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Through a Bluetooth connection between the Muse 2 device and the meditation app, 
leveraging IoT capabilities. The methodology encompasses data collection, preprocessing, 
feature extraction, and model training, all while utilizing Internet of Things (IoT) 
functionalities. The Muse 2 device records EEG data from multiple electrodes, which is then 
processed and analyzed within a mobile meditation platform. Preprocessing steps involve 
eliminating redundant columns, handling missing data, normalizing, and filtering, making 

use of IoT-enabled techniques. Feature extraction is carried out on EEG signals, utilizing 
statistical measures such as mean, standard deviation, and entropy. Three different models, 
including Support Vector Machine (SVM), Random Forest, and Multi-Layer Perceptron 
(MLP), are trained using the preprocessed data, incorporating Internet of Things (IoT) based 
methodologies. Model performance is assessed using metrics like accuracy, precision, recall, 
and F1-score, highlighting the effectiveness of IoT-driven techniques. Notably, the MLP and 

Random Forest models demonstrate remarkable accuracy and precision, underlining the 
potential of this IoT-integrated approach. Specifically, the three models achieved high 
accuracies, with Random Forest leading at 0.999, followed by SVM at 0.959 and MLP at 
0.99. This study not only contributes to the field of brain-computer interfaces and assistive 
technologies but also showcases a viable method to seamlessly integrate the Muse 2 device 
into meditation practices, promoting self-awareness and mindfulness with the added power 

of IoT technology. 
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 الخلاصـة
التأمل وتحليل بيانات مخطط كهربائية  Muse 2يقدم هذا البحث نظرة شاملة على ضم جهاز  ( EEGالدماغ )وتطبيق 

استهدفت التقنية المقترحة تمكين المراقبة في الوقت الفعلي وتقييم نشاط الدماغ أثناء  . (IOTمفهوم انترنت الاشياء )  ودمج
إمكانيات إنترنت  وتطبيق التأمل والاستفادة من  Muse2جلسات التأمل من خلال إنشاء اتصال بلوتوث سلس بين جهاز 

الأشياء.  تتضمن المنهجية جمع البيانات وتجهيزها واستخراج الميزات وتدريب النماذج باستخدام خوارزميات التعلم الآلي  

من أقطاب كهربائية مختلفة   EEGبيانات    لجمع  Muse 2مع تسخير إمكانات أجهزة إنترنت الأشياء.  يتم استخدام جهاز  
تسُتخدم إشارات مخطط كهربية الدماغ لاستخراج الميزات    .عد ذلك على منصة متنقلة )التأمل( ا بوالتي يتم تسجيلها وفحصه

المعياري  المتوسط والانحراف  تشمل  نماذج entropyوباستخدام وسائل  المتجهات الداعمة    مختلفة:. تُدرب ثلاثة  آلة 
(SVM )وRandom Forest والشبكة  ( العصبية ذات المستقبلات متعددة الطبقاتMLP  باستخدام البيانات المعالجة )

أداء النماذج باستخدام مقاييس مثل الضبط والدقة والاسترجاع ودرجة     الميزات.مسبقًا والمستخرجة من  مما    ،F1يُقيم 
 Randomو  MLPدقة التي حققتها نماذجتُظهر الدقة الممتازة وال  الأشياء.يعرض فعالية التقنيات التي تعتمد على إنترنت  

Forest  وتحليل المنهجية المقترحة، والتي تجمع بين مبادئ إنترنت الأشياء   فائدةEEG  :النماذج الثلاثة دقة عالية حققت 
Random Forest  (0.999وآل )المتجهات الداعمة  ة (SVM (0.959 متعددة    والشبكة المستقبلات  ذات  العصبية 

الضوء على إمكانات إنترنت الأشياء.    تظهر نتائج.  MLP (0.99) الطبقات  Randomتفوقت  ذات دقة عالية ويسلط 
Forest   حيث تتحقق من صحة تحليل بياناتEEG  مع دمج إنترنت الأشياء بشكل كبير. لا يساهم هذا    ذات النسب العالية

قابلة للتحقيق لدمج جهاز  العمل في مجال واجهات ا لدماغ والحاسوب والتقنيات المساعدة فحسب بل يعرض أيضًا طريقة 
Muse2  الأشياء. إنترنت ممارسات التأمل لتحسين الوعي الذاتي واليقظة والاستفادة من قوة  في 
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INTRODUCTION 

Brain-Computer Interfaces (BCIs) have ushered 

in a revolutionary era in human-technology 

interaction by enabling direct communication 

between the human brain and external devices. 

These interfaces harness the power of 

electroencephalography (EEG) devices to 

monitor and interpret mental activity, translating 

specific cognitive signals into actionable 

instructions for device control [1]. Among the 

various facets of BCI research, the utilization of 

EEG signals holds immense promise, as it paves 

the way for effective integration with the 

Internet of Things (IoT) and the creation of 

smart and accessible home environments [2]. 

The integration of BCIs and IoT technology has 

opened new avenues for enhancing the quality 

of life, convenience, and accessibility in daily 

living spaces. The IoT, characterized by 

interconnected objects equipped with sensors, 

software, and data exchange capabilities, has 

empowered the development of Smart Homes 

(SHs). These SHs can autonomously optimize 

the usage of a wide array of household products 

such as televisions, air conditioners, and lighting 

systems, ultimately improving our daily routines 

and overall well-being [3]. This study embarks 

on a compelling journey to unlock the potential 

of integrating the Muse 2 EEG device with 

meditation practices and IoT technology. The 

primary goal is to demonstrate how real-time 

EEG data analysis can be seamlessly integrated 

into the meditation experience, offering 

profound insights into its impact. By leveraging 

a comprehensive methodology encompassing 

data collection, preprocessing, feature 

extraction, and machine learning model training, 

the aim to shed light on the transformative 

possibilities of this integration The first stage in 

approach is to preprocess EEG data, which 

comprises duties like data cleaning, missing 

value management, normalization, and filtering. 

Subsequently, that used advanced statistical 

approaches to extract in methodology involves 

the preprocessing of EEG data, which includes 

tasks such as data cleaning, managing missing 

values, normalization, and filtering. 

Subsequently, that employed advanced 

statistical analysis methods to extract 

meaningful features from the EEG data.  the 

investigation encompasses the training and 

evaluation of three machine learning models: 

Support Vector Machine (SVM), Random 

Forest (RF), and Multi-Layer Perceptron 

(MLP). These models are rigorously assessed 

using metrics such as accuracy, precision, recall, 

and F1-score, with the Random Forest model 

demonstrating superior performance across all 

metrics, underscoring its efficacy in EEG data 

analysis. A pivotal aspect of this study involves 

the seamless communication of translated user 

intentions from the EEG system to other IoT 

devices and systems. To facilitate this leverage, 

the publish-subscribe messaging mechanism 

MQTT (Message Queuing Telemetry 

Transport). MQTT empowers devices to 

communicate efficiently and reliably, forming 

the critical bridge between the EEG system and 

the broader IoT ecosystem [5]. The convergence 

of BCI and IoT technology holds great promise 

for revolutionizing human-computer 

interactions, particularly within the context of 

smart homes. The ability of the human mind to 

control appliances and equipment directly has 

the potential to significantly enhance 

convenience, accessibility, and the overall 

quality of life [6]. In the subsequent sections of 

this paper delve into a comprehensive 

exploration of the EEG interface, data analysis 

methodologies, and the intricacies of integrating 

this system with the MQTT-based IoT 

infrastructure. Through this work, the aim to 

illuminate the practical applications and real-

world implications of this exciting technology, 

envisioning a future where the fusion of brain-

computer interfaces and the Internet of Things 

transforms the way interact with environments 

[7]. 

RELATED WORKS 

This section presents an overview of several 

researchers' relevant work, which has helped to 

improve this discipline. Here are a few notable 

past works: SEONGHUN PARK [8]. In 

research comparing visual stimuli, for a brain-

computer interface (BCI) in an augmented 

reality (AR) environment, the GSS stimulus was 

found to have the highest classification 

accuracy. Even though the AR-based BCI's 

performance was a little worse, it was still 
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functional. In order to achieve high accuracy and 

information transfer rate, the researchers created 

a home appliance control system using the GSS 

stimulus. Overall, despite slightly lower 

performance compared to a conventional BCI, 

the GSS stimulus was ideal for the AR-based 

BCI, enabling usable control of home 

appliances. by Sharath V. N [9], It explores the 

integration of brain-computer interfaces (BCIs) 

with the internet of things (IoT), highlighting the 

advantages, difficulties, and applications of 

doing so. It investigates potential solutions and 

applications, puts emphasis on the value of 

effective communication, and suggests a 

conceptual framework for BCI-IoT integration. 

It highlights the considerable potential that 

results from BCIs and IoT integration, 

highlighting the opportunities for sophisticated 

interactions and improved functionality. Ullah, 

Mehar et al. [10] discussed the ways of Internet 

of Things (IoT) and brain-computer interfaces 

(BCIs) may be combined to improve healthcare. 

The development of healthcare facilities is the 

main topic of the paper's discussion of the 

potential advantages and applications of this 

integration. It offers a conceptual framework 

that fuses BCI with IoT technologies to facilitate 

real-time data processing, remote patient 

monitoring, and effective healthcare delivery. 

The study focuses advancement in the field and 

underscores the significance of secure 

communication and data privacy in this 

environment. Gao Xiaorong et al. [11], 

discusses ways the Internet of Things (IoT) and 

brain-computer interfaces (BCIs) may be 

combined to improve healthcare. The 

development of healthcare facilities is the main 

topic of the paper's discussion of the potential 

advantages and applications of this integration. 

It offers a conceptual framework that fuses BCI 

with IoT technologies to facilitate real-time data 

processing, remote patient monitoring, and 

effective healthcare delivery. The study focuses 

advancement in the field and underscores the 

significance of secure communication and data 

privacy in this environment. Hramov et al. [12], 

The work provides a thorough analysis of brain-

computer interfaces (BCIs), focusing on its 

physical foundations, uses, and signal 

processing techniques. It covers a wide range of 

topics, such as methods to monitor brain activity 

and the different kinds and restrictions on BCIs. 

They highlight the use of BCIs in areas like 

robotics, brain state control, and rehabilitation. 

To fully realize the promise of BCIs and 

enhance human existence, they emphasize the 

significance of multidisciplinary collaboration 

and the integration of several scientific 

disciplines. Flesher [13], As a way to improve 

control over a robotic arm, it provides a novel 

BCI system that combines feedback from the 

skin. It shows through trials involving human 

subjects that adding tactile sensations 

considerably increases accuracy and 

effectiveness in operating the robotic arm. The 

tactile feedback was interpreted by the 

participants as coming from the robotic arm, 

resulting in a more natural and intuitive 

connection. The results show how sensory 

feedback can be included into BCIs, especially 

for uses like prosthetics and rehabilitation. This 

finding opens the door for further advancements 

in the sector and has significant implications for 

accurate and natural control in human-machine 

interactions. Ahamad [14] The goal of this study 

is to develop an effective BCI system that 

integrates machine learning and Internet of 

Things (IoT) technologies to enable direct brain-

to-device connection. The suggested 

architecture improves the use of EEG data for 

signal analysis, categorization, and 

interpretation. Signal acquisition, 

preprocessing, feature extraction, machine 

learning methods, and IoT devices for data 

transfer and control are some of the system 

components covered in the article. Utilizing 

machine learning, the system adjusts to the 

unique brain patterns of each user, increasing the 

precision with which intents are deciphered. 

Real-time data transfer and seamless 

connectivity are made possible through IoT 

integration. The suggested system offers 

breakthroughs in human-machine interaction 

and has applications in gaming, assistive 

technology, and healthcare. 
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Brain-Computer Interfaces (BCIs) 

A common method in neuroscience and clinical 

neurology to identify changes in the electrical 

activity of the brain is electroencephalography 

(EEG). EEG caps are typically used with wet 

silver/silver chloride electrodes, which 

necessitates a lot of setup time and work. These 

electrodes have some drawbacks, such as a short 

wear time due to electrolyte instability. BCIs are 

a brand-new use for EEG technology. BCIs use 

the International 10/20 system to apply silver-

chloride-coated metal discs to specific scalp 

locations. In order to identify each electrode's 

location in relation to the brain, it provides a 

number and a letter, such as F (for frontal lobe) 

and T (for temporal lobe). Dry contact 

electrodes need to be able pass through the hair 

layer, be biocompatible, electrochemically 

stable, and provide signal quality to be on par at 

wet electrodes [14]. Additional desirable 

qualities are long-term applicability, patient 

comfort, compatibility with bio-signal 

amplifiers, simplicity of usage, and patient 

preparation time. There have been three main 

categories of electrodes created:  

1. multi-pin gold electrodes with titanium 

nitride coverings;  

2. multi-pin polyurethane electrodes.  

By gold-coating electrical precision brass pins 

and attaching them to an epoxy baseplate, gold 

multi-pin electrodes are produced.  

This the endeavor's BCI configuration 

includes EEG data collecting, analog-to-

digital conversion, digital signal 

processing, feature selection, and control 

of external mechatronic devices. Digital 

signal processing with filters is done in the 

second phase after the non-invasive EEG 

data is collected in the first step. To 

monitor individual brain waves and 

produce desired sounds, specific 

algorithms and mechatronics are created. 

PDR (Percussion Detection Rate) 

detection is carried out in the third phase 

using a special feature selection method 

[15]. Figure 1 depicts an open architecture 

that includes 8 bio potential input channels 

(brain (EEG), muscle (EMG), and heart 

(ECG), a high-powered analog front-end 

with 24-bit channel resolution up to 16khz 

sampling rate, and an accelerometer (st lis 

3dh). 3 axis accelerometers, 16-bit data 

output, programmable, local SD storage 

with maximum data rate, and wireless 

communication [16]. 

 

 

Figure 1. Open-source BCI solution of BCI system architecture is built using commonly used frameworks .

Muse 2 Headband  

Comprehensive Academic Description 

By providing real-time feedback and tracking 

various physiological parameters, Muse 2 

headband is a cutting-edge wearable technology 

that is intended to improve meditation practice. 

It includes a number of technological elements, 

such as EEG sensors, a heart rate monitor, an 

accelerometer, and breath tracking functionality 

[17]. EEG sensors on the Muse 2 headband are 
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placed strategically on the scalp to record and 

examine brainwave activity related to relaxation 

and focused attention. Users can then make 

necessary adjustments after gaining insight into 

their mental states during meditation. Heart rate 

variability (HRV), a crucial sign of how the 

user's autonomic nervous system reacts to stress 

and relaxation. By assistance of this 

characteristic, individuals can more effectively 

comprehend their bodily responses and create 

stress-reduction strategies. The headband's 

built-in sensor enables it possible to observe 

movement during meditation. It encourages 

self-awareness and ideal alignment [18]. An 

intuitive user interface is provided by the Muse 

2 headband's companion app, which connects to 

a smartphone or tablet via Bluetooth [19]. It 

offers a selection of guided meditation activities 

that may be customized to meet personal 

preferences and objectives. The headband's 

sensors provide real-time feedback combined 

with calming audio instructions. Users are able 

to evaluate their progress and make required 

modifications thanks to the Muse 2 headband's 

real-time feedback, which is based on the 

continuous monitoring and analysis of 

brainwave activity, heart rate, respiration, and 

body movement [20]. Each meditation session is 

also recorded and stored by the app, enabling 

users to track their progress over time and get 

individualized insights and advice. There are 

several advantages and potential uses for the 

Muse 2 headband. By providing rapid feedback 

and facilitating a deeper degree 

of concentration  and relaxation, it enhances the 

practice of meditation with stress reduction by 

tracking HRV and promoting behaviors of 

controlled breathing. Furthermore, the 

employing of EEG sensors opens up the 

possibility of cognitive improvement [21]. The 

Muse 2 headband is an advanced piece of 

wearable technology that has transformed 

meditation practice. Its complex technical 

features and simple user interface give 

customers personalized teaching and real-time 

feedback, assisting individuals achieve a more 

profound and beneficial meditation session. It is 

a promising technique for fostering health and 

mindfulness because to its potential for stress 

reduction, cognitive improvement, and mental 

wellness. [22].  

 

MATERIALS AND METHODS 
This section describes the methodology 

employed in the experiments results. The 

approach involves collecting data, extracting 

important features, analyzing it, and training 

models. The proposed approach provides 

a Bluetooth to connect a Muse 2 device with a 

meditation app for acquired EEG data. This 

algorithm attempts to optimize the Muse 2 

device's integration into the meditation practice 

to provide users useful information about brain 

activity The proposed effort entailed using 

Bluetooth to pair a Muse 2 device with a 

meditation app and then analyzing EEG 

(electroencephalogram) data collected by the 

Muse 2 sensors. The process involves data 

preprocessing, feature extraction, and 

classification using machine learning models. 

Based on the EEG data, the objective is to 

improve the meditative experience and offer 

real-time feedback. The data acquisition 

Analyzing brain activity and muscle movement 

is made possible by a process involving 

Bluetooth-enabled EEG signal capture using 

Open (BCI) and Muse devices. Experiments 

with the Inter axon Muse BCI device were also 

done to demonstrate the system's adaptability. 

The AF7 and AF8 electrodes on this device are 

similar to the Open (BCI) configuration. 

However, the Muse device does not employ TP9 

or TP10 electrodes as  shown   in Figure 2. A 

comparison analysis is carried out using the 

Muse device to assess the potential impact of 

various BCI devices on the experimental 

outcomes, particularly in relation to the EMG 

component. 

Figure 2 depicts the Inter axon Muse and the 

specific electrode placements based on the 10–

20 International System, which allows for the 

recording of brain activity from various brain 

regions and facilitates accurate and reliable EEG 

measurements for brain-computer interface 

applications. The preprocessing techniques, 

including normalization and band-pass filtering, 

to enhance EEG data quality in BCI 

experiments. Feature extraction methods using 



Khadam et al. Enhancing Meditation Techniques and Insights Using Feature Analysis of Electroencephalography (EEG) 2024 

 

71 

entropy, standard deviation, and mean analysis 

are applied to EEG and EMG signals captured 

from specific electrodes. Classification of these 

signals is achieved using a Multi-Layer 

Perceptron (MLP)-based model, aiming to 

distinguish cognitive states and muscle activities 

with accuracy, contributing to the field of brain-

computer interfaces and assistive technologies. 

The SVM, Random Forest (RF), and Multi-

Layer Perceptron (MLP) architecture comprises 

input, hidden, and output layers, with the 

number of layers and neurons optimized through 

experimentation, as shown in Figure 3 and 

Algorithm1 
 

 

Figure 2. Muse2 Brain Computer Interface (BCI) 

 

Figure 3. The block diagram of proposed work 
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Algorithm 1. The proposed model BCI Data Acquisition, Preprocessing, Feature Extraction, and Classification 

step 1: Ensure the Muse 2 device is charged and turned on. 

step 2: Enable Bluetooth on your device. 

step 3: Install a compatible meditation application that supports Muse 2 integration. 

step 4: Open the meditation application and go to the settings or device connection section. 

step 5: Look for the option to connect or pair a device. 

step 6: Select the Muse 2 device from the available devices list. 

step 7: Follow the on-screen instructions to establish the Bluetooth connection. 

step 8: Once connected, the application will start receiving data from the Muse 2 sensors. 

step 9: The application may provide real-time feedback based on the received data. 

step 10: Wear the Muse 2 device and use the meditation application to track and enhan ce meditation 

experience. 

step 11: Data Acquisition: The EEG data was acquired using the Muse2 BCI device. The Muse2 device 

enables the collection of EEG signals from multiple electrodes. The data was captured on a mobile 

platform focused on meditation. The dataset includes various measurements recorded at different 

time points, such as Delta_TP9, Delta_AF7, Delta_AF8, Delta_TP10, Theta_TP9, Theta_AF7, 

Theta_AF8, Theta_TP10, Alpha_TