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ABSTRACT: Background: Boundary optimal control problems governed
by nonlinear elliptic systems are complex, involving equality and inequality
constraints. Objective: This paper examines a quaternary boundary optimal
control vector problem (QBOCVP) regulated by a quaternary nonlinear ellip-
tic system (QNES) and subject to equality and inequality constraints (EINC).
Methods: A weak formulation of the QBOCVP is developed, along with a
mathematical representation of the quaternary adjoint equations (QAEs) as-
sociated with the QNES. Results: An existence theorem for a QBOCV ad-
dressing the constrained problem is established and rigorously proven under
appropriate assumptions. The QAEs corresponding to the QNES are mathe-
matically formulated. The Fréchet derivative (FD) of the cost function (CF)
and the EINC is also derived. Furthermore, the necessary condition theorem
(NCTH) and the sufficient condition theorem (SCTH) for optimality are pre-
sented and proved. Conclusions: This work provides a rigorous analysis
of the QBOCVP with EINC controlled by QNES. It establishes the existence
theorem and optimality conditions, providing a theoretical framework for ad-
dressing such constrained problems.

KEYWORDS: Fréchet derivative; Optimality conditions; Quaternary classi-
cal boundary control vector; Nonlinear elliptic system

INTRODUCTION

O ptimal control problems (OCPs) have been widely applied across various real-world domains,
including medicine [1], economics [2], robotics [3], and aircraft [4], among others. Over time,

researchers have shown significant interest in studying OCPs broadly, with a particular focus on
optimal classical continuous control problems (OCCCPs). In the last decade, considerable attention
has been directed toward OCCCPs governed by three main types of nonlinear partial differential
equations (NPDES): elliptic [5], hyperbolic [6], and parabolic [7].

Subsequently, this research extended to systems governed by coupled NPDES of these three types
[8]–[10], and later to systems controlled by triple NPDES of these types [11].

These advancements motivated us to investigate the quaternary boundary optimal control vector
problem (QBOCVP) with equality and inequality constraints (EINC) governed by quaternary non-
linear elliptic systems (QNES), a topic previously unexplored by other researchers. In this study, we
establish and prove an existence theorem for a QBOCV under appropriate assumptions. Additionally,
the mathematical formulation of the quaternary adjoint equations (QAEs) associated with QNES is
presented. The Fréchet derivative (FD) for the cost function (CF) and the EINC is derived. Finally,
the necessary condition theorem (NCTH) and the sufficient condition theorem (SCTH) for optimality
are formulated and proven.
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DESCRIPTION OF THE PROBLEM
Let Ω ⊂ R2 be an open and bounded subset with boundary ∂Ω, the QBOCVP includs the QNES:

C1y1 + c1y1 + σ1y2 + σ2y3 + σ3y4 + a1 (x, y1) = ρ1 (x) in Ω (1)

C2y2 − σ1y1 + c2y2 + σ4y3 − σ5y4 + a2 (x, y2) = ρ2 (x) in Ω (2)
C3y3 − σ2y1 − σ4y2 + c3y3 − σ6y4 + a3 (x, y3) = ρ3 (x) in Ω (3)
C4y4 + σ3y1 + σ5y2 + σ6y3 + c4y4 + a4 (x, y4) = ρ4 (x) in Ω (4)

with
∂yr
∂nr

=

2∑
i,j=1

crij
∂yr
∂xj

cos (nr, xi) = wr, ∀r = 1, 2, 3, 4 on ∂Ω, (5)

where Cryr = −
∑2

i,j=1
∂

∂xi

(
crij(x)

∂yr
∂xj

)
, ∀r = 1, 2, 3, 4 on ∂Ω , ∀ i, j = 1, 2, cr, ρr ∈ L2(Ω), for

r = 1, 2, 3, 4, σl = σl (x) ∈ L∞ (Ω) ,∀l = 1, 2, 3, 4, 5, 6, y⃗ = (y1, y2, y3, y4) ∈ (H2(Ω))
4 is the quaternary

state vector solution (QSVS), w⃗ = (w1, w2, w3, w4) ∈ L2(∂Ω) = (L2(∂Ω))
4 denotes its corresponding

QBCV, the functions ar (x, yr) and ρr (x) (∀ r = 1, 2, 3, 4) will be defined later.

The QBCV Constraint is U⃗ = {u⃗ ∈ L2(∂Ω) : u⃗ ∈ W⃗ a.e in ∂Ω}, with
W1 ×W2 ×W3 ×W4 = W⃗ ⊂ R4 is convex and bounded .

The CF (r = 1, 2, 3, 4) is

H0(w⃗) =

4∑
r

∫
Ω

h0r (x, yr) dx+

4∑
r=1

∫
∂Ω

h̄0r (x,wr) dω, (6)

the constraints on QBCV are

H1(
−→w ) =

4∑
r

∫
Ω

h1r (x, yr) dx+
4∑
r

∫
∂Ω

h̄1r (x,wr) dω, (7)

H2(w⃗) =

4∑
r

∫
Ω

h2r (x, yr) dx+

4∑
r

∫
∂Ω

h̄2r (x,wr) dω, (8)

the set of the admissible QBCV is

U⃗A = {w⃗ ∈ U⃗ | H1(w⃗) = 0,H2(w⃗) ≤ 0}.

The QBOCVP is to minimize (6) subject to the EINC (7)-(8), i.e. to find w⃗ ∈ U⃗A , s.t.:

H0(w⃗) = min
u⃗∈U⃗A

H0(u⃗).

The Weak Formulation (WF) of the QNES
Let V⃗ = V1 × V2 × V3 × V4 = (H1(Ω))

4 = H1(Ω) , where

H1(Ω) = {v⃗ : v⃗ ∈ H1(Ω), with ∂vr
∂n

= wr, r = 1, 2, 3, 4, on ∂Ω}.

The WF of (1)-(5) is

C1(y1, v1) + (c1y1, v1)Ω + (σ1y2, v1)Ω + (σ2y3, v1)Ω−
(σ3y4, v1)Ω + (a1(y1), v1)Ω = (ρ1, v1)Ω + (w1, v1)∂Ω (9)
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C2(y2, v2) + (c2y2, v2)Ω − (σ1y1, v2)Ω + (σ4y3, v2)Ω−
(σ5y4, v2)Ω + (a2(y2), v2)Ω = (ρ2, v2)Ω + (w2, v2)∂Ω (10)

C3(y3, v3) + (c3y3, v3)Ω − (σ2y1, v3)Ω + (σ4y2, v3)Ω−
(σ6y4, v3)Ω + (a3(y3), v3)Ω = (ρ3, v3)Ω + (w3, v3)∂Ω (11)
C4(y4, v4) + (c4y4, v4)Ω − (σ3y1, v4)Ω + (σ5y2, v4)Ω−
(σ6y3, v4)Ω + (a4(y4), v4)Ω = (ρ4, v4)Ω + (w4, v4)∂Ω (12)

Adding the above four equalities (9)-(12), to get
C (y⃗, v⃗) + (a1 (y1) , v1)Ω + (a2 (y2) , v2)Ω + (a3 (y3) , v3)Ω + (a4 (y4) , v4)Ω = (ρ1, v1)Ω+

(w1, v1)∂Ω + (ρ2, v2)Ω + (w2, v2)∂Ω + (ρ3, v3)Ω + (w3, v3)∂Ω + (ρ4, v4)Ω + (w4, v4)∂Ω (13)

Presumption 1:
P1) C(y⃗,y⃗)

∥y⃗∥V ≥ d1‖y⃗‖V , ∀y⃗ ∈ V⃗ .

P2)| C (y⃗, v⃗)| ≤ d2‖y⃗‖V ‖v⃗‖V , ∀ ⃗y, v ∈ V⃗ .

P3) ar (x, yr) and ρr (x) (∀r = 1, 2, 3, 4) are of Carathéodory type (CTHT) on Ω×R and on Ω resp.
and satisfy (∀r = 1, 2, 3, 4).

|ar (x, yr)| ≤ θr (x) + dr |yr| , |ρr (x)| ≤ θ̄r (x) , with θr , θ̄r ∈ L2 (Ω) , ∀ (x, yr) ∈ Ω×R×Wr, dr ≥ 0.

P4) ar (x, yr) is monotone w.r.t. yr resp. ∀ x ∈ Ω.

P5) ar (x, 0) = 0, ∀ x ∈ Ω, ∀r = 1, 2, 3, 4

Theorem 1 [12]: In additions to the Presumption 1, if a1 is strictly monotone. Then the WF 13
has a unique QSVS y⃗ ∈ V⃗ , for a given QBCV w⃗ ∈ U⃗A.

Lemma 1 [12]: In addition to the Presumption 1, if the function ar is Lipchitz (LIP)
(∀r = 1, 2, 3, 4) w.r.t. yr resp., the function ρr(∀r = 1, 2, 3, 4) is bounded . Then the operator
w⃗ → y⃗w⃗ from U⃗A to L2 (∂Ω) is LIP continuous (LIPC) , i.e., ‖∆y⃗‖Ω ≤ L ‖∆w⃗‖∂Ω , L > 0.

Presumptions 2: Assume that hlr and h̄lr are of CTHT on Ω × R and Ω×Wr resp., for r =
1, 2, 3, 4 , l = 0, 1, 2, and satisfy :

|hlr (x, yr)| ≤ βlr (x) + dlry
2
r ,
∣∣h̄lr (x,wr)

∣∣ ≤ β̄lr (x) + d̄lrw
2
r

where (yr, wr) ∈ R×Wr with βlr, β̄lr ∈ L1 (∂Ω) and dlr, d̄lr > 0.

Lemma 2 [12]: With Presumption 2, the functional w⃗ 7→ Hl (w⃗), for each l=0,1,2 , defines on
L2 (∂Ω) is continuous.

Theorem 2 [8]: In addition to the assumptions. (A) and (B), if U⃗ in the W⃗A is compact, W⃗A 6= ∅.
If for each i = 1, 2, 3, G1(u⃗) is independent of ui, G0(u⃗) and G2(u⃗) are convex w.r.t ui, for fixed
(x, t, yi). Then there exists a CCCBOTCV for the considered problem.

Proposition 1 [13]: Let f and fy : D×Rn → Rm are of CTHT, let F : Lp(D) → R be a functional,
s.t F (y) =

∫
D f (x, y (x)) dx , where D ⊂ R d , and ∀ (x, y) ∈ D × R n, p, q 6= 0 : ‖fy(x, y)‖ ≤

ζ(x)+ η(x)‖y‖
β
q , where ζ ∈ Lq (D ×R), 1

p +
1
q = 1, η ∈ L

pq
p−β (D× R), β ∈ [0, p] if p 6= ∞, and η ≡ 0 ,

if p = ∞. Then the FD of F exists ∀y ∈ Lp(D×R n) and is given by Ǵ (y)h =
∫
D fy (x, y (x))h(x)dx.
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RESULTS AND DISCUSSION
Existence of an QBOCV
Theorem 3: In addition to the Presumptions 1 and 2, assume that U⃗A 6= ∅, H1 is independent of
wr, (for r = 1, 2, 3, 4), h̄lr is convex w.r.t. wr for fixed x resp. for r = 1, 2, 3, 4 and l = 0, 2. Then
there exists a QBOCV.

Proof: The continuity of Hl (w⃗) (for each l = 0, 1, 2) on L2 (Ω) is obtained by Lemma 2.
Now, since for each r = 1, 2, 3, 4 , that yrn

S→yr in L2 (Ω), (by using the same technique which is
used in the proof of theorem 1, for more details see ref. [12]), then

H1(w⃗n) =
4∑

r=1

∫
Ω

h1r (x, yrn) dx →
4∑

r=1

∫
Ω

h1r (x, yr) dx = H1(w⃗)

But H1 (w⃗n) = 0, for each n, hence H1 (w⃗) = 0.

From the other side, since
∫
Ω hlr(x, yrn)(∀l = 0, 2 and ∀r = 1, 2, 3, 4) is continuous w.r.t. yr, and

W⃗ is compact, hence hl (yr) is satisfied the presumptions of Theorem 2, to get that
4∑

r=1

∫
Ω

hlr (x, yrn) dx →
4∑

r=1

∫
Ω

hlr (x, yr) dx, ∀l = 0, 2.

Since
∫
Ω hl1(x, y1)dx(

∫
∂Ω h̄l1(x,w1)dω) is continuous w.r.t. y1 (w.r.t. w1 and is weakly lower semi

continuous (W.L.S.C) w.r.t. w1), i.e.∫
Ω

hlr (x, yr) dx+

∫
∂Ω

h̄lr (x,wr) dω ≤
∫
Ω

hlr (x, yr) dx+ lim
n→∞

inf
∫
∂Ω

h̄lr (x,wrn) dω

= lim
n→∞

inf
∫
Ω

[
hlr (x, yr)− h̄lr (x, yrn)

]
dx+

lim inf
n→∞

∫
Ω

hlr (x, yrn) dx+ lim
n→∞

∫
∂Ω

h̄lr (x,wrn) dω

= lim
n→∞

inf
[∫

Ω

hlr (x, yrn) dx+

∫
∂Ω

h̄lr (x,wrn) dω

]
Hence Hl (w⃗) is W.L.S.C w.r.t. (y⃗, w⃗), ∀ l = 0, 2.

Then H2

(
⇀
wn

)
≤ limn→∞ H2

(
⇀
wn

)
= 0,

Beside these results, one has

H0

(
⃗̄w
)
≤ lim

n→∞
infH0 (w⃗n) = lim

n→∞
H0 (w⃗n) = min

w⃗ ϵU⃗A

H0 (w⃗)

⃗̄w is a QBOCV

The NCTH and THE SCTH for Optimality
The following Presumptions are useful to study the NCTH and SCTH.

