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ABSTRACT: Background: The dynamics of fractional oscillators are
generally described by fractional differential equations, which include the frac-
tional derivative of the Caputo or Riemann-Liouville type. These equations
induce classical oscillator equations like the harmonic oscillator equation, to
include fractional order derivatives. Solving fractional differential equations
numerically can be challenging due to the non-local nature of fractional deriva-
tives. Objective: In this paper, a recently developed integral Rohit transform is
utilized for solving systems of undamped and damped fractional oscillators char-
acterized by differential equations of fractional or non-integral order involving
the Caputo-fractional derivative operator. The solutions of fractional systems
which include undamped-simple fractional oscillators, undamped-driven frac-
tional oscillators, damped-driven fractional oscillators, and damped-fractional
oscillators are obtained. Methods: by applying the integral Rohit transform,
also written as RT. Differential equations of fractional or non-integral order
are generally solved by utilizing methods which include the fractional varia-
tional iteration approach, the homotopy-perturbation method, the equivalent
linearized method, the Adomian decomposition method, etc. Results: This
paper demonstrates the effectiveness, reliability, and efficiency of the integral
Rohit transform in solving fractional systems, which include undamped-simple
fractional oscillators, undamped-driven fractional oscillators, damped-driven
fractional oscillators, and damped-fractional oscillators and are character-
ized by differential equations of fractional or non-integral order involving the
Caputo-fractional derivative operator. Conclusions: The Rohit transform
brought the progressive principles or methodologies that offer new insights or
views on the problems examined in the paper, distinguishing itself from existing
methods and doubtlessly beginning up new research instructions. It provided
precise results for the specific problems discussed in the paper, surpassing the
capabilities of other methods in terms of decision, constancy, or robustness to
noise and disturbances.

KEYWORDS: Rohit transform; Fractional oscillators; Caputo-fractional
derivative operator; Fractional differential equations

INTRODUCTION

F ractional oscillators have become popular due to their ability to capture complex behaviors that
are not adequately represented by classical integral-order differential equations. Fractional calcu-

lus extends the ideas of derivatives and integrals of non-integral order. Fractional differential equations
involve fractional derivatives, which induce the concept of differentiation into non-integer orders. The
unique characteristic of fractional oscillators is that they have a long memory, which means that
their behavior can not only be controlled by the present moment but also by past events over nu-
merous periods. Due to this characteristic, fractional oscillators are relevant for modeling systems
with memory-related effects. The current state of fractional oscillators can be affected by events from
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the remote past. This non-local behavior of fractional oscillators differentiates them from classical
oscillators. Fractional oscillators find applications in the modeling of viscoelastic materials, control
systems with memory, modeling of neuron firing patterns, and modeling of long-range dependence in
financial time series [1]–[3]. Fractional oscillators are enforced in control systems to design controllers
for those systems that are used to remember past actions. Fractional oscillators are enforced in signal
processing to filter, cut out noise, and resolve time series. These oscillators are used in modeling the
electrical circuits with memory effects and non-local interactions. They are also used in designing
circuits with upgraded stability, good frequency response, and noise elimination [4]–[6]. The frac-
tional oscillators are described by fractional differential equations, which include the Caputo-type or
Riemann-Liouville-type fractional derivative operator [7]–[9]. These fractional differential equations
cannot be easily solved numerically due to the non-local behavior of fractional derivative operators. In
this paper, the undamped-simple fractional oscillator, undamped-driven fractional oscillator, damped-
driven fractional oscillator, and damped fractional oscillator are described by fractional differential
equations, which include the Caputo-type fractional derivative operator. Fractional differential equa-
tions, which include the Caputo-type or Riemann-Liouville-type fractional derivative operator are
generally solved by the equivalent linearized technique [10], the method of differential transform [11],
[12], homotopy-perturbation technique [13], Adomian decomposition method [14], and the method of
fractional variational iteration [15]. The paper explores the application of the Rohit transform tech-
nique to solve fractional systems, including undamped-simple fractional oscillators, undamped-driven
fractional oscillators, damped-driven fractional oscillators, and damped fractional oscillators., which
include the Caputo-type fractional derivative operator. The Rohit transform has not been sufficiently
utilized to solve systems of fractional oscillators due to its recent appearance. The author Rohit
Gupta has proffered the Rohit transform, also written as RT, in recent years to expedite the process
of solving differential equations. This transform has been successfully applied to solve many initial
value problems in the physical sciences and engineering [16]. The Rohit transform [17] is defined for
a function of exponential order by the integral equations as

R {h (t)} = q3
∫ ∞

0

e−qth (t) dt, t ≥ 0 , q1 ≤ q ≤ q2.

The variable q is used to factor the variable t into the argument of the function h. The Rohit
transforms of some unidentified functions [18] are given by

R {tn} =
n!

qn−2
,

R {sinbt} =
b q3

q2 + b2
,

R {cosbt} =
q4

q2 + b2
,

R
{
ebt

}
=

q3

q − b
.

The Rohit transforms of some derivatives [19], [20] are given by

R {g′ (t)} = qG (q)− q3g (0) ,

R {g′′ (t)} = q2G (q)− q4g (0)− q3g′ (0) ,

R {g′′′ (t)} = q3G (q)− q5g (0) − q4g′ (0)− q3g′
′
(0) .

In general,

R {gn (t)} = qnR {g (t)} −
n∑

k=1

qn−k+3gk−1 (0) .

The organization of the paper is as follows: Firstly, brief information on a Mittag-Leffler func-
tion, and fractional operators such as the Caputo fractional derivative operator and their attributes
is provided. Secondly, the Rohit transform of the Mittag-Leffler function and the Caputo fractional
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derivative operator are obtained. Thirdly, the solutions of fractional systems such as undamped-
simple fractional oscillators, undamped-driven fractional oscillators, damped-driven-fractional oscilla-
tors, and damped fractional oscillators, characterized by differential equations of non-integral orders
entailing the Caputo fractional derivative operator, are obtained by applying Rohit transform (RT).
Finally, the conclusions of the study are presented.

Rohit Transform of Convolution
The Rohit transform of convolution: (f ◦ g)(t) is given by

R(f ◦ g) (t) = 1

q3
F (q)G(q). (1)

Proof: Since (f ◦ g) (t) =
∫ t

0 f (t− x) g (x) dx, therefore,

R {(f ◦ g) (t)} = q3
∫ ∞

0

e−qt (f ◦ g) (t) dt

= q3
∫ ∞

0

e−qt

∫ t

0

f (t− x) g (x) dx dt

= q3
∫ ∞

0

∫ t

0

e−qtf (t− x) g (x) dx dt.

By altering the order of integration, the above integral becomes

R {(f ◦ g) (t)} = q3
∫ ∞

0

∫ ∞

t

e−qtf (t− x) g (x) dt dx

R {(f ◦ g) (t)} = q3
∫ ∞

0

e−qxg (x) dx

∫ ∞

x

e−q(t−x)f (t− x) dt.

Let t− x = y, then

R {(f ◦ g) (t)} = q3
∫ ∞

0

e−qxg (x) dx

∫ ∞

0

e−qyf(y) dy

R {(f ◦ g) (t)} =
1

q3

[
q3

∫ ∞

0

e−qxg (x) dx

] [
q3

∫ ∞

0

e−qyf (y) dy

]
R {(f ◦ g) (t)} =

1

q3
G(q)F (q).

Special Functions and Their Properties
The Mittag-Leffler function, with two parameters, is defined as

Eα, b (t) =
∞∑
n=0

tn

Γ (αn+ b)
. (2)

Here t belongs to the complex plane, α > 0, b belongs to real numbers, and Γ is the gamma
function. For the particular values of the parameters α and b, we find well-known classical functions.
For example,

E0,1 (t) =
∞∑
n=0

tn =
1

1− t
, |t| < 1,
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E1,1 (t) =
∞∑
n=0

tn

Γ(n+ 1)
= et,

E1,2 (t) =
∞∑
n=0

tn

Γ (n+ 2)
=

(et − 1)

t
,

E2,1 (−t2) =
∞∑
n=0

(−t2)
n

Γ(2n+ 1)
= cost,

E2,2 (−t2) =
∞∑
n=0

(−t2)
n

Γ(2n+ 2)
=

sint

t
,

E2,2 (t2) =
∞∑
n=0

t2n

Γ(2n+ 2)
=

sinht

t
,

E1,1 (t2) =

∞∑
n=0

t2n

Γ(2n+ 1)
= cosht,

E 1
2
,1 (t) =

∞∑
n=0

tn

Γ(12n+ 1)
= et

2

erfc(−t).

The Riemann-Liouville fractional integral [4] of order α is put into words as

α0I
α
xf(x) =

1

Γ (α)

∫ α

α0

(x− t)α−1 f (t) dt, α > 0. (3)

Some of the attributes of the Riemann-Liouville fractional integral [4] are given by

α0I
0
xf(x) = f (x) ,

α0I
α
x

(
α0I

β
xf(x)

)
= α0I

α+β
x f(x),

0I
α
x (C) =

C

Γ (α+ 1)
xα, α > 0

0I
α
x (x

n) =
Γ (n+ 1)

Γ (n+ α+ 1)
xn+α, α, (n+ 1) > 0

−∞Iαx
(
ekx

)
=

ekx

kα
, α, k > 0

−∞Iαx (sinkx) = kα sin
(
kx− απ

2

)
, α > 0

−∞Iαx (coskx) = kα cos
(
kx− απ

2

)
, α, k > 0.

The Caputo fractional derivative [5] with order α is defined as follows:

C
α0
D

α

x
f (x) =

(
d

dx

)n

α0I
n−α
x f (x) =

1

Γ (n− α)

(
d

dx

)n ∫ α

α0

(x− t)n−α−1 f (t) dt, (4)

where α > 0 and (n− 1) < α ≤ n. Some of the attributes of the Caputo fractional derivative [5] are
given by

C
0 D

α

x (C) = 0 , α > 0

C
0 D

α

x (x
n) =

Γ (n+ 1)

Γ (n− α+ 1)
xn−α , α, (n+ 1) > 0

C
0 D

α

x

(
ekx

)
= knxn−αE1,n−α+1 (kx), α, k > 0

C
0 D

α

x (sinkx) = − i

2
(ik)nxn−α[E1,n−α+1 (ikx)− (−1)nE1,n−α+1 (−ikx)], α > 0.
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Rohit Transform of Special Functions
This section presents the Rohit transform applied to various special functions, including the

Riemann-Liouville fractional integral, the Caputo fractional derivative, and the Mittag-Leffler func-
tion.

R {0Iαxf (x)} = R

{
1

Γ (α)

∫ α

0

(x− t)α−1 f (t) dt

}
= R

{
1

Γ (α)
(x)α−1 ◦ f (x)

}
=

1

Γ (α)

1

q3
R
{
xα−1

}
R {f (x)}

=
1

Γ (α)

1

q3
Γ (α)

qα−1−2
F (cq)

= q−αF (q) ,

Hence
R0I

α
xf(x) = q−αF (q) . (5)

Let g (x) =
(

d
dx

)n
f (x) and since R0I

n−α
x f(x) = q−n+αF (q), therefore,

R0I
n−α
x g(x) = q−n+αG (q) ,

R0I
n−α
x g(x) = q−n+αR

(
d

dx

)n

f (x),

R0I
n−α
x g(x) = q−n+α

[
qnR {f (t)} −

n−1∑
k=0

qn−k+2fk (0)

]
,

R0I
n−α
x g(x) = qαR {f (t)} −

n−1∑
k=0

qα−k+2fk (0) . (6)

Now,
RC

0 D
α

xf (x) = R

(
d

dx

)n

0I
n−α
x f (x),

RC
0 D

α

xf (x) = R
{
0I

n−α
x g (x)

}
. (7)

From equations (6) and (7), we have

RC
0 D

α

xf (x) = qαF (q)−
n−1∑
k=0

qα−k+2fk (0) .

