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Articlelnfo | Abstract

This paper concerned with the solution of the nanoscale structures consisting of the InAds/GaAs

Submitted with an effective mass envelope function theory, the electronic states of the InAs/GaAs
24/06/2017 quantum ring are studied. In calculations, the effects due to the different effective masses of
electrons in and out the rings are included. The energy levels of the electron are calculated in the

Accepted different shapes of rings, i.e., that the inner radi_us of rings St_ansitively change the elgctronic
01/10/2018 states. The structures of InAs/GaAs quantum rings are studied by the one electronic band
Hamiltonian effective mass approximation, the energy- and position-dependent on electron

. effective mass approximation, and the spin-dependent on the Ben Daniel-Duke boundary
Published conditions. In the description of the Hamiltonian matrix elements, the Finite elements method
01/10/2019 with different base linear triangular element is adopted. The non-linear energy confinement

problem is solved approximately by using the Finite elements method with linear triangular
element, to calculate the energy of the electron states for the InAds/GaAs quantum ring.

Keywords: nanoscale, Finite elements method, Ben Daniel-Duke boundary conditions,
InAs/GaAs quantum rings.
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Introduction

The modeling of the electron states in
semiconductor  nanostructures remains a
difficult computational task. The single
electron states are advantageous for studying
the electron correlations and, the effects of
magnetic fields in quantum rings and useful for
designing and fabricating the double colors
detector by intra band and inter band
translations.

In 1990, Paasch et al., [2] used envelope
equation and wave function matching for
narrow-gap semiconductors. In 1995, Mathine

et al., [1] applied computational Fourier series
solution of the BenDaniel-Duke Hamiltonian
for arbitrary shaped quantum wells. In 2001,
Yiming Li et al., [6] used Computer simulation
of electron energy levels for different shape
InAs/GaAs semiconductor quantum dots. In
2002, Yiming Li et al., [7] used Electron
energy state spin-splitting in 3D cylindrical
semiconductor quantum dots. In 2003, Melnik
et al., [4] applied finite element analysis of
Nanowire superlattice structures. Whereas
2005, Yiming Li, [5] using an iterative method
for single and vertically stacked semiconductor
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quantum dots simulation. In 2016, Deyasi et
al., [3] applied numerically computed in
presence of electric field using propagation
matrix method.

In this paper we propose a Finite element
method with different base linear triangular
element for solving the nanoscale structures
consisting of the InAs/GaAs quantum ring,
and the spin-dependent on the Ben Daniel-
Duke boundary conditions.

Modeling Energy Stat With Spin-
Dependent Boundary Conditions

[4],[5]

We consider the problem to compute relevant
energy states and corresponding wave
functions of a three dimensional semiconductor
quantum ring. Consider the electrons are
confined in system of the three-dimensional
quantum ring structures and apply an effective
one electronic band Hamiltonian, is given by:

H= ﬁO Aso(r) (1)

where H is the Hamiltonian of the system
without spin-orbit interaction, Voo (r) is the
spin-orbit interaction for the conductlon band
electrons, and the expression for H, is as
follows:

h2

—~ 1
Ho = 7Vr (m(E,r)

J.+ve @

where V,. is the spatial gradient, m(E,r) is the
energy dependent electron effective mass, and
V (r) is the confinement potential.

1 P? 2
m(E,r) A2 [E +E,(r)—V(r)

1
TETE,(M + A -

where E;(r) and A(r) stand for the position
dependent band gap and the spin-orbit splitting
in the valence band, respectively and, P is the
momentum matrix element.

The spin-orbit_interaction for the conduction
band electrons V,, (r) is given by

Veo () = iVB(E, 1) - [6 X V] 4
is the spin-orbit coupling

where B(E, r)
o,} is the vector of

parameter and 6 = {o,, 0y, 0.

20

the Pauli matrices. The energy and position
dependent B(E, r) has the form

E P2 1
BT = E +Ey(r) —V(r)
! 5
CE+E,M+AM -V )

For those quantum ring systems that have sharp
discontinuity on the conduction band interfaces
between the quantum ring ("InAs" material 1)
and semiconductor matrix ("GaAs" material 2),
the hard-wall confinement potential is

V() = {0 r € material 1
r Vo, r € material 2,

where V, is the structure band offset.
Combining the Hamiltonian in equations (1),
(2), and (4), the spin dependent Ben Daniel-
Duke boundary conditions for the electron
wave function W(r) are written as follows:

Whaterial 1(75) =

V— iVB(E, )[6 X V]} w(r) = C,

(6)

Waterial 2(7s)
hz
{Zm(E, )
where V, is the some constant, r; denotes the

position of the system interface.

Note (1): We note that the expressions of
electron effective mass in equation (3), spin-
orbit coupling parameter in equation (5), and
the equations of Ben Daniel-Duke boundary
condition in equation (7) are all energy and
position dependent relationships in this study.

material 2

K
$7>

(7)

Figure 1: A three-dimensional plot of the disk-shaped
semiconductor quantum ring

We now consider the quantum ring as shown in
Fig.(1) with the inner radius R;;,, radius R, and
the thickness Z, in the cylindrical coordinate
(R,¢,Z). The origin of the system is at the
center of the structure and the Z axis is chosen
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along the rotation axis. Since the system is
cylindrically symmetric, the wave function can
be represented as

¥Y(r) = ¢(R, Z)exp(ilp), (8)

where [ is a constant represents the electron
orbital quantum number and the original model
remains a two-dimensional problem in (R, Z)
coordinate. From equations (1)-(6) and
equation (8), we obtain the following equation

h? [ 92 L2 92
2m,(E)\OR? ' ROR ' 972

l2
- ﬁ) $1(R,Z) = E¢1(R,Z),
V(R,Z) € material 1 9

and

2 92 s ) s 92
2m,(E)\OR2 ' ROR = 022

12
- ﬁ) $2(R,Z) + Vop, (R, Z)

=E¢p,(R,Z), V(R Z)
€ material 2 (10)

For the same reasons that the problem is
symmetry along the Z axis, the spin-dependent
boundary conditions in equation (7) are given
b

y
$1(R, Z) = $,(R,Z2), Z = f(R) and

1 (0¢1(R,Z) df(R)d¢,(R,2Z)
ml(E){ aR dR OR }Z o

1 0¢,(R,Z)
B mz(E){ R

LY R)0$:(R,2)
R OR J, ..

+20(ﬁl B2) 1

h2
=0 (11)

¢1(R0, Z)

Finite Element Method

Dependence of the electron effective mass and
spin—orbit coupling parameter on each energy
state are result in a nonlinear equations (9) and
(10). The nonlinear equations complicate the
process of analytical solution in the explored
quantum ring. Therefore, the numerical
approach to the solution of the nonlinear
equations is advanced in the calculation of the
electronic structure of InAs/GaAs quantum
rings. The finite element method is applied to
solve the above problem for the nanoscale
InAs/GaAs quantum rings. Energy states and
spin-splitting are numerically calculated
without any fitting parameters. Starting from a
given initial energy, the finite element method
globally calculates all bounded energies for the
corresponding nonlinear algebraic eigenvalue
problem. A computational procedure of the
finite element method is shown below:

h? 02 0 9z 12
~2my(E) <aR2 "RoR 977~ F) (R 2)
+Vo;(R,Z)
=E¢;(R,Z), V(R,Z)
€ materiali (12)
Where i =1,2 since the cylindrical is
symmetry, V=V(R,Z2), and ¢, =

u(R,Z)e'®i, where [ is an integer. Equation
(12) becomes

16u (6u> [? N 0 <6u>
2m, (E) RoR Tor\or) RZ“ T3z \az

+Vu=Eu (13)

The electron energy spectra for InAs/GaAs
quantum rings the semiconductor band
structure governing physical process in a ring
nanoscale are described in terms of cylindrical
coordinates. When the geometry, loading, and
boundary conditions are independent of the
circumferential direction (¢ -coordinate), the
electron energy spectra for InAs/GaAs
quantum rings of the semiconductor band
structure equation become two-dimensional in
terms of R and Z.
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Weak Form

Assume that € is a typical element, whether
triangular or quadrilateral, of the finite element
mesh, and we develop the finite element model
of equation (13) over . Various two-
dimensional elements will be discussed in the
sequel.