Presumptions 3:
P1) a1yr, (for r = 1, 2, 3, 4) is of CTHT on Ω × R and satisfies |a1yr(x, yr)| ≤ d̃r, a1yr(x, yr) ≥
0, for x ∈ Ω and d̃r ≥ 0.
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P2) ρr(for r = 1, 2, 3, 4) is of the CTHT type on Ω and satisfies: | ρr(x)| ≤ ďr, for x ∈ Ω and ďr ≥ 0

P3) hlyr and h̄lwr, (r = 1, 2, 3, 4&l = 0, 1, 2) are of the CTHT type on Ω × R and satisfy |hlryr| ≤
βlr+dlr |yr| , and

∣∣h̄lrwr

∣∣ ≤ β̄lr+ d̄lr |wr| with dlr, d̄lr ≥ 0, βlr, β̄lr ∈ L2(Ω), r = 1, 2, 3, 4 and l = 0, 1, 2.

Theorem 4: With Presumptions (1,2 and 3), the Hamiltonian is defined by:

χ (x, y⃗, z⃗, w⃗) = z1 (ρ1 (x)− a1 (x, y1))h01 (x, y1) + h̄01 (x, w1)+

z2 (ρ2 (x)− a2 (x, y2)) + h02 (x, y2) + h̄02 (x, w2) + z3((ρ3((x)−
a3 (x, y3)) + h03 (x, y3) + h̄03 (x, w3) + z4 (ρ4 (x)− a4 (x, y4))+

h04 (x, y4) + h̄04 (x, w4)

The QAES of (1)-(5) are given by
C1z1 + c1z1 − σ1z2 − σ2z3 − σ3z4 + z1a1y1 (x, y1) = h01y1 (x, y1) (14)

C2z2 + σ1z1 + c2z2 − σ4z3 + σ5z4 + z2a2y2 (x, y2) = h02y2 (x, y2) (15)
C3z3 + σ2z1 + σ4z2 + c3z3 + σ6z4 + z3a3y3 (x, y3) = h03y3 (x, y3) (16)
C4z4 − σ3z1 − σ5z2 − σ6z3 + c4z4 + z4a4y4 (x, y4) = h04y4 (x, y4) (17)

∂zr
∂n

= 0 , ∀ r = 1, 2, 3, 4 on ∂Ω (18)

Then the FD of H0 is given by

˙⃗
H0(w⃗)∆w⃗ =

∫
∂Ω

χ′T
w⃗ ·∆w⃗dω, where χ′

w⃗ =

 χ′
w1
(x, y⃗, z⃗, w⃗)

χw2(x, y⃗, z⃗, w⃗)
χ′
w3
(x, y⃗, z⃗, w⃗)

χ′
w4
(x, y⃗, z⃗, w⃗)

 =

 z1 + h̄01w1

z2 + h̄02w2

z3 + h̄03w3

z4 + h̄04w4


Where y⃗ = (y1, y2, y3, y4), z⃗ = (z1, z2, z3, z4), andw⃗ = (w1, w2, w3, w4).

Proof: The WF of the QAEs (14)-(18) is:

C1(z1, v1) + (c1z1, v1)Ω − (σ1z2, v1)Ω − (σ2z3, v1)Ω − (σ3z4, v1)Ω + (z1a1y1(x, y1), v1)Ω =

(h01y1(x, y1), v1)Ω, (19)

C2(z2, v2) + (σ1z1, v2)Ω + (c2z2, v2)Ω − (σ4z3, v2)Ω + (σ5z4, v2)Ω + (z2a2y2(x, y2), v2)Ω =

(h02y2(x, y2), v2)Ω,
(20)

C3(z3, v3) + (σ2z1, v3)Ω + (σ4z2, v3)Ω + (c3z3, v3)Ω + (σ6z4, v3)Ω + (z3a3y3(x, y3), v3)Ω =

(h03y3(x, y3), v3)Ω, (21)
C4(z4, v4)− (σ3z1, v4)Ω − (σ5z2, v4)Ω − (σ6z3, v4)Ω + (c4z4, v4)Ω + (z4a4y4(x, y4), v4)Ω =

(h04y4(x, y4), v4)Ω,
(22)

Adding the above four equality, using v⃗ = ∆y⃗ , to get
C1(z1,∆y1) + (c1z1,∆y1)Ω − (σ1z2,∆y1)Ω − (σ2z3,∆y1)Ω − (σ3z4,∆y1)Ω+

