak form (8-9), we consider the following  
 

Assumptions (A): 

i) 𝑓𝑖 Satisfies the following condition w.r.t. 𝑥 

&𝑡, i.e.  
|𝑓𝑖(𝑥, 𝑡)| ≤ 𝜆𝑖(𝑥, 𝑡), ∀𝑖 = 1,2, where (𝑥, 𝑡) ∈
𝑄, 𝜆𝑖 ∈ 𝐿2(𝑄, 𝑅) 

ii)|𝑎𝑖(𝑡, 𝑦𝑖 , 𝑣𝑖)| ≤
𝛼𝑖‖𝑦𝑖‖1‖𝑣𝑖‖1, |(𝑏𝑖(𝑡)𝑦𝑖, 𝑣𝑖)| ≤
𝛽𝑖‖𝑦𝑖‖0‖𝑣𝑖‖0 ∀ 𝑖 = 1,2 

 𝑎𝑖(𝑡, 𝑦𝑖, 𝑦𝑖) ≥ 𝛼�̅�‖𝑦𝑖‖1
2
, ∀ 𝑖 = 1,2 

 (𝑏𝑖(𝑡)𝑦𝑖, 𝑦𝑖) ≥ 𝜁𝑖‖𝑦𝑖‖0
2
, ∀ 𝑖 = 1,2, where 

𝛼𝑖, 𝛽𝑖, 𝛼�̅�&𝜁𝑖 are positive constants ∀ 𝑖 = 1,2 

iii) 𝑐(𝑡, 𝑦 , 𝑦 ) =  𝑎1(𝑡, 𝑦1, 𝑣1) + (𝑏1(𝑡)𝑦1, 𝑦1) +
𝑎2(𝑡, 𝑦2, 𝑦2) + (𝑏1(𝑡)𝑦2, 𝑦2), and 

|𝑐(𝑡, 𝑦 , 𝑣 )| ≤ 𝛼‖𝑦 ‖1‖𝑣 ‖1, (𝑡, 𝑦 , 𝑦 ) ≥ �̅� ‖𝑦 ‖1
2
, 

where 𝛼, �̅� are real positive constants. 

  
Theorem (1) :( Existence and Uniqueness So-

lution of the State Equations) 

 With assumptions (A), for each fixed boundary 

control �⃗� ∈ (𝐿2(Σ))
2
, the weak form of the 

state equations (8-9) has a unique solution 𝑦 =
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tion 𝑦 = (𝑦1, 𝑦2) s.t. 𝑦 ∈ (𝐿2(𝐼, 𝑉))
2
, 𝑦 𝑡 =

(𝑦1𝑡, 𝑦2𝑡) ∈ (𝐿2(𝐼, 𝑉∗))
2
  

Proof:  

Let �⃗� 𝑛 ⊂ �⃗�  be the set of continuous and piece-

wise affine functions in Ω, let {𝑣 1, 𝑣 2, … , 𝑣 𝑛} be 

basis of �⃗� 𝑛 where 𝑛 = 2𝑁, then the approxi-

mate solution 𝑦  of (8-9) is approximated by 

𝑦 𝑛 = (𝑦1𝑛, 𝑦2𝑛), ∀𝑛 s.t  

𝑦 𝑛 = ∑ 𝐶𝑗
𝑁
𝑗=1 (𝑡)�⃗� 𝑗(𝑥) (10)  

Where �⃗� 𝑗 = ((2 − 𝑙)𝑣𝑘, (𝑙 − 1)𝑣𝑘) (11),  

For = 1,…𝑁, 𝑙 = 1,2 ,𝐶𝑗 = 𝑐𝑙𝑗 , 𝑗 = 1,…𝑛 

,𝑙 = 1, 𝑗 = 𝑛 + 1,… ,𝑁, 𝑗 = 𝑘 + 𝑛(𝑙 − 1), 𝑙 =
1,2 and 𝑐𝑖𝑗(𝑡) is unknown function of t 

,∀ 𝑗 = 1,2, … 𝑛 

The weak forms of the state equations (8) and 

(9) can be approximated w.r.t the space varia-

ble, using the Galerkin’s method to get: 

〈𝑦1𝑛𝑡, 𝑣1 〉 + 𝑎1(𝑡, 𝑦1𝑛, 𝑣1) + (𝑏1(𝑡)𝑦1𝑛, 𝑣1) −
(𝑏(𝑡)𝑦2𝑛, 𝑣1) = (𝑓1, 𝑣1) + (𝑢1, 𝑣1)Γ (12a)  

(𝑦1𝑛
0 , 𝑣1) = (𝑦1

0, 𝑣1), ∀ 𝑣1  ∈ 𝑉𝑛 (12b)  

&  

 〈𝑦2𝑛𝑡, 𝑣2〉 + 𝑎2(𝑡, 𝑦2𝑛 , 𝑣2) + (𝑏2(𝑡)𝑦2𝑛, 𝑣2) +
(𝑏(𝑡)𝑦1𝑛, 𝑣2) = (𝑓2, 𝑣2) + (𝑢2, 𝑣2)Γ (13a)  

(𝑦2𝑛
0 , 𝑣2) = (𝑦2

0, 𝑣2),∀ 𝑣2  ∈ 𝑉𝑛 (13b)  

Where 𝑦𝑖𝑛
0 = 𝑦𝑖𝑛

0 (𝑥) = 𝑦𝑖𝑛(𝑥, 0) ∈ 𝑉𝑛 ⊂ 𝐿2(Ω) 

is the projection of 𝑦𝑖
0, w.r.t. the norm ‖ . ‖0  

i.e(𝑦𝑖𝑛
0 , 𝑣𝑖) = (𝑦𝑖

0, 𝑣𝑖)  ⟺ ‖𝑦𝑖𝑛
0 − 𝑦𝑖

0‖
0
≤

‖𝑦𝑖
0 − 𝑣𝑖‖0

, ∀𝑣𝑖 ∈ 𝑉𝑛, ∀𝑖 = 1,2 

From (10-11) and (12-13), with setting 

𝑣𝑙 = 𝑣𝑙𝑖  ,𝑙 = 1, 2, the weak form can be writ-

ten as 

 

∑ 𝑐1𝑗
´ (𝑡)(𝑣1𝑗 , 𝑣1𝑖)

𝑛
 𝑗=1 +

∑ 𝑐1𝑗[𝑎1(𝑡, 𝑣1𝑗 , 𝑣1𝑖) + (𝑏1(𝑡)𝑣1𝑗, 𝑣1𝑖)]
𝑛
𝑗=1 −  

 ∑ 𝑐2𝑗
𝑛
𝑗=1 (𝑏(𝑡)𝑣2𝑗 , 𝑣1𝑖) = (𝑓1, 𝑣1𝑖) + (𝑢1, 𝑣1𝑖)Γ  ∑ 𝑐1𝑗(0)(𝑣1𝑗 , 𝑣1𝑖) = (𝑦1

0, 𝑣1𝑖), ∀𝑣1𝑖 ∈ 𝑉𝑛
𝑛
𝑗=1 , ∀𝑖 = 1,2, … , 𝑛.  

& 

 

∑ 𝑐2𝑗
´ (𝑡)(𝑣2𝑗 , 𝑣2𝑗)

𝑛
 𝑗=1 +

∑ 𝑐2𝑗[𝑎2(𝑡, 𝑣2𝑗 , 𝑣2𝑗) + (𝑏2(𝑡)𝑣2𝑗 , 𝑣1𝑖)]
𝑛
𝑗=1 +  

 ∑ 𝑐2𝑗
𝑛
𝑗=1 (𝑏(𝑡)𝑣1𝑗 , 𝑣2𝑗) = (𝑓2, 𝑣2𝑗) +

(𝑢2, 𝑣2𝑗)Γ   ∑ 𝑐2𝑗
´ (𝑡)(𝑣2𝑗 , 𝑣2𝑖)

𝑛
𝑗=1 + ∑ 𝑐2𝑗[𝑎2(𝑡, 𝑣2𝑗 , 𝑣2𝑖) + (𝑏2(𝑡)𝑣2𝑗 , 𝑣2𝑖)]

𝑛
𝑗=1 + ∑ 𝑐1𝑗

𝑛
𝑗=1 (𝑏(𝑡)𝑣1𝑗 , 𝑣2𝑖) = (𝑓2, 𝑣2𝑖) + (𝑢2, 𝑣2𝑖)Γ  ∑ 𝑐2𝑗(0)(𝑣2𝑗, 𝑣2𝑖) = (𝑦2

0, 𝑣2𝑖)
𝑛
𝑗=1 , ∀𝑣2𝑖 ∈ 𝑉𝑛 and ∀𝑖 = 1,2, … , 𝑛 

The above equations are equivalent to the fol-

lowing linear system of 1𝑠𝑡 ordinary differen-

tial equations with its initial conditions, i.e. 

 𝐴1𝐶1
´(𝑡) + 𝐷1𝐶1(𝑡) − 𝐸1𝐶2(𝑡)  = 𝑏1   

 𝐴1𝐶1(0) = 𝑏1
0  

 𝐴2𝐶2
´ (𝑡) + 𝐷2𝐶2(𝑡) + 𝐸2𝐶1(𝑡)  = 𝑏2   

 𝐴2𝐶2(0) = 𝑏2
0  

From assumptions (A), we can get easily 

that the matrices 𝐴1&𝐴2 are positive definite 

therefore system of 1𝑠𝑡 order differential equa-

tion has unique solution [11] 
 

The convergence of the solution:  

Let {�⃗� 𝑛}𝑛=1

∞
 be a sequence of subspaces of �⃗� , 

such that ∀ 𝑣 = (𝑣1, 𝑣2) ∈  �⃗� , then usually 

there exists a sequence {𝑣 𝑛} with 𝑣 𝑛 =

(𝑣1𝑛, 𝑣2𝑛) ∈ �⃗� 𝑛, ∀𝑛, and 𝑣 𝑛 ⟶ 𝑣  strongly in �⃗�   

 ⇒ 𝑣 𝑛  ⟶ 𝑣  Strongly in (𝐿2(Ω))
2
  

The approximation problem (12-13) with sub-

stituting 𝑣 = 𝑣 𝑛 becomes.  

〈𝑦1𝑛𝑡, 𝑣1𝑛〉 + 𝑎1(𝑡, 𝑦1𝑛, 𝑣1𝑛) + (𝑏1(𝑡)𝑦1𝑛, 𝑣1𝑛)
− (𝑏(𝑡)𝑦2𝑛, 𝑣1𝑛) =  

 (𝑓1, 𝑣1𝑛) + (𝑢1, 𝑣1𝑛)Γ, 𝑦1𝑛 ∈ 𝐿2(𝐼, 𝑉𝑛) a.e. in I, 

(15a)  

(𝑦1𝑛
0 , 𝑣1𝑛) = (𝑦1

0, 𝑣1𝑛), ∀ 𝑣1𝑛  ∈ 𝑉𝑛, ∀𝑛 (15b) 

(𝑡, 𝑦2𝑛, 𝑣2𝑛) + (𝑏2(𝑡)𝑦2𝑛, 𝑣2𝑛) +
(𝑏(𝑡)𝑦1𝑛, 𝑣2𝑛) =  

 (𝑓2, 𝑣2𝑛) + (𝑢2, 𝑣2𝑛)Γ, 𝑦2𝑛 ∈ 𝐿2(𝐼, 𝑉𝑛) a.e.inI, 

(16a) (𝑦2𝑛
0 , 𝑣2𝑛) = (𝑦2

0, 𝑣2𝑛), ∀ 𝑣2𝑛  ∈ 𝑉𝑛, ∀𝑛 

(16b)  

Which has a sequence of solution {𝑦 𝑛}𝑛=1
∞ , 

where 𝑦 𝑛 = (𝑦1𝑛, 𝑦2𝑛) . 

Also from Assumption (A) and the weak forms 

(12a)-(13a) one can show that the norms 

‖𝒚𝒏
𝟎⃗⃗ ⃗⃗ ‖

𝟎
, ‖�⃗⃗� 𝒏(𝒕)‖𝑳∞(𝑰,𝑳𝟐(Ω))

, ‖�⃗⃗� 𝒏(𝒕)‖𝑸 and 

‖�⃗⃗� 𝒏(𝒕)‖𝑳𝟐(𝑰,𝑽) are bounded. Then by Alaoglu 

theorem [12], there exists a subsequence of 

{𝑦 𝑛}𝑛∈𝑁, say again {𝑦 𝑛}𝑛∈𝑁 such that  

𝑦 𝑛 ⟶ 𝑦  Weakly in (𝐿2(𝑄))
2
 and 𝑦 𝑛 ⟶ 𝑦  

weakly in (𝐿2(𝐼, 𝑉))
2
  

 Multiplying both sides of (15a) and (16a) by 

𝜑𝑖(𝑡) ∈ 𝐶1[0, 𝑇], such that 𝜑𝑖(𝑡) = 0 ∀𝑖 =
1,2, integrating both sides w.r.t. 𝑡 from 0 to 𝑇, 

then using integrating by parts for the 1𝑠𝑡 terms 

in each obtained equation, to get  

−∫ 〈𝑦1𝑛𝑡, 𝑣1𝑛〉𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0

∫ [
𝑇

0
𝑎1(𝑡, 𝑦1𝑛, 𝑣1𝑛) + (𝑏1(𝑡)𝑦1𝑛, 𝑣1𝑛) −

http://creativecommons.org/licenses/by-nc/4.0/
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(𝑏(𝑡)𝑦2𝑛, 𝑣1𝑛)]𝜑1(𝑡)𝑑𝑡 = ∫ (𝑓1, 𝑦1𝑛)𝜑1(𝑡)𝑑𝑡 +
𝑇

0

∫ (𝑢1, , 𝑦1𝑛)Γ𝜑1(𝑡)𝑑𝑡 
𝑇

0
  

+(𝑦1𝑛
0 , 𝑣1𝑛)𝜑1(0) (17) 

& 

−∫ 〈𝑦2𝑛𝑡, 𝑣2𝑛〉𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0

∫ [
𝑇

0
𝑎2(𝑡, 𝑦2𝑛, 𝑣1𝑛) + (𝑏2(𝑡)𝑦2𝑛, 𝑣2𝑛) −

(𝑏(𝑡)𝑦1𝑛, 𝑣2𝑛)]𝜑2(𝑡)𝑑𝑡 =

∫ (𝑓2, 𝑦2𝑛)𝜑2(𝑡)𝑑𝑡 + ∫ (𝑢2, , 𝑦2𝑛)Γ𝜑2(𝑡)𝑑𝑡 +
𝑇

0

𝑇

0

(𝑦2𝑛
0 , 𝑣2𝑛)𝜑2(0) , (18) 

  

Since ∀ 𝑖 = 1,2, 𝑣𝑖𝑛 ⟶ 𝑣𝑖 strongly in 𝐿2(Ω) 

and in 𝑉 then 𝑣𝑖𝑛𝜑𝑖
´ ⟶ 𝑣𝑖𝜑𝑖

´  and 𝑣𝑖𝑛𝜑𝑖 ⟶
𝑣𝑖𝜑𝑖 strongly in 𝐿2(𝑄) and 𝐿2(𝐼, 𝑉) respective-

ly, and since 𝑦𝑖𝑛 ⟶ 𝑦𝑖 weakly in 𝐿2(𝑄), also 

since 𝑦𝑖𝑛
0 ⟶ 𝑦𝑖

0 strongly in 𝐿2(Ω) ∀𝑖 = 1,2, 

then  

 ∫ 〈𝑦1𝑛𝑡, 𝑣1𝑛〉𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, 𝑦1𝑛, 𝑣1𝑛) +

𝑇

0

(𝑏1(𝑡)𝑦1𝑛, 𝑣1𝑛) − (𝑏(𝑡)𝑦2𝑛, 𝑣1𝑛)]𝜑1(𝑡)𝑑𝑡 →

 ∫ 〈𝑦1𝑡, 𝑣1〉𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, 𝑦1, 𝑣1) +

𝑇

0

(𝑏1(𝑡)𝑦1, 𝑣1) − (𝑏(𝑡)𝑦2, 𝑣1)]𝜑1(𝑡)𝑑𝑡, (19a)  

 (𝑦1𝑛
0 , 𝑣1𝑛)𝜑1(0) → (𝑦1

0, 𝑣1)𝜑1(0), (19b) 

∫ 〈𝑦2𝑛𝑡, 𝑣2𝑛〉𝜑2
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦2𝑛, 𝑣1𝑛) +

𝑇

0

(𝑏2(𝑡)𝑦2𝑛, 𝑣2𝑛) − (𝑏(𝑡)𝑦1𝑛, 𝑣2𝑛)]𝜑2(𝑡)𝑑 𝑡 ⟶

∫ 〈𝑦2𝑡, 𝑣2〉𝜑2
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦2, 𝑣1) +

𝑇

0

( 𝑏2(𝑡)𝑦2, 𝑣2) − (𝑏(𝑡)𝑦1, 𝑣2)]𝜑2(𝑡)𝑑𝑡, (20a) 

(𝑦2𝑛
0 , 𝑣2𝑛)𝜑2(0) → (𝑦2

0, 𝑣2)𝜑2(0) (20b)  

∫ [(𝑓1, 𝑦1𝑛) + (𝑢1, , 𝑦1𝑛)Γ]𝜑1(𝑡)𝑑𝑡
𝑇

0
→

∫ [(𝑓1, 𝑦1) + (𝑢1, , 𝑦1)Γ]𝜑1(𝑡)𝑑𝑡
𝑇

0
 (19c)  

And 

∫ [(𝑓2, 𝑦2𝑛) + (𝑢2, , 𝑦2𝑛)Γ]𝜑2(𝑡)𝑑𝑡 
𝑇

0
→

∫ [(𝑓2, 𝑦2) + (𝑢2, , 𝑦2)Γ]𝜑2(𝑡)𝑑𝑡
𝑇

0
 (20c)  

From (19 a, b& c), (17) becomes 

 −∫ 〈𝑦1𝑡, 𝑣1〉𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, 𝑦1, 𝑣1) +

𝑇

0

 (𝑏1(𝑡)𝑦1, 𝑣1) −

(𝑏(𝑡)𝑦2, 𝑣1)]𝜑1(𝑡)𝑑𝑡 = ∫ (𝑓1, 𝑦1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0

∫ (𝑢1, , 𝑦1)Γ𝜑1(𝑡)𝑑𝑡 
𝑇

0
+ (𝑦1

0, 𝑣1)𝜑1(0) (21)  

And from (20 a, b & c), (18) becomes 

−∫ 〈𝑦2𝑡, 𝑣2〉𝜑2
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦2, 𝑣1) +

𝑇

0

 (𝑏2(𝑡)𝑦2, 𝑣2) + (𝑏(𝑡)𝑦1, 𝑣2)]𝜑2(𝑡)𝑑𝑡 =

 ∫ (𝑓2, 𝑦2)𝜑2(𝑡)𝑑𝑡 + ∫ (𝑢2, 𝑦2)Γ𝜑2 (𝑡)𝑑𝑡 
𝑇

0
+

𝑇

0

(𝑦2
0, 𝑣2)𝜑2(0) (22)  

Case1: Choose 𝜑𝑖 ∈ 𝐷[0, 𝑇] with 𝜑𝑖(0) =
𝜑𝑖(𝑇) = 0 in (21) and (22), and then using in-

tegrating by parts for each 1𝑠𝑡 term in the 

L.H.S. of each equation 

∫ 〈𝑦1𝑡, 𝑣1〉𝜑1(𝑡)𝑑𝑡 + ∫ [
𝑇

0
𝑎1(𝑡, 𝑦1, 𝑣1) +

𝑇

0

(𝑏1(𝑡)𝑦1, 𝑣1) − (𝑏(𝑡)𝑦2, 𝑣1)]𝜑1(𝑡)𝑑𝑡 =

∫ (𝑓1, 𝑦1)𝜑1(𝑡)𝑑𝑡 + ∫ (𝑢1, , 𝑦1)Γ𝜑1(𝑡)𝑑𝑡 
𝑇

0

𝑇

0
 (23) 

We get that 𝑦1 is a solution for (8a) by the 

same technique 𝑦2 is solution for (9a). 

Case2: Choose 𝜑𝑖 ∈ 𝐶1[0, 𝑇], such that 

𝜑𝑖(𝑇) = 0, and 𝜑𝑖(0) ≠ 0, ∀𝑖 = 1,2  
The initial condition (8 b) is obtained through 

using integrating by part in equation (23) and 

subtracting the obtained equation from equa-

tion (21). 

And by the same technique gives the initial 

condition (9 b) holds  

The strong convergence for �⃗⃗� 𝒏 :  

By substituting 𝑣1 = 𝑦1  and 𝑣1 = 𝑦1𝑛 in (8a) 

and (12a) respectively and also substituting 

𝑣2 = 𝑦2 and 𝑣2 = 𝑦2𝑛 in (9a) and (13a) respec-

tively, integrating these four equations from 0 

to 𝑇, finally adding the equations which is ob-

tained from (8a) with that obtained from (12a) 

to gather and the same happened for (9a)-(13a), 

to get  

∫ 〈𝑦 𝑡 − 𝑦 𝑛𝑡 , 𝑦 − 𝑦 𝑛〉
𝑇

0
𝑑𝑡 + ∫ 𝑐(𝑡, 𝑦 − 𝑦 𝑛, 𝑦 −

𝑇

0

𝑦 𝑛) 𝑑𝑡 =

∫ (𝑓1, 𝑦1 − 𝑦1𝑛)𝑑𝑡 + ∫ (𝑢1, , 𝑦1−𝑦1𝑛)Γ𝑑𝑡 
𝑇

0

𝑇

0
+

∫ (𝑓2, 𝑦2 − 𝑦2𝑛)𝑑𝑡 + ∫ (𝑢2, , 𝑦2−𝑦2𝑛)Γ𝑑𝑡 
𝑇

0

𝑇

0
  

⇒  𝑦 𝑛 ⟶ 𝑦  Strongly in (𝐿2(𝐼, 𝑉))
2
 . 