Hence

RC
0 D

α

xf (x) = qαF (q)−
n−1∑
k=0

qα−k+2fk (0) . (8)

As R
{
tαn+b−1

}
= q3

∫∞
0 e−qttαn+b−1dt. By putting x = qt, we have

R
{
tαn+b−1

}
= q2

∫ ∞

0

e−x

(
x

q

)αn+b−1

dx,

R
{
tαn+b−1

}
= q−αn−b+3

∫ ∞

0

e−xxαn+b−1dx,
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R
{
tαn+b−1

}
= q−αn−b+3 Γ(αn+ b). (9)

Since
∑∞

n=0 σ
n q−(n+1)α = (qα − σ)−1, therefore, equation (9) becomes

R
{
tb−1Eα, b (σtα)

}
= R

{
tb−1

∞∑
n=0

(σtα)n

Γ (αn+ b)

}
,

R
{
tb−1Eα, b (σtα)

}
=

∞∑
n=0

σnR
{
tαn+b−1

}
Γ (αn+ b)

,

R
{
tb−1Eα, b (σtα)

}
=

∞∑
n=0

σn q−αn−b+3 Γ (αn+ b)

Γ (αn+ b)
,

R
{
tb−1Eα, b (σtα)

}
=

∞∑
n=0

σn q−αn−b+3 ,

R
{
tb−1Eα, b (σtα)

}
= qα−b+3

∞∑
n=0

σn q−αn−α ,

R
{
tb−1Eα, b (σtα)

}
= qα−b+3

∞∑
n=0

σn q−(n+1)α ,

R
{
tb−1Eα, b (σtα)

}
= qα−b+3 (qα − σ)

−1
,

Hence,

R
{
tb−1Eα, b (σtα)

}
=

qα−b+3

qα − σ
. (10)

MATERIALS AND METHODS
This section applies the Rohit transform to solve the following systems of fractional oscillators in-
volving the Caputo fractional derivative: undamped simple fractional oscillators, undamped driven
fractional oscillators, damped driven fractional oscillators, and damped fractional oscillators.

Example 1: Consider the undamped-simple fractional oscillator system involving the Caputo frac-
tional derivative of the form:

C
0 D

α

t f (t) + ωαf (t) = 0. (11)
where t > 0, and 1 < α < 2, subjected to the initial conditions [21]: f (0) = c, and f ′ (0) = 0.
Solution: Taking the RT of C

0 D
α
t f (t) + ωαf (t) = 0,we get

R
{
C
0 D

α

t f (t)
}
+ ωαR {f (t)} = 0. (12)

Since RC
0 D

α
t f(t) = qαF (q) −

∑n−1
k=0 q

α−k+2fk (0) and (n − 1) < α < n, therefore, equation (12)
becomes

qαF (q)−
1∑

k=0

qα−k+2fk (0) + ωα F (q) = 0,

qαF (q)− qα+2c− qα+1f ′ (0) + ωα F (q) = 0,

qαF (q)− qα+2c+ ωα F (q) = 0,

F (q) =
qα+2c

qα + ωα
. (13)
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As R−1
{

qα−b+3

qα−σ

}
= tb−1Eα, b (σta), applying inverse RT to equation (13), we have

f (t) = C t1−1Eα, 1 (−ωαtα) ,

f (t) = C Eα, 1 (−ωαtα) . (14)
The equation (14) illustrates the behavior of an undamped-simple fractional oscillator. For a

classical non-fractional oscillator, consider: α = 2, then from equation (14), we have

f (t) = C E2, 1

(
−ω2t2

)
= C cosωt. (15)

For C = 1 and ω = 314, the graph of equation (15) is shown in Figure 1.

Figure 1. Numerical solution of an undamped-simple non-fractional oscillator

Example 2: Consider the undamped-driven fractional oscillator system involving the Caputo frac-
tional derivative of the form: C

0 D
α
t f (t) + ωα

f (t) = h (t) . (16)

where t > 0, and 1 < α < 2, with the initial conditions: f (0) = c, and f ′ (0) = 0.
Solution: Taking the RT of C

0 D
α
t f (t) + ωαf (t) = h(t), we get

R
{
C
0 D

α

t f (t)
}
+ ωαR {f (t)} = Rh (x) (17)

Since RC
0 D

α
t f(x) = qαF (q) −

∑n−1
k=0 q

α−k+2fk (0) and (n − 1) < α < n, therefore, equation (17)
becomes

qαF (q)−
1∑

k=0

qα−k+2fk (0) + ωα F (q) = H(q),

qαF (q)− qα+2c− qα+1f ′ (0) + ωα F (q) = H (q) ,

qαF (q)− qα+2c+ ωα F (q) = H(q),

F (q) =
qα+2c

qα + ωα
+

H (q)

qa + ωα
,

F (q) =

{
qα+2c

qα + ωα

}
+

{
q3H (q)

q3(qα + ωα)

}
. (18)
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Applying inverse RT to equation (18), we get

f (t) = R−1

{
qα+2c

qα + ωα

}
+ R−1

{
H (q)G (q)

q3

}
, (19)

where G (q) = q3

qα+ωα As R−1
{

qα−b+3

qα−σ

}
= tb−1Eα, b (σtα), therefore,

R−1 {G (q)} = g (t) = R−1

{
q3

qα + ωα

}
= ta−1Eα, α (−ωαtα) ,

where b = α And R−1
{

qα+2c
qa+ωα

}
= c t1−1Eα, 1 (−ωαtα) = cEα, 1 (−ωαtα), where b = 1. Hence,

equation (19) becomes

f (t) = cEα, 1 (−ωαtα) + R−1

{
H (q) G (q)

q3

}
,

f (t) = cEα, 1 (−ωαtα) + g (t) ∗ h (t) . (20)
Since g (t) ∗ h (t) =

∫ t

0 g (t− τ)h (τ) dτ =
∫ t

0 (t− τ)α−1Eα, α (−ωα (t− τ)α)h (τ) dτ , therefore,
equation (20) becomes

f (t) = cEα, 1 (−ωαtα) +

∫ t

0

(t− τ)α−1Eα, α (−ωα (t− τ)α)h (τ) dτ. (21)

The equation (21) illustrates the behavior of an undamped-driven fractional oscillator. For a
classical non-fractional oscillator, consider:α = 2, and let h (t) = sinωt, then from equation (21), we
have

f (t) = cE2, 1

(
−ω2t2

)
+

∫ t

0

(t− τ)2−1Eα, α

(
−ω2 (t− τ)2

)
(sinωτ) dτ,

f (t) = c cosωt+

∫ t

0

(t− τ) sinω (t− τ) (sinωτ) dτ,

f (t) = c cosωt+
1

2
0tt− [cost− 2− cost]d,

f (t) = c cosωt+
1

2

∫ t

0

(t− τ) cos (ωt− 2ωτ)dτ − 1

2

∫ t

0

(t− τ) cos (ωt)dτ. (22)

Since
∫ t

0 (t− τ) cos (ωt− 2ωτ)dτ = sinωt
2ω and

∫ t

0 (t− τ) cos (ωt)dτ =t2 cosωt
2 , therefore, from equa-

tion (22), we have

f (t) = c cosωt+
sinωt

4ω
− t2

4
cosωt. (23)

For C = 1000 and ω = 3.14, the graph of the equation (23) is shown in Figure 2.

Figure 2. Numerical solution of an undamped-driven non-fractional oscillator
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Example 3: Consider the damped-fractional oscillator involving the Caputo fractional derivative of
the form:

C
0 D

α

t f (t) +AC
0 D

β

t f (t) +Bf (t) = 0. (24)
where t > 0, f (0) = C and

1 < α < 2, 0 < β < 1, f ′ (0) = D.

Solution: Taking the RT of C
0 D

α
t f (t) +AC

0 D
β
t f (t) +Bf (t) = 0, we get

R
{
C
0 D

α

t f (t)
}
+AR

{
C
0 D

β

t f (t)
}
+BRf (t) = 0. (25)

Since RC
0 D

α
t f(t) = qαF (q) −

∑n−1
k=0 q

α−k+2fk (0) and (n − 1) < α < n, therefore, equation (25)
becomes

qαF (q)−
n−1∑
k=0

qα−k+2fk (0) +AqβF (q)−A

n−1∑
k=0

qβ−k+2fk (0) +BF (q) = 0,

qαF (q)−
1∑

k=0

qα−k+2fk (0) + AqβF (q)−A
0∑

k=0

qβ−k+2fk (0) +BF (q) = 0,

qαF (q)− qα+2C − qα+1D +AqβF (q)−Aqβ+2C +BF (q) = 0,

F (q) =
qα+2C + qα+1D +Aqβ+2C

qα +Aqβ +B
. (26)

Now, let us simplify the term: 1
(qα+dqβ+b)

as follows:

1

(qα + dqβ + b)
=

q−β

(qα−β + d)
(
1 + bq−β

qα−β+d

) ,
1

(qα + dqβ + b)
=

q−β

(qα−β + d)

1(
1− −bq−β

qα−β+d

) ,
1

(qα + dqβ + b)
=

q−β

(qα−β + d)

∞∑
k=0

(
−bq−β

qα−β + d

)k

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−β

(qα−β + d)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−β

(qα−β)
k+1

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−β(qα−β)

−k−1

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−βq−αk+βk−α+β

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−αk−α

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k q−αk−α
∞∑
r=0

(
k + 1 + r − 1

r

)
(−dqβ−α)

r
,
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[
∵ 1

(1 − x)n
=

∞∑
r=0

(
n+ r − 1

r

)
xr, where

(
n+ r − 1

r

)
= (n+ r − 1)Cr =

(n + r − 1)!

r! (n− 1)!

]
1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(qβr−αr−αk−α). (27)

Using equation (27) in equation (26), we have

F (q) =
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(qβr−αr−αk−α)

[
qα+2C + qα+1D +Aqβ+2C

]
,

F (q) =
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r)(qβr−αr−αk+2)C+(qβr−αr−αk+1)D+A(qβr+β−αr−αk−α+2)C. (28)

As R−1
(

1
qn−2

)
= R−1

(
q2−n

)
= tn

Γ(n+1) , or R−1 (qz) = t2−z

Γ(3−z) , applying inverse RT to equation (28),
we have

f (t) =

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(

tαr−βr+αk

Γ (αr − βr + αk + 1)
C +

tαr−βr+αk+1

Γ (αr − βr + αk + 2)
D +A

tαr−βr−β+αk+α

Γ (αr − βr − β + αk + α+ 1)
C

)
,

f(t) =

∞∑
k=0

(−b)k
∞∑
r=0

(k + r)!

r!k!
(−d)r(

tαr−βr+αk

Γ(αr − βr + αk + 1)
C +

tαr−βr+αk+1

Γ(αr − βr + αk + 2)
D +A

tαr−βr−β+αk+α

Γ(αr − βr − β + αk + α+ 1)
C

)
. (29)

The equation (29) illustrates the behavior of a damped-fractional oscillator.

Example 4: Consider the damped-driven fractional oscillator involving the Caputo fractional deriva-
tive of the form:

C
0 D

α

t f (t) +AC
0 D

β

t f (t) +Bf (t) = h (t) . (30)
where t > 0, 1 < α < 2, 0 < β < 1, f ′ (0) = D and f (0) = C.

Solution: Taking the RT of C
0 D

α
t f (t) +AC

0 D
β
t f (t) +Bf (t) = h(t), we get

R
{
C
0 D

α

t f (t)
}
+AR

{
C
0 D

β

t f (t)
}
+BRf (t) = Rh (t). (31)

Since RC
0 D

α
t f(t) = qαF (q) −

∑n−1
k=0 q

α−k+2fk (0) and (n − 1) < α < n, therefore, equation (31)
becomes

qαF (q)−
n−1∑
k=0

qα−k+2fk (0) +AqβF (q)−A
n−1∑
k=0

qβ−k+2fk (0) +BF (q) = H(q),

qαF (q)−
1∑

k=0

qα−k+2fk (0) +AqβF (q)−A
0∑

k=0

qβ−k+2fk (0) +BF (q) = H(q),

qαF (q)− qα+2C − qα+1D +AqβF (q)−Aqβ+2C +BF (q) = H(q),

F (q) =
qα+2C + qα+1D +Aqβ+2C

qα +Aqβ +B
+

H(q)

qα +Aqβ +B
. (32)
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Now, let us simplify the term: 1
(qa+dqβ+b)

as follows:

1

(qα + dqβ + b)
=

q−β

(qα−β + d)
(
1 + bq−β

qα−β+d

) ,
1

(qα + dqβ + b)
=

q−β

(qα−β + d)

1(
1− −bq−β

qα−β+d

) ,
1

(qα + dqβ + b)
=

q−β

(qα−β + d)

∞∑
k=0

(
−bq−β

qα−β + d

)k

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−β

(qα−β + d)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−β

(qα−β)
k+1

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−β(qα−β)

−k−1

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−βk−βq−αk+βk−α+β

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
q−αk−α

(1 + dqβ−α)
k+1

,

1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k q−αk−α
∞∑
r=0

(
k + 1 + r − 1

r

)
(−dqβ−α)

r
,

[
∵ 1

(1− x)n
=

∞∑
r=0

(
n+ r − 1

r

)
xr,where

(
n+ r − 1

r

)
= (n+ r − 1)Cr =

(n+ r − 1)!

r!(n− 1)!