C2(z2,∆y2) + (σ1z1,∆y2)Ω + (c2z2,∆y2)Ω − (σ4z3,∆y2)Ω + (σ5z4,∆y2)Ω+

C3(z3,∆y3) + (σ2z1,∆y3)Ω + (σ4z2,∆y3)Ω + (c3z3,∆y3)Ω + (σ6z4,∆y3)Ω+

C4(z4,∆y4)− (σ3z1,∆y4)Ω − (σ5z2,∆y4)Ω − (σ6z3,∆y4)Ω+

(c4z4,∆y4)Ω + (z1a1y1(x, y1),∆y1)Ω + (z2a2y2(x, y2),∆y2)Ω+

(z3a3y3(x, y3),∆y3)Ω + (z4a4y4(x, y4),∆y4)Ω

= (h01y1(x, y1),∆y1)Ω + (h02y2(x, y2),∆y2) + (h03y3(x, y3),∆y3)Ω + (h04y4(x, y4),∆y4)Ω (23)
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Using the QSVS y⃗ in the WF of the QNES (9)-(12) resp. once and once again the QSVS y⃗ +∆y⃗
resp. Then subtracting each obtained equation from the other, and then using v⃗ = z⃗ in the resulting
equation , to obtain

C1(∆y1, z1) + (c1∆y1, z1)Ω + (σ1∆y1, z1)Ω + (σ1∆y2, z1)Ω + (σ2∆y3, z1)Ω + (σ3∆y4, z1)Ω+

C2(∆y2, z2) + (c2∆y2, z2)Ω − (σ1∆y1, z2)Ω + (σ4∆y3, z2)Ω − (σ5∆y4, z2)Ω+

C3(∆y3, z3) + (c3∆y3, z3)Ω − (σ2∆y1, z3)Ω − (σ4∆y3, z3)Ω − (σ6∆y4, z3)Ω+

C4(∆y4, z4) + (c4∆y4, z4)Ω + (σ3∆y1, z4)Ω + (σ5∆y2, z4)Ω + (σ6∆y3, z4)Ω + (a1(y1 +∆y1)−
a1(y1), z1)Ω + (a2(y2 +∆y2)− a2(y2), z2)Ω + (a3(y3 +∆y3)− a3(y3), z3)Ω + (a4(y4 +∆y4)−
a4(y4), z4)Ω = (∆w2, z2)Ω + (∆w2, z2)Ω + (∆w3, z3)Ω + (∆w4, z4)Ω (24)

From Presumptions (P1&P3) on ar(∀ r = 1, 2, 3, 4), and Proposition 1, the FD of ar exists, i.e.∫
Ω

(ar(x, yr +∆yr)− ar(x, yr)) zrdx = (aryr ,∆yr, zr) + δ̃r(∆w⃗)‖∆w⃗‖∂Ω

By replacing this result in (24), to obtain

C1(∆y1, z1) + (c1∆y1, z1)Ω + (σ1∆y1, z1)Ω + (σ2∆y3, z1)Ω + (σ3∆y4, z1)Ω+

C2(∆y2, z2) + (c2∆y2, z2)Ω − (σ1∆y1, z2)Ω + (σ4∆y3, z2)Ω − (σ5∆y4, z2)Ω+

C3(∆y3, z3) + (c3∆y3, z3)Ω − (σ2∆y1, z3)Ω − (σ4∆y2, z3)Ω − (σ6∆y4, z3)Ω+

C4(∆y4, z4) + (c4∆y4, z4)Ω + (σ3∆y1, z4)Ω + (σ5∆y2, z4)Ω + (σ6∆y3, z4)Ω+

(a1y1∆y1, z1)Ω + δ̃1(∆w̃)‖∆w̃‖∂Ω + (a2y2∆y2, z2)Ω + δ̃2(∆w̃)‖∆w̃‖∂Ω+
(a3y3∆y3, z3)Ω + δ̃3(∆w̃)‖∆w̃‖∂Ω + (a4y4∆y4, z4)Ω + δ̃4(∆w̃)‖∆w̃‖∂Ω =

(∆w2, z2)Ω + (∆w2, z2)Ω + (∆w3, z3)Ω + (∆w4, z4)Ω (25)

Subtracting (23) from (25), it gives
4∑

r=1

(h0ryr(x, yr),∆yr)Ω + δ̌5(∆w⃗)‖∆w⃗‖∂Ω =
4∑

r=1

(∆wr, zr)∂Ω (26)

with

δ̌5(∆w⃗)‖∆w⃗‖∂Ω =

4∑
r=1

δ̌r(∆w⃗)‖∆w⃗‖∂Ω

From Presumption 3 and Lemma 1,

H0(w⃗ +
−−→
∆w)−H0(w⃗) =

4∑
r=1

∫
Ω

h0ryr(x, y1)∆yr dx+
4∑

r=1

∫
∂Ω

h̄0rwr(x,wr)∆wr dω + δ̌6(
−−→
∆w)‖

−−→
∆w‖∂Ω (27)

where δ̌6(
−−→
∆w) → 0 and ‖

−−→
∆w‖∂Ω → 0 as −−→

∆w → 0. From (26) and (27), it yields

H0(w⃗ +
−−→
∆w)−H0(w⃗) =

4∑
r=1

∫
∂Ω

(
zr + h̄0rwr

)
∆wr dω + δ̌7(

−−→
∆w)‖

−−→
∆w‖∂Ω

where δ̌7(
−−→
∆w)‖

−−→
∆w‖∂Ω = δ̌6(

−−→
∆w)‖

−−→
∆w‖∂Ω −

4∑
r=1

δ̌r(
−−→
∆w)‖

−−→
∆w‖∂Ω (28)
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But from definition of the FD of H0, we obtain

H0(
⇀
w +

−−→
∆w)−H0(w⃗) = H0(w⃗)

−−→
∆w + δ̌7(

−−→
∆w)‖

−−→
∆w‖∂Ω (29)

Finally, (28) & (29), gives
⇀

H0 (w⃗) ·
−−→
∆w =

∫
∂Ω

χ′T
W⃗

·
−−→
∆wdω where

χ′
w⃗ =

 χ′
w1
(x, y⃗, z⃗, w⃗)

χ′
w2
(x, y⃗, z⃗, w⃗)

χ′
w3
(x, y⃗, z⃗, w⃗)

χ′
w4
(x, y⃗, z⃗, w⃗)

 =

 z1 + h̄01w1

z2 + h̄02w2

z3 + h̄03w3

z4 + h̄04w4


Theorem 5: The NCTH for optimality

i) Under the Presumptions 1,2 and 3 , if w⃗ ∈ U⃗A is a QBOCV , then there exist ”multiplies”
γl ∈ R, l = 0, 1, 2 with γ0, γ2 ≥ 0,

∑2
l=0 |γl| = 1, for which the following Kuhn-Tucker-Lagrange

conditions(K-T-L-C) are held (for −−→
∆w = u⃗− w⃗ )∫

∂Ω

χ′T
w⃗ ·∆w⃗dω ≥ 0, ∀u⃗ ∈ U⃗ , (30a)

where h̄rwr =
∑2

l=0 γlh̄lrwr , zr =
∑2

l=0 γlzrl, (r = 1, 2, 3, 4) in the definition of the χ (Theorem 4), and
also

γ2H2(w⃗) = 0, (30b)
ii) Inequality (30a) is equivalent to

χ′T
w⃗ · w⃗ = min

u⃗∈U⃗A

χ′T
w⃗ · u⃗ a. e. on ∂Ω. (31)

Proof: i) From Lemma 2, Hl (w⃗) is continuous “in an open neighbored “and it is ρ −
local continuous at each w⃗ ∈ U⃗ for each l = 0, 1, 2 for each ρ. Also from Theorem 2, Hl (w⃗)

has a continuous FD (for each l = 0, 1, 2) at each w⃗ ∈ U⃗ , hence Hl (w⃗) is ρ- differentiable there for
each ρ. Since w⃗ ∈ U⃗A is QBOCV, then by the K-T-L-C with γl ∈ R, l = 0, 1, 2, with γ0 ≥ 0, γ2 ≥ 0,∑2

l=0 |γl| = 1, one has((
γ0

˙⃗
H ′

0(
⇀
w) + γ′

1

⇀

H
′
1 (

⇀
w) + γ2

˙⃗ ′
2H(w⃗)

)
, (u⃗− w⃗)

)
∂Ω

≥ 0, ∀u⃗ ∈ U⃗ (32a)

and
γ2H2(w⃗) = 0 (32b)

Utilizing Theorem 4 , to find the FD of Hl, for l = 0, 1, 2, in (32a), with setting ∆wr = ur − wr,
for r = 1, 2, 3, 4, to get

4∑
r=1

∫
∂Ω

[
(γ0z0r + γ1z1r + γ2z2r) +

(
γ0h̄0rwr + γ1h̄1rwr + γ2h̄2rwr

)
∆wr

]
dω ≥ 0

⇒
4∑

r=1

∫
∂Ω

[
zr + h̄rwr∆wr

]
dω ≥ 0, with zr =

2∑
l=0

γlzrl, h̄rwr =
2∑

l=0

γlh̄lrwr ⇒∫
∂Ω

χ′T
w⃗ ·

−−→
∆wdω ≥ 0, ∀u⃗ ∈ U⃗ ,

−−→
∆w = u⃗− w⃗.
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ii) First, let U⃗ = {u⃗ ∈ L2(∂Ω, R) | ur(x) ∈ Wr , a.e. on ∂Ω}, with Wr ⊂ R,µ is a Lebesgue measure
on ∂Ω, {w⃗n} be a dense sequence in U⃗A and let S ⊂ ∂Ω be a measurable set, s.t.

u⃗(x) =

{
w⃗n(x), if x ∈ S
w⃗(x), if x /∈ S

Hence (30a) becomes ∫
S

χ′T
w⃗ · (w⃗n − w⃗) ds ≥ 0, for each S ⊂ ∂Ω

Then from Egorov’s Theorem [13] once get that

χ′T
w⃗ · (w⃗n − w⃗) ≥ 0, a.e. on ∂Ω. hence

χ′
w⃗(x, y⃗, z⃗, w⃗) · (w⃗n − w⃗) ≥ 0, in Q = ∩nQn, where Qn = ∂Ω− ∂Ωn with µ (∂Ωn) = 0.