Uniqueness of the Solution :  

Let (𝑦1, 𝑦2) and (�̂�1, �̂�2) be two solutions for 

(8-9). Substituting once 𝑦1 in (8a) and �̂�1once 

again then subtracting each equation from the 

other, then substituting 𝑣1 = 𝑦1 − �̂�1, to get . 

〈(𝑦1 − �̂�1)𝑡, 𝑦1 − �̂�1〉 + 𝑎1(𝑡, 𝑦1 − �̂�1, 𝑦1 −
�̂�1) + (𝑏1(𝑡)𝑦1 − �̂�1, 𝑦1 − �̂�1) − (𝑏(𝑡)𝑦2 −
�̂�2, 𝑦1 − �̂�1) = 0 (24)  

By the same way which can used in above 

steps, one have that  

〈(𝑦2 − �̂�2)𝑡, 𝑦2 − �̂�2〉 + 𝑎2(𝑡, 𝑦2 − �̂�2, 𝑦2 −
�̂�2) + (𝑏2(𝑡)𝑦2 − �̂�2, 𝑦2 − �̂�2) − (𝑏(𝑡)𝑦1 −
�̂�1, 𝑦2 − �̂�2) = 0 (25)  

Adding (24) and (25) and, then using Lemma 

1.2 in [12]. In the 1𝑠𝑡and2𝑛𝑑 terms and using 
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Assumption (A-ii) for the 3𝑟𝑑and4𝑡ℎ, one ob-

tains that  

 ⇒ 1

2
 𝑑
𝑑𝑡
‖𝑦 − 𝑦 ̂‖

0

2
+ 𝛼‖𝑦 − 𝑦 ̂‖

1

2
= 0 (26)  

Using that the fact the 2𝑛𝑑 term of the L.H.S. 

of (26) is positive, then integrating both sides 

of (26) from 0 to T, using Bellman- Gronwall 

inequality in [11] to get 𝑦 = 𝑦 ̂ 

Lemma (1): 

a-Consider all the hypotheses in (A) are hold, 

and 𝑦  and 𝑦 + ∆𝑦⃗⃗⃗⃗  ⃗
  are the states corresponding 

to the controls �⃗�  and �⃗� + ∆𝑢⃗⃗⃗⃗  ⃗ respectively 

where �⃗�  and ∆𝑢⃗⃗⃗⃗  ⃗ are bounded in 𝐿2(Σ) × 𝐿2(Σ), 

then  

‖∆𝑦⃗⃗⃗⃗  ⃗
 ‖𝑳∞(𝑰,𝑳𝟐(Ω))

≤ 𝐾‖∆𝑢⃗⃗⃗⃗  ⃗‖
Σ
  

‖∆𝑦⃗⃗⃗⃗  ⃗
 ‖𝑳𝟐(𝑸)

≤ 𝐾‖∆𝑢⃗⃗⃗⃗  ⃗‖
Σ
  

‖∆𝑦⃗⃗⃗⃗  ⃗
 ‖𝑳𝟐(𝑰,𝑽)

≤ 𝐾‖∆𝑢⃗⃗⃗⃗  ⃗‖
Σ
  

b-The operator �⃗� ↦ 𝑦 �⃗⃗�  from (𝐿2(Σ))2I into 

(𝐿∞(𝐼, 𝐿2(Ω)))2 or in to (𝐿2(𝐼, 𝑉))2 or into 

(𝐿2(𝑄))2 is continuous. 

Proof: 

a-Let�⃗� = (𝑢1, 𝑢2), �⃗̂�  = (�̂�1,�̂�2) ∈ 𝐿2(Σ), ∆𝑢⃗⃗⃗⃗  ⃗ =

�⃗̂�  − �⃗�  then hence by theorem(3.1 ), there exists 

a solutions 𝑦 = (𝑦1, 𝑦2) and �̂� 
⃗⃗ = (�̂�1, �̂�2) of 

(8-9) (corresponding to the boundary controls 

�⃗�  and �⃗̂�  
〈�̂�1𝑡, 𝑣1〉 + 𝑎1(𝑡, �̂�1, 𝑣1) + (𝑏1(𝑡)�̂�1, 𝑣1) −
(𝑏(𝑡)�̂�2, 𝑣1) = (𝑓1, 𝑣1) + (𝑢1 + Δ𝑢1, 𝑣1)Γ (27a) 

 (�̂�1(0), 𝑣1) = (𝑦1
0, 𝑣1) (27b)  

& 

〈�̂�2𝑡, 𝑣2〉 + 𝑎2(𝑡, �̂�2, 𝑣2) + (𝑏2(𝑡)�̂�2, 𝑣2) +
(𝑏(𝑡)�̂�1, 𝑣2) = (𝑓2, 𝑣2) + (𝑢2 + ∆𝑢2, 𝑣2)Γ(28a) 

(�̂�2(0), 𝑣2) = (𝑦2
0, 𝑣2) (28b)  

By subtracting (8a&b) from (27a&b), and 

(9a&b) from (28a&b), then setting∆𝑦1 = �̂�1 −
𝑦1, ∆𝑦2 = �̂�2 − 𝑦2, in each one of obtained 

equations to get.  

〈∆𝑦1𝑡 
, 𝑣1〉 + 𝑎1(𝑡, ∆𝑦1, 𝑣1) + (𝑏1(𝑡)∆𝑦1, 𝑣1) −

(𝑏(𝑡)∆𝑦2, 𝑣1) =  ( Δ𝑢1, 𝑣1)Γ  (30)  

 & 

〈∆𝑦2𝑡 
, 𝑣2〉 + 𝑎2(𝑡, ∆𝑦2, 𝑣2) + (𝑏2(𝑡)∆𝑦2, 𝑣2) +

(𝑏(𝑡)∆𝑦1, 𝑣2)=( Δ𝑢1, 𝑣2)Γ  (29)  

 Substituting 𝑣1 = ∆𝑦1 and 𝑣2 = ∆𝑦2 in (29) 

and (30) respectively, using Lemma 1.2 in 

[12]. For the 1𝑠𝑡 terms in the L.H.S. of each 

one of the above obtained equation, then add-

ing the resulting equations, to get  

⇒ 1 

2
 
𝑑

𝑑𝑡
‖∆𝑦⃗⃗⃗⃗  ⃗

 ‖0

2
+ 𝛼‖∆𝑦⃗⃗⃗⃗  ⃗

 ‖1

2
= (Δ𝑢1, ∆𝑦1) +

 (Δ𝑢2, ∆𝑦2) (31)  

Since the 2𝑛𝑑 term of (31) is positive, then (31) 

become  

1

2
 𝑑
𝑑𝑡
‖∆𝑦⃗⃗⃗⃗  ⃗

 ‖0

2
≤ (Δ𝑢1, ∆𝑦1) + (Δ𝑢2, ∆𝑦2)  

 Integrating both sides for 𝑡 from 0 to 𝑡, then 

for the R.H.S we use the Cuschy Schwarz ine-

quality and the trace theorem ,and finally using 

Bellman- Gronwall inequality in [11]to get,  

 ‖∆𝑦⃗⃗⃗⃗  ⃗
 ‖𝐿∞(𝐼,𝐿2(Ω))