]
1

(qα + dqβ + b)
=

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(qβr−αr−αk−α). (33)

Using equation (33) in equation (32), we have

F (q) =
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(qβr−αr−αk−α)

[
qα+2C + qα+1D +Aqβ+2C

]
+

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(qβr−αr−αk−α)H(q),

F (q) =
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r)(qβr−αr−αk+2)C + (qβr−αr−αk+1)D+

A(qβr+β−αr−αk−α+2)C +
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(qβr−αr−αk−α)H(q),
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F (q) =
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r

r

)
(−d)r(

qβr−αr−αk+2C + qβr−αr−αk+1D +Aqβr+β−αr−αk−α+2C
)

+
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r

r

)
(−d)r

G(q)H(q)

q3
. (34)

where G(q) = (qβr−αr−αk−α+3) As R−1
(

1
qn−2

)
= R−1

(
q2−n

)
= tn

Γ(n+1) , or R−1 (qz) = t2−z

Γ(3−z) , applying
inverse RT to equation (34), we have

f (t) =
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r(

tαr−βr+αk

Γ (αr − βr + αk + 1)
C +

tαr−βr+αk+1

Γ (αr − βr + αk + 2)
D +A

tαr−βr−β+αk+α

Γ (αr − βr − β + αk + α+ 1)
C

)
+

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r
r

)
(−d)r R−1

{
G (q) H (q)

q3

}
,

f(t) =

∞∑
k=0

(−b)k
∞∑
r=0

(k + r)!

r!k!
(−d)r(

tαr−βr+αk

Γ(αr − βr + αk + 1)
C +

tαr−βr+αk+1

Γ(αr − βr + αk + 2)
D+

A
tαr−βr−β+αk+α

Γ(αr − βr − β + αk + α+ 1)
C

)
+

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r

r

)
(−d)r g(t) ∗ h(t). (35)

Since R−1 {G (q)} = g (t) = R−1(qβr−αr−αk−α+3) = t−βr+αr+αk+α−1

Γ(−βr+αr+αk+α) and g (t)∗h (t) =
∫ t

0 g (t− τ)h (τ) dτ =∫ t

0
(t−τ)−βr+αr+αk+α−1

Γ(−βr+αr+αk+α) h (τ) dτ , therefore, equation (35) becomes

f(t) =
∞∑
k=0

(−b)k
∞∑
r=0

(k + r)!

r!k!
(−d)r(

tαr−βr+αk

Γ(αr − βr + αk + 1)
C +

tαr−βr+αk+1

Γ(αr − βr + αk + 2)
D+

A
tαr−βr−β+αk+α

Γ(αr − βr − β + αk + α+ 1)
C

)
+

∞∑
k=0

(−b)k
∞∑
r=0

(
k + r

r

)
(−d)r

∫ t

0

(t− τ)−βr+αr+αk+α−1

Γ(−βr + αr + αk + α)
h(τ)dτ. (36)

The equation (36) illustrates the behavior of a damped-driven fractional oscillator.

CONCLUSION
The paper explores the application of the Rohit transform technique to solve fractional systems,
including undamped-simple fractional oscillators, undamped-driven fractional oscillators, damped-
driven fractional oscillators, and damped fractional oscillators. These systems are described by frac-
tional differential equations, which include the Caputo-type fractional derivative operator. The be-
havior of these systems is expressed in terms of the Mittag-Leffler function. The solutions obtained
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by the integral Rohit transform technique are the same as those obtained by methods available in
the literature [10]–[15]. The advantage of the integral Rohit transform is that it involves a simple
formulation and less calculation than the methods [10]–[15].

The integral Rohit transform technique has solved many initial value problems in the areas of
science, engineering, geology, and economics. In future, it will be applied in the area of cryptography
to increase security in communication systems.
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