And this hold for each n, since Q is independent of n and
µ(∂Ω/Q) = µ (∪∞

n=1∂Ωn) = 0

But {w⃗n} is dense in U⃗ , then

χ′T
w⃗ · (u− w⃗) ≥ 0 in Q, i.e. a. e. on ∂Ω, or

χ′T
w⃗ · w⃗ = min

u⃗∈U⃗A

χ′T
w⃗ · u⃗, a. e. on ∂Ω.

The converse is obtained directly.

Theorem 6: In addition to the Presumptions 1,2, and 3), if ar, h1r are affine w.r.t. yr, h̄1r is affine
w.r.t. wr, ρr is bounded for each x, and hlr, h̄lr(r = 1, 2, 3, 4, l = 0, 2) are convex w.r.t. yr and wr
resp. for each x. Then the NCTH in Theorem 5 , with γ0 > 0 is also sufficient.

Proof: From proof of Theorem 5, one has that∫
∂Ω

χ′
w⃗ (x, zr, wr) ·

−−→
∆wdω ≥ 0, ∀r = 1, 2, 3, 4, ∀u⃗ ∈ U⃗

Now, assume w⃗ ∈ U⃗A, and let H(w⃗) =
∑2

l=0 γlHl(w⃗), , ∀r = 1, 2, 3, 4. then

˙⃗
H(w⃗)

−−→
∆w =

2∑
l=0

γl
˙⃗
Hl(w⃗)

−−→
∆w =

2∑
l=0

4∑
r=1

∫
∂Ω

γl (zrl + hlrwr)∆wrdω

=

∫
∂Ω

χ′
w⃗(x, z⃗, w⃗) ·

−−→
∆wdω ≥ 0

From the Presumptions on ar, ∀ r = 1, 2, 3, 4.
ar (x, yr) = ar1(x)y1 + ar2(x),

Let wr and w̄r(∀r = 1, 2, 3, 4) are given QBCV, hence yr = yrwr and ȳr = ȳrw̄r , (∀r = 1, 2, 3, 4) are
their conforming QSVS (Theorem 1), i.e.

C1y1 + c1y1 + σ1y2 + σ2y3 + σ3y4 + a11(x)y1 + a12(x) = ρ1(x), (33a)
C2y2 − σ1y1 + c2y2 + σ4y3 − σ5y4 + a21(x)y2 + a22(x) = ρ2(x), (33b)
C3y3 − σ2y1 − σ4y2 + c3y3 − σ6y4 + a31(x)y3 + a32(x) = ρ3(x), (33c)
C4y4 + σ3y1 + σ5y2 + σ6y3 + c4y4 + a41(x)y4 + a42(x) = ρ4(x), (33d)

∂yr
∂nr

=
2∑

i,j=1

crij
∂∂r
∂xj

cos (nr, xi) = wr, ∀r = 1, 2, 3, 4 (33e)
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and

C1ȳ1 + c1ȳ1 + σ1ȳ2 + σ2ȳ3 + σ3ȳ4 + a11(x)ȳ1 + a12(x) = ρ1(x), (34a)
C2ȳ2 − σ1ȳ1 + c2ȳ2 + σ4ȳ3 − σ5ȳ4 + a21(x)ȳ2 + a22(x) = ρ2(x), (34b)
C3ȳ3 − σ2ȳ1 − σ4ȳ2 + c3ȳ3 − σ6ȳ4 + a31(x)ȳ3 + a32(x) = ρ3(x) (34c)
C4ȳ4 + σ3ȳ1 + σ5ȳ2 + σ6ȳ3 + c4ȳ4 + a41(x)ȳ4 + a42(x) = ρ4(x), (34d)

∂ȳr
∂nr

=

2∑
i,j=1

crij
∂ȳr
∂xj

cos (nr, xi) = w̄r, ∀r = 1, 2, 3, 4 (34e)

Multiplying (33) by α ∈ [0, 1] and (34) by (1− α), then combining the obtained equalities from each
pair of ((33), (34)), we get

C1 (αy1 + (1− α)ȳ1) + c1 (αy1 + (1− α)ȳ1) + σ1 (αy2 + (1− α)ȳ2) + σ2 (αy3 + (1− α)ȳ3)+

σ3 (αy4 + (1− α)ȳ4) + a11(x) (αy1 + (1− α)ȳ1) + a12(x) = ρ1(x) (35a)