≤ 𝐾‖∆𝑢 ⃗⃗⃗⃗⃗⃗ ‖
Σ
  

Then easily, one can get  

‖∆𝑦⃗⃗⃗⃗  ⃗
 ‖𝐿2(𝑄)

≤ 𝐾‖∆𝑢 ⃗⃗⃗⃗⃗⃗ ‖
Σ
,And‖∆𝑦⃗⃗⃗⃗  ⃗

 ‖𝐿2(𝐼,𝑉)
≤

𝐾‖∆𝑢 ⃗⃗⃗⃗⃗⃗ ‖
Σ
 

b-Let ∆𝑢 ⃗⃗⃗⃗⃗⃗ = �⃗� 1 − �⃗� 2 and ∆𝑦⃗⃗⃗⃗  ⃗
 = 𝑦 1 − 𝑦 2 where 

𝑦 1and 𝑦 2 are the correspond states to the con-

trols �⃗� 1and �⃗� 2, then using part (a) of this theo-

rem, to get that 

 ‖𝑦 1 − 𝑦 2‖𝐿∞(𝐼,𝐿2(Ω))
≤ 𝐾‖�⃗� 1 − �⃗� 2‖Σ  

Which means the operator �⃗� ⟼ 𝑦  is Lipschitz 

continuous from (𝐿2(Σ))2 in 

to( 𝐿∞(𝐼, 𝐿2(Ω)))2 .The other result are ob-

tained easily 

Lemma (2): The cost function (7) is weakly 

lower semi continuous [13] 
Theorem (2) 
The cost function (7) has a classical boundary 

optimal control if it is coercive. 

Proof: 

Since 𝐺0(�⃗� ) is non-negative and coercive, then 

there exists a minimizing sequence {�⃗� 𝑘} =

{(𝑢1𝑘, 𝑢2𝑘)} ∈ �⃗⃗⃗� 
𝐴, ∀𝑘, such that  

lim𝑛→∞ 𝐺0(�⃗� 𝑘) = inf�⃗⃗� ∈�⃗⃗⃗� 𝐴
𝐺0(�⃗̅� ), ‖�⃗� 𝑘‖ ≤

𝑐, ∀ 𝑘. 

By the Alaoglu theorem there exists a subse-

quence of {�⃗� 𝑘} say again {�⃗� 𝑘} such that 

�⃗� 𝑘 ⟶ �⃗�  weakly in(𝐿2(Σ))
2
  

Then there exist a sequence of solution {𝑦 𝑘}, 
corresponding to the sequence of the control 

{�⃗� 𝑘} and the norms 

‖𝑦 𝑘‖𝐿∞(𝐼,𝐿2(Ω))
, ‖𝑦 𝑘‖𝐿2(𝑄)and‖𝑦 𝑘‖𝐿2(𝐼,𝑉)are 

http://creativecommons.org/licenses/by-nc/4.0/
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bounded, then by the Alaoglu theorem there 

exist a subsequence of of {𝑦 𝑘} say again {𝑦 𝑘}, 

such that 𝑦 𝑘 ⟶ 𝑦  Weakly in(𝐿∞(𝐼, 𝐿2(Ω)))
2

, 

(𝐿2(𝑄))
2
 ,and in (𝐿2(𝐼, 𝑉))

2
  

The weak forms of the state equations (12a) & 

(13a) can be rewritten as  

〈𝑦1𝑘𝑡, 𝑣1〉 = −𝑎1(𝑡, 𝑦1𝑘, 𝑣1) − (𝑏1(𝑡)𝑦1𝑘, 𝑣1)
+ (𝑏(𝑡)𝑦2𝑘, 𝑣1) + (𝑓1, 𝑣1)
+ (𝑢1, 𝑣1)Γ  

& 

〈𝑦2𝑘𝑡, 𝑣2〉 = −𝑎2(𝑡, 𝑦2𝑛, 𝑣2) − (𝑏2(𝑡)𝑦2𝑛, 𝑣2) 

 −(𝑏(𝑡)𝑦1𝑛, 𝑣2) + (𝑓2, 𝑣2) + (𝑢2, 𝑣2)Γ  
By adding the above equality and integrating 

both sides of the obtained equation w.r.t. t from 

0 to 𝑇, taking the absolute value, using Cauchy 

Schwartz inequality, and finally using assump-

tions (A-iii), one obtain  

|∫ 〈𝑦 𝑘𝑡, 𝑣 〉𝑑𝑡
𝑇

0
| = | − ∫ 𝑐 (𝑡, 𝑦 𝑘,

𝑣 ) 𝑑𝑡 +
𝑇

0

∫ (𝑓1, 𝑦1)𝑑𝑡 + ∫ (𝑢1, , 𝑦1)Γ𝑑𝑡 
𝑇

0

𝑇

0
+

∫ (𝑓2, 𝑦2)𝑑𝑡 + ∫ (𝑢2, , 𝑦2)Γ 
𝑇

0

𝑇

0
]𝑑𝑡|  

≤ |∫ 𝑐 (𝑡, 𝑦 𝑘,
𝑣 ) 𝑑𝑡

𝑇

0
| + |∫ (𝑓1, 𝑣1)𝑑𝑡

𝑇

0
| +

|∫ (𝑢1, 𝑣1)𝑑𝑡
𝑇

0
| + |∫ (𝑓2, 𝑣2)

𝑇

0
𝑑𝑡| +

|∫ (𝑢2, 𝑣2)
𝑇

0
𝑑𝑡| ⇒  ‖𝑦 𝑘𝑡‖𝐿2(𝐼,𝑉∗) ≤ ℎ7  

, ∀𝑦 𝑘𝑡 ∈ 𝑉∗ × 𝑉∗, where ℎ7 ≥ 0 

Since for each k, 𝑦1𝑘  and 𝑦2𝑘 are solutions of 

the state equations, then  

〈𝑦1𝑘𝑡, 𝑣1〉 + 𝑎1(𝑡, 𝑦1𝑘, 𝑣1) + (𝑏1(𝑡)𝑦1𝑘, 𝑣1) −
(𝑏(𝑡)𝑦2𝑘, 𝑣1) = (𝑓1, 𝑣1) + (𝑢1𝑘, 𝑣1)Γ (32)  

& 

〈𝑦2𝑘𝑡, 𝑣2〉 + 𝑎2(𝑡, 𝑦2𝑘 , 𝑣2) + (𝑏2(𝑡)𝑦2𝑘, 𝑣2) +
(𝑏(𝑡)𝑦1𝑘, 𝑣2) = (𝑓2, 𝑣2) + (𝑢2𝑘, 𝑣2)Γ (33)  

Let  𝜑𝑖 ∈ 𝐶1[0, 𝑇], such that𝜑𝑖(𝑇) = 0, ∀𝑖 =
1,2. Rewriting the 1𝑠𝑡 terms in the L.H.S. of  

(32) & (33), multiplying both sides of them by 

𝜑1(𝑡) and 𝜑2(𝑡) respectively, and integrating 

for both sides for 𝑡 From 0 to, finally using in-

tegration by parts for the 1𝑠𝑡 terms in the 

L.H.S. of each one of the above obtained equa-

tions, using the converges 𝑦 𝑘 ⟶ 𝑦  weakly in 

(𝐿2(𝑄))
2
 and 𝑦 𝑘 ⟶ 𝑦  weakly in(𝐿2(𝐼, 𝑉))