There are three steps in the development of the
weak form of equation (13) over the typical
element Q.

The first step is formulated equation (13) by
the following weak form.

0_[ hz 1 0u+ R

)z [Mm@®or T R
12

- m(E)R

+wr 22
wu w EYA

+ VwRu — EwRul dRdZ (12)

Where

= mam) ™ E= (a)

In the second step, we note the identities

o0F, _ ow )
_WRa_R = Ra_RFl a_R(WFl) (153)
oF,  ow )

Next, using equation (15a) and equation (15b)
in the equation (14) then applying the
divergence theorem, we obtain

O_J —h? 6u+h2R6W(1 6u>
= Jy|2m; " or T 2 "R \m; 0R
N h2L? +h2RGW(1 au>
ZmiRwu 0z \m; 0Z

+ wRVu — WREul dRdZ

35 | (=

+n, (ia—u)] ds

1 au
m; BZ

(16)

22

where 7 = (nq,n,) is an outer unite vector
normal on I' and ds is the length of an
infinitesimal line element along the boundary.

From an inspection of the boundary integral in
(16), we note that the specification of u
constitutes the essential boundary condition,
and hence u is the primary variable. The
specification of the coefficient of the weight
function in the boundary expression, i.e. we

can let
1 6u> N (R 6u>
0z) T "2 \m R

d,=ny (

The third and last step of the formulation is to
substitute the definition (17) in (16) and write
the weak form of (13) as

hz 6u hz

(17)

R 6W< 1 6u>
OR \m; OR
h? 1 au)

N 6W<
WU 5 T8z i, 9z

ZmiR

+ wrVu — WrEul dRdZ

- jg wd,ds
r

Now, u(R,Z) is approximated over a typical
finite element Q by the expression
n

u(R,Z) ~ ul(R,Z) = Z ueYe(RZ)  (19)

j=1

where u? (R, Z) _is the value of up(R,Z) at the
j*" node (R;, Z;) of the element .

Substltutlng the finite element approximation
(19) for u into the weak form (18), we get

(18)
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TL
J‘ —h2 . Ov;
2ml __ W oR
n
_|__ - izu?a_lpf
2 a m; 4 ] OR
j=1
R22 o
e e
+2miRWZu] Y;
j=1
h? aw( 1~ ,oyS X
—R—|— e_J e e
+2 ACY U 57 +WRVZu]1/)]
j=1 j=1
n
~ WRE )" uf yf | dRdz
j=1
—jgwdnds (20)
r

This equation must hold for every admissible
choice of weight function w. Since we need n
independent algebraic equations to solve for
the n unknowns, uf,us,...,u$, we choose n
linearly independent functions for w:w =
Y3, 5, ..., pf. For each choice of w we obtain
an algebraic relation among (uf,us,...,ug).
We label the algebraic equation resulting from
substitution of w = vy into (20):

n

o= [ [ TR

Linear Triangular Elements:
In this section, the solution u of equation (18)
is approximated by a linear function of R and

Z, up(R,Z) in Q (by complete linear
polynomial in R and Z), i.e.
3
ue(R,Z) = Z uSPE(R, Z) (22)
i=1
when
Yi = ‘R+yizZ) (
=1,2,3) (23)
With
o =712 — T3j
2A=a, +a,+as, Bi=%i— % (i+
vi=—(r—")
Jj# k), (24)

Now, to solve equation (13), using linear
triangular element, the problem will reduce to
the following generalized eigenvalue problem.

Ku = AMu (25)

Where matrices K and M are n X n matrices,
u is the vector of unknowns of dimensionality
n, and n is the number of nodes, with

j=1
v vt (100 <[] w0 =)= 12m -
+— R (= !
2 OR m; OR 12 n
hZ 2 e
K&
Zm Rlp Vi ’ R N le d oYy
1 ;
, . e Jj l/)l ]
LR 0% 19 f Zmllp‘ PR <mi aR)
2 0z m; 0z
h2L2
+ RVY{Y] tomR VY
2 e oYs
—REw?tp‘?l dez}ue W RV (10V
i¥j j + > R 97 \m; oz dRdZ (26)
_ jﬁr wd,ds; i, M, = J [V — EIRy¢ ¢ dRZ (27)
Q
=12,..,n (21)
23
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To determine the element coefficient matrices -
K and M in (26) and (27), consider the right t 10
angle triangle show the Fig(2). | [/
o1 ©)
6 )
@
3 ®
3 5 8
: @ /| @
1 5 ) @ /®
v - . 1 1
—nr LT 2 3 T
Figure( 2) The right angle triangular element Figuer( 3) The uniform mesh Tril of

linear triangular element.
As a first choice the uniform mesh are used by
nine linear triangular element, as shown in
Fig.( 3) to represent the domain (mesh Tril), to
determine the element coefficient matrices K

nine

Then the mesh shown in Fig. (3), will be as

and M of Eq. (26) and Eq. (27) respectively. An Az Agg
The elements 1, 3, 5, 7, and 9 as shown in Fig.( K =421 Az Ags
3) are identical in orientation as well as A3y Azp Ass
geometry. Elements 2, 4, 6, and 8 are Where
geometrically identical to element 1, except
that it is oriented differently. If we number the Ay =
local nodes of element 2 or (4, 6, and 8) to Kl Kl Kl
match those of element 1, then all nine o PO LB
elements have the same element matrices, and ka1 kzp + k33 + kiy ks + k3 |,
it is necessary to compute them only for ki, ki, + k2, ki + k2, + ki2
element 1.
To evaluation of the integral in Eq. (26) and 0 0 0
Eq. (27), itis possible to obtain the closed form 4. = [k$, k% +k3; O |,
for the K and M matrices by carrying out the 0 k2. +kS k6
21 12 13

integrals in Eg. (26) and Eq. (27) exactly

respectively. We consider element 1 as the 0 0 0 O
typical element. Hence, the element coefficient Az = lo 0 0 Ol,
K and M matrices are 0 0 0 O

K, [R2+12 —h? 12 o
K] = 2hl - %0 (28) ) 2 ob s 2 ° 6
—1? 0 1? Ayy = [0 kiz+ k3 kiz +kzi)
Koy h%1? — 2h1%? —2R?1 + h®> + 2Rl + 1> —h%? —I? Az
= m —h? h? 0 | (29)[k3, + ks + k5, ki,
—-1? 0 12 = k3, kiy + k3s + k3p + kS, + iz + ki

n? 1 1 0 kS, + ks
Where k, = —— and k., = [V— E] —

2m 12A 12A

24

0
k3 + k3,
ks + k3, + k3;
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k3, k3, + k3, 0 0 Equation (13) is solved using MATLAB
Ay =10 ki +k8 kii+kiz 0 |_oro|:g;!ran3r at n = 1296. The results are shown
in Fi .
0 0 KLtk K 9
0 0 0
_{0 0 O
4110 0 of
0 0 O )
k31 0 0 ]
Ao = kis + k3 ki + k3, 0 |
32 0 Iy +k§y KD+ k3|
0 0 k3,
Azz =
5 5
[k22 k3 0 01] Figure. (4) The calculators of equation (13).
| .5 4 5 8 k8 0l
|k32 kiy + k33 + k3, 23 |
K ks> ki, +k$; + k3, k33| Conclusions
0 0 k3, k3;1  The finite element method using different base

- . linear triangular elements are used for solving
The above assembled coefficient matrix for h o
finite element mesh is of order 10 x 10. In this the nanoscale structurgs consisting - of t_he
case the sub matrices (the integrals) of k&  InAs/GaAs quantum ring, and the spin-
compute by an analytic method. The MATLAé dependent on the Ben Daniel-Duke boundary
program is used to solve the sub matrices (the conditions. The results of numerical example
Integrals) of k;; are gives a good accuracy and efficiency of this
It is |mp0rtant ’to mention that the elements of method

o :

the above sub matrices (the integrals) of k;; are

calculated by an analytic method References
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