C2 (αy2 + (1− α)ȳ2)− σ1 (αy1 + (1− α)ȳ1) + c2 (αy2 + (1− α)ȳ2) + σ4 (αy3 + (1−
α)ȳ3)− σ5 (αy4 + (1− α)ȳ4) + a21(x) (αy2 + (1− α)ȳ2) + a22(x) = ρ2(x) (35b)

C3 (αy3 + (1− α)ȳ3)− σ2 (αy1 + (1− α)ȳ1)− σ4 (αy2 + (1− α)ȳ2) + c3 (αy3 + (1−
α)ȳ3)− σ6 (αy4 + (1− α)ȳ4) + a31(x) (αy3 + (1− α)ȳ3) + a32(x) = ρ3(x) (35c)

C4 (αy4 + (1− α)ȳ4) + σ3 (αy1 + (1− α)ȳ1) + σ5 (αy2 + (1− α)ȳ2) + σ6 (αy3 + (1−
α)ȳ3) + c4 (αy4 + (1− α)ȳ4) + a41(x) (αy4 + (1− α)ȳ4) + a42(x) = ρ4(x)

(35d)

∂

∂nr
(αyr + (1− α)ȳr) =

2∑
i,j=1

crij
∂

∂xj
(αyr + (1− α)ȳr) cos (nr, xi) = (αwr + (1− α)w̄r) ,

∀r = 1, 2, 3, 4 (35e)

It means the QBCV ⃗̄̄w = ( ¯̄w1, ¯̄w2, ¯̄w3, ¯̄w4) with ¯̄wr = αwr + (1− α) w̄r, has QSVS

ȳr = yrw̄r = yr(αwr+(1−α)w̄r) = αyrwr + (1− α)yrw̄r = αyr + (1− α)ȳr, for each r = 1, 2, 3, 4, i.e.

C1ȳ1 + c1ȳ1 + σ1ȳ2 + σ2ȳ3 + σ3ȳ4 + a11(x)ȳ1 + a12(x) = ρ1(x) (36a)
C2ȳ2 − σ1ȳ1 + c2ȳ2 + σ4ȳ3 − σ5ȳ4 + a21(x)ȳ2 + a22(x) = ρ2(x) (36b)
C3ȳ3 − σ2ȳ1 − σ4ȳ2 + c3ȳ3 − σ6ȳ4 + a31(x)ȳ3 + a32(x) = ρ3(x) (36c)
C4ȳ4 + σ3ȳ1 + σ5ȳ2 + σ6ȳ3 + c4ȳ4 + a41(x)ȳ4 + a42(x) = ρ4(x) (36d)

∂ȳr
∂nr

=
2∑

i,j=1

crij
∂ȳr
∂xj

cos (nr, xi) = w̄r, ∀r = 1, 2, 3, 4 (36e)

i.e. the operator wr → yrwr is convex-linear w.r.t. (yr, wr) resp. , for each x ∈ Ω, and for each r =
1, 2, 3, 4.

Also, from the Presumptions on h1r (x, yr) and h̄1r (x, yr) for each r = 1, 2, 3, 4 one gets that Hl(w⃗)
is convex w.r.t. (y⃗, w⃗) for each x ∈ Ω, and so H(w⃗) is convex w.r.t (y⃗, w⃗). On the other hand Hl(w⃗),
for each , l = 0, 1, 2 has the FD and continuous for each w⃗ ∈ U⃗ , and U⃗ is convex. hence

˙⃗
H(w⃗)

−−→
∆w ≥ 0.
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Thus, H(w⃗) has a minimum at w⃗, i.e.

H(w⃗) ≤ H(
⇀
u), ∀ ⇀

u∈ U⃗

⇒
2∑

l=0

γlHl(
⇀
w) ≤

2∑
l=0

γlHl(
⇀
u) (37)

Now, let u⃗ ∈ U⃗A⃗, then (37) becomes

γ0H0(
⇀
w) + γ2H2(

⇀
w) ≤ γ0H0(

⇀
u), ∀ ⇀

u∈ U⃗ ,

and from (30b),
γ0H0(

⇀
w) ≤ γ0H0(

⇀
u), ∀u⃗ ∈ U⃗ =⇒ H0(

⇀
w) ≤ H0(

⇀
u), ∀u⃗ ∈ U⃗

i.e. w⃗ is a QBOC for the problem.

CONCLUSION
The existence theorem for a QBOCV that satisfies the EINC of the problem is established and proven
under appropriate assumptions. The mathematical formulation of the AQEs associated with the
QNES is derived, along with the Fréchet derivative for the CF and the EINC. Finally, the NCTH and
SCTH for optimality are formulated and proven through the application of the Kuhn-Tucker-Lagrange
Theorem.
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