2
 

,to get 

−∫ (𝑦1𝑘, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, 𝑦1𝑘, 𝑣1) +

𝑇

0

(𝑏1(𝑡)𝑦1𝑘, 𝑣1) − (𝑏(𝑡)𝑦2𝑘, 𝑣1)]𝜑1(𝑡)𝑑𝑡 →

−∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦1, 𝑣1) +

𝑇

0

(𝑏2(𝑡)𝑦1, 𝑣1) − (𝑏(𝑡)𝑦2, 𝑣1)]𝜑1(𝑡)𝑑𝑡 (34a)  

& 

−∫ (𝑦2𝑘, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦2𝑘, 𝑣1) +

𝑇

0

 (𝑏2(𝑡)𝑦2𝑘, 𝑣2) − (𝑏(𝑡)𝑦1𝑘, 𝑣2)]𝜑2(𝑡)𝑑𝑡 →

−∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦2, 𝑣1) +

𝑇

0

 (𝑏2(𝑡)𝑦2, 𝑣2) − (𝑏(𝑡)𝑦1, 𝑣2)]𝜑2(𝑡)𝑑𝑡 (35a)  

Since 𝑦1𝑘(0) , 𝑦2𝑘(0) are bounded in 𝐿2(Ω) 
and from the Projection theorem, one has  

(𝑦1𝑘
0 , 𝑣1)𝜑1(0) → (𝑦1

0, 𝑣1)𝜑1(0) (34b)  

& 

(𝑦2𝑘
0 , 𝑣2)𝜑2(0) → (𝑦2

0, 𝑣2)𝜑2(0) (35b)  

Since �⃗� 𝑘 ⟶ �⃗�  weakly in (𝐿2(Σ))
2
, then  

∫ (𝑓1, 𝑣1)𝑑𝑡 + ∫ (𝑢1𝑘 , 𝑣1)Γ𝑑𝑡 →
𝑇

0

𝑇

0

 ∫ (𝑓1, , 𝑣1)𝑑𝑡 + ∫ (𝑢1, , 𝑣1)Γ𝑑𝑡 
𝑇

0

𝑇

0
 (34c)  

&   

∫ (𝑓2, 𝑣2)𝑑𝑡 + ∫ (𝑢2𝑘 , 𝑣2)Γ𝑑𝑡 →
𝑇

0

𝑇

0

 ∫ (𝑓2, , 𝑣2)𝑑𝑡 + ∫ (𝑢2, , 𝑣2)Γ𝑑𝑡 
𝑇

0

𝑇

0
 (35c)  

Finally, from the converges (34a, b& c) and 

(35a, b& c), one get that  

−∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, 𝑦1, 𝑣1) +

𝑇

0

 (𝑏1(𝑡)𝑦1, 𝑣1)  −

 (𝑏(𝑡)𝑦2, 𝑣1)]𝜑1(𝑡)𝑑𝑡 =∫ (𝑓1, 𝑦1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0

 ∫ (𝑢1, 𝑦1)Γ𝜑1(𝑡)𝑑𝑡 
𝑇

0
+ (𝑦1

0, 𝑣1)𝜑1(0) (36)  

& 

−∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, 𝑦2, 𝑣1) +

𝑇

0

(𝑏2(𝑡)𝑦2, 𝑣2) −

(𝑏(𝑡)𝑦1, 𝑣2)]𝜑2(𝑡)𝑑𝑡 = ∫ (𝑓2, 𝑦2)𝜑2(𝑡)𝑑𝑡 +
𝑇

0

(𝑦2(0), 𝑣2)𝜑2(0) + ∫ (𝑢2, 𝑦2)Γ𝜑2(𝑡)𝑑𝑡 
𝑇

0
 (37)  

Now, one has the following two cases: 

Case 1: Choose 𝜑𝑖 ∈ 𝐷[0, 𝑇], i.e. 𝜑𝑖(0) =
𝜑𝑖(𝑇) = 0, ∀𝑖 = 1,2 

Now, integration by parts for the 1𝑠𝑡 terms in 

the L.H.S. of (36) and (37), once get  

∫ 〈𝑦1𝑡, 𝑣1〉𝜑1(𝑡)𝑑𝑡 + ∫ [
𝑇

0
𝑎1(𝑡, 𝑦1, 𝑣1) +

𝑇

0

(𝑏1(𝑡)𝑦1, 𝑣1) −

(𝑏(𝑡)𝑦2, 𝑣1)]𝜑1(𝑡)𝑑𝑡 = ∫ (𝑓1, 𝑦1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0

∫ (𝑢1, 𝑦1)Γ𝜑1(𝑡)𝑑𝑡 
𝑇

0
 ,∀𝑣1 ∈ 𝑉, (38) & 

∫ 〈𝑦2𝑡, 𝑣2〉𝜑2(𝑡)𝑑𝑡 + ∫ [
𝑇

0
𝑎2(𝑡, 𝑦2, 𝑣2) +

𝑇

0

(𝑏2(𝑡)𝑦2, 𝑣2) +

(𝑏(𝑡)𝑦1, 𝑣2)]𝜑2(𝑡)𝑑𝑡 = ∫ (𝑓2, 𝑦2)𝜑2(𝑡)𝑑𝑡 +
𝑇

0

∫ (𝑢2, 𝑦2)Γ𝜑2(𝑡)𝑑𝑡 
𝑇

0
(39)  

Case 2: Choose𝜑𝑖 ∈ 𝐶1[𝐼], such that 𝜑𝑖(𝑇) =
0 &𝜑𝑖(0) ≠ 0, ∀𝑖 = 1,2  
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Integrating by parts for the 1𝑠𝑡 terms in the 

L.H.S. of (38) and (39), one has 

(𝑦1
0, 𝑣1)𝜑1(0) = (𝑦1(0), 𝑣1)𝜑1(0), 𝜑1(0) ≠

0 ∀ 𝜑1  ∈ 𝐶1[0, 𝑇]  
⇒ 𝑦1

0 = 𝑦1(0) = 𝑦1
0(𝑥)  

& 

(𝑦2
0, 𝑣2)𝜑2(0) = (𝑦2(0), 𝑣2)𝜑2(0), 𝜑2(0) ≠

0 ∀ 𝜑2  ∈ 𝐶1[0, 𝑇]  
⇒ 𝑦2

0 = 𝑦2(0) = 𝑦2
0(𝑥)  

Then 𝑦1 = 𝑦𝑢1 & 𝑦2 = 𝑦𝑢2 are the solutions of 

the state equations (from case 1& case2) 

Since 𝐺0(�⃗� ) is W.L.S.C., i.e. 

𝐺0(�⃗� ) ≤ lim𝑘→∞ inf�⃗⃗� 𝑘∈�⃗⃗⃗� 𝐴
𝐺0(�⃗� 𝑘)  

⇒ 𝐺0(�⃗� )= inf�⃗⃗� ∈�⃗⃗⃗� 𝐴
𝐺0(�⃗̅� )  

∴ �⃗�  is a continuous classical boundary optimal 

control . 

Theorem (3): 
Consider the cost function (7), and the follow-

ing adjoins equations (𝑧1, 𝑧2) = (𝑧𝑢1, 𝑧𝑢2) ( 

where (𝑦1, 𝑦2) = (𝑦𝑢1, 𝑦𝑢2))of the state equa-

tions (1-6) are given by  

−𝑧1𝑡 − ∑
𝜕

𝜕𝑥𝑖
(𝑎𝑖𝑗(𝑥, 𝑡)

𝜕𝑧1

𝜕𝑥𝑗

𝑛
𝑖,𝑗=1 ) + 𝑏1(𝑥, 𝑡)𝑧1 +

𝑏(𝑥, 𝑡)𝑧2 = (𝑦1 − 𝑦1𝑑), in Ω (40)  

 −𝑧2𝑡 − ∑
𝜕

𝜕𝑥𝑖
(𝑏𝑖𝑗(𝑥, 𝑡)

𝜕𝑧2

𝜕𝑥𝑗

𝑛
𝑖,𝑗=1 ) + 𝑏2(𝑥, 𝑡)𝑧2 −

𝑏(𝑥, 𝑡)𝑧1 = (𝑦2 − 𝑦2𝑑) ,onΩ (41)  

 𝑧1(𝑥, 𝑇) = 0 onΩ (42) 

 
𝜕𝑧1

𝜕𝑛
= 0,on Σ (43) 

𝑧2(𝑥, 𝑇) = 0 on Ω (44) 
𝜕𝑧2

𝜕𝑛
= 0,onΣ (45)  

 Then for (𝑢1, 𝑢2)  ∈ �⃗⃗⃗� 
𝐴 , the Frechet deriva-

tive of 𝐺0 is given by 

 (𝐺0(́ 𝑢)⃗⃗⃗⃗ , ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) = (𝑧 + 𝛽�⃗� , ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) 

Proof : 

 So as in the state equation (1-6) the weak form 

of the adjoint equations is:  

−〈𝑧1𝑡, 𝑣1〉 + 𝑎1(𝑡, 𝑧1, 𝑣1) + (𝑏1(𝑡)𝑧1, 𝑣1) −
(𝑏(𝑡)𝑧2, 𝑣1) = (𝑦1 − 𝑦1𝑑 , 𝑣1), ∀𝑣1 ∈ 𝑉 (46)  

&  

−〈𝑧2𝑡, 𝑣2〉 + 𝑎2(𝑡, 𝑧2, 𝑣2) + (𝑏2(𝑡)𝑧2, 𝑣2) +
(𝑏(𝑡)𝑧1, 𝑣2) = (𝑦2 − 𝑦2𝑑, 𝑣2), ∀𝑣2 ∈ 𝑉 (47)  

Now, substituting 𝑣1 = 𝑧1and 𝑣2 = 𝑧2 in (29) 

and (30) respectively, yield  

〈∆𝑦1𝑡, 𝑧1〉 + 𝑎1(𝑡, ∆𝑦1, 𝑧1) + (𝑏1(𝑡)∆𝑦1, 𝑧1) −
(𝑏(𝑡)∆𝑦2, 𝑧1) = (Δ𝑢1, 𝑧1) (48)  

& 

〈∆𝑦2𝑡, 𝑧2〉 + 𝑎2(𝑡, ∆𝑦2, 𝑧2) + (𝑏2(𝑡)∆𝑦2, 𝑧2) +
(𝑏(𝑡)∆𝑦1, 𝑧2) = (Δ𝑢2, 𝑧2) (49)  

Also, substituting 𝑣1 = ∆𝑦1 and 𝑣2 = ∆𝑦2 in 

(46) and (47) respectively, one get  

−〈𝑧1𝑡, ∆𝑦1〉 + 𝑎1(𝑡, 𝑧1, ∆𝑦1) +
(𝑏1(𝑡)𝑧1, ∆𝑦1) + (𝑏(𝑡)𝑧2, ∆𝑦1) =
(𝑦1 − 𝑦1𝑑 , ∆𝑦1) (50)  

& 

−〈𝑧2𝑡, ∆𝑦2〉 + 𝑎2(𝑡, 𝑧2, ∆𝑦2) +
(𝑏2(𝑡)𝑧2, ∆𝑦2) − (𝑏(𝑡)𝑧1, ∆𝑦2) =
(𝑦2 − 𝑦2𝑑, ∆𝑦2) (51)  

Now, integrating both sides of (48-51), for t 

from 0 to T, using integration by parts for the 

1𝑠𝑡terms of the L.H.S. of each obtained equa-

tions, to get  

∫  
𝑇

0
〈∆𝑦1𝑡, 𝑧1〉𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, ∆𝑦1, 𝑧1) +

(𝑏1(𝑡)∆𝑦1, 𝑧1) − (𝑏(𝑡)∆𝑦2, 𝑧1)]𝑑𝑡 =

∫  
𝑇

0
(Δ𝑢1, 𝑧1)𝑑𝑡, (52)  

∫  
𝑇

0
〈∆𝑦2𝑡, 𝑧2〉𝑑𝑡 + ∫ [

𝑇

0
𝑎2(𝑡, ∆𝑦2, 𝑧2) +

(𝑏2(𝑡)∆𝑦2, 𝑧2) + (𝑏(𝑡)∆𝑦1, 𝑧2)]𝑑𝑡 =

∫  
𝑇

0
(Δ𝑢2, 𝑧2)𝑑𝑡, (53)  

∫ 〈∆𝑦1𝑡, 𝑧1〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
𝑎1(𝑡, 𝑧1, ∆𝑦1) +

(𝑏1(𝑡)𝑧1, ∆𝑦1) + (𝑏(𝑡)𝑧2, ∆𝑦1)]𝑑𝑡 =

∫ (𝑦1 − 𝑦1𝑑, ∆𝑦1)𝑑𝑡 
𝑇

0
, (54)  

∫ 〈∆𝑦2𝑡, 𝑧2〉
𝑇

0
𝑑𝑡 + ∫ [𝑎2

𝑇

0
(𝑡, 𝑧2, ∆𝑦2) +

(𝑏2(𝑡)𝑧2, ∆𝑦2) − (𝑏(𝑡)𝑧1, ∆𝑦2)]𝑑𝑡 =

∫ (𝑦2 − 𝑦2𝑑 , ∆𝑦2)𝑑𝑡 
𝑇

0
 (55)  

And  

By subtracting (52) and (53) from (54) and (55) 

respectively and by adding the two resulting 

equations, yields 

−∫ (Δ𝑢1, 𝑧1)𝑑𝑡 − ∫ (Δ𝑢2, 𝑧2)𝑑𝑡 =
𝑇

0

𝑇

0

∫ (𝑦1 − 𝑦1𝑑, ∆𝑦1)𝑑𝑡 + ∫ (𝑦2 − 𝑦2𝑑 , ∆𝑦2)𝑑𝑡
𝑇

0

𝑇

0
 

(56)  

𝑦1 + ∆𝑦1, 𝑦2 + ∆𝑦2 are the corresponding solu-

tions of the control 𝑢1 + Δ𝑢1 and𝑢2 + Δ𝑢2, 

then 

𝐺0(�⃗�  + ∆𝑢⃗⃗⃗⃗  ⃗) − 𝐺0(�⃗� ) = 1

2
‖𝑦1 − 𝑦1𝑑‖𝑄

2 +

∫ ∫  
 

Ω

𝑇

0
(𝑦1 − 𝑦1𝑑)∆𝑦1𝑑𝑥𝑑𝑡 + 1

2
‖∆𝑦1‖𝑄

2 +

 1
2
‖𝑦2 − 𝑦2𝑑‖𝑄

2 + ∫ ∫  
 

Ω

𝑇

0
(𝑦2 − 𝑦2𝑑)∆𝑦2𝑑𝑥𝑑𝑡 +

1

2
‖∆𝑦2‖𝑄

2 + 𝛽

2
‖𝑢1‖Σ

2 + ∫ ∫ 𝛽𝑢1
 

Γ
Δ𝑢1𝑑𝑥𝑑𝑡

𝑇

0
+

𝛽

2
∫ ∫ (Δ𝑢1)

2 

Γ

𝑇

0
𝑑𝑥𝑑𝑡 + 𝛽

2
‖𝑢2‖Σ

2 +
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∫ ∫ 𝛽𝑢2
 

Γ
Δ𝑢2

𝑇

0
𝑑𝑥𝑑𝑡 + 𝛽

2
∫ ∫ (Δ𝑢2)

2 

Γ
𝑑𝑥𝑑𝑡

𝑇

0
−

1

2
‖𝑦1 − 𝑦1𝑑‖𝑄

2 − 1

2
‖𝑦2 − 𝑦2𝑑‖𝑄

2 − 𝛽

2
‖𝑢1‖Σ

2 −
𝛽

2
‖𝑢2‖Σ

2   

𝐺0(�⃗�  + ∆𝑢⃗⃗⃗⃗  ⃗) − 𝐺0(�⃗� ) = (Δ𝑢1, 𝑧1) +

𝛽(𝑢1, Δ𝑢1) + (Δ𝑢2, 𝑧2) + 𝛽(𝑢2, Δ𝑢2) +
1

2
‖∆𝑦⃗⃗⃗⃗  ⃗

 ‖𝑄

2
+ 𝛽

2
‖∆𝑢 ⃗⃗⃗⃗⃗⃗ ‖

Σ

2
  

∴ 𝐺0(�⃗�  + ∆𝑢⃗⃗⃗⃗  ⃗) − 𝐺0(�⃗� ) = (𝑧 + 𝛽�⃗� , ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) +
1

2
 ‖∆𝑦⃗⃗⃗⃗  ⃗

 ‖𝑄

2
+ 𝛽

2
‖∆𝑢 ⃗⃗⃗⃗⃗⃗ ‖

Σ

2
 (57)  

 ∵ ‖∆𝑦⃗⃗⃗⃗  ⃗
 ‖𝑄

≤ 𝑘‖∆𝑢 ⃗⃗⃗⃗⃗⃗ ‖
Σ
, 𝑘 > 0  

(𝐺0(́ 𝑢)⃗⃗⃗⃗ , ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) = (𝑧 + 𝛽�⃗� , ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) 

Theorem (4): 

The classical boundary optimal control of the 

above problem is 𝐺0
´ (�⃗� ) = 𝑧 + 𝛽�⃗� = 0 with 

𝑦 = 𝑦 �⃗⃗�  and 𝑧 = 𝑧 �⃗⃗�  . 
Proof: 

If �⃗�  is an boudary optimal control of the prob-

lem  

𝐺0(�⃗�  ) = min�⃗⃗� ∈�⃗⃗⃗� 𝐴
𝐺0(�⃗� ) , ∀�⃗� ∈ (𝐿2(Σ))

2
, i.e. 

𝐺0
´ (�⃗� ) = 0  

⇒ 𝑧 + 𝛽�⃗� = 0 ⇒  𝑢1 =
−𝑧1

𝛽
 And 𝑢2 =

−𝑧2

𝛽
 

∆𝑢 ⃗⃗⃗⃗⃗⃗ = �⃗⃗� − �⃗̅�  ⇒ The necessary optimality is 

(𝐺0
´ (�⃗� ), ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) ≥ 0 

⇒ (𝑧 + 𝛽�⃗� , ∆𝑢 ⃗⃗⃗⃗⃗⃗ ) ≥ 0  

⇒ (𝑧 + 𝛽�⃗� , �⃗� ) ≤ (𝑧 + 𝛽�⃗� , �⃗⃗� ), ∀�⃗⃗� ∈ (𝐿2(Σ))
2
  

Conclusion 
The Galerkin method is suitable to prove the 

existence of a unique solution of a couple of 

linear parabolic partial differential when the 

continuous boundary control vector is fixed. 

The existence theorem of a continuous classical 

boundary optimal control vector governing by 

the considered couple of linear partial differen-

tial equations of parabolic type is developed 

and proved. The existence and uniqueness so-

lution of the couple of adjoint equations asso-

ciated with the considered couple equations of 

the state are studied through derivation the Fré-

chet derivative. The necessary conditions theo-

rem for optimality of the problem is developed 

and proved. 

Reference 
      

[1]  D.,Leonard Berkovitz and G., Negash. 

Medhin “Non-linear optimal control the-

ory “ taylor andFrancis Group .LLC2013. 

[2]   A.,Sasane, “Variational Calculus and  

Optimal Control”, LSE, 2004. 

[3]   A., Orpel, “Optimal Control Problems 

with Higher Order Constraints. Folia 

Mathematica”, 16(1), pp:31-44. 2009  

[4]  I.,Chryssoverghi and J., Al-Hawasy, 

“The Continuous Classical Optimal Con-

trol Problem of Semi linear Parabolic 

Equations (CCOCP)”, Vol. 8 No.3, Jour-

nal of Kerbala University, 2010. 

[5]  Y., Wang, X. Luo, and S., Li, “Optimal 

Control Method of Partial Differential 

Equations and Its Application to Heat 

transfer Model in Continuous Cast Sec-

ondary Cooling Zone”, Copyright, 2015. 

[6]  M.H., Farag, “on an Optimization Prob-

lem with Hyperbolic partial Differential 

Equations”, Vol. 04, Issue 02, IOSR 

Journal of Engineering, pp. 27-33, 2014. 

[7]  J.I., Diaz, T.,Mingazzini, and A.M., Ra-

mos, “on the Optimal Control for a Semi 

linear Equation with Cost Depending on 

the Free Boundary”, Vol.7 American In-

stitute of Mathematical Sciences, No.4, 

2012. 

[8]  J., Al-Hawasy, E., Al- Rawdhanee, “The 

Continuous Classical Optimal Control of 

a Coupled of a Nonlinear Elliptic Equa-

tions”, Mathematical Theory and Model-

ing, Vol.4, No.14, 2014. 

[9]  J., Al-Hawasyand M.K.Ghufran, “The 

Continuous Classical Optimal Control of 

a Coupled of a Non-linear parabolic 

Equation” vol. 19(1). Jornal of 

Al.Nahrain university., March ,2016, pp. 

173 -186. 

[10]  J, Al-Hawasy, “The Continuous Classical 

Optimal Control of a Coupled of nonlin-

ear hyperbolic Equations” Vol. 57, 

No.2C ,Baghdad Iraqi Journal of science, 

2016, pp: 1528-1538.  

[11]  F.,Brauer, J., Nohel, “Ordinary Differen-

tial Equations”, Philippines, W.A. Ben-

jamin, Inc., 1973. 

[12]   R., Temam, “Navier –Stokes Equa-

tions”, New York, North-Holland Pub-

lishing Company, 1977.  



Al-Mustansiriyah Journal of Science  
ISSN: 1814-635X (print), ISSN:2521-3520 (online) Volume 29, Issue 1, 2018 DOI: http://doi.org/10.23851/mjs.v29i1.159 

 

126 

 

 

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons At-

tribution-NonCommercial 4.0 International License. 

 

[13]  J, Al-Hawasy, “Optimaization and Ap-

proximation of Parabolic Boundary Val-

ue Problem”, Athens-Greece, ph. D. The-

sis, School of Applied Mathematics and 

Physics Science, Department of Mathe-

matics, NTUA, 2004. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by-nc/4.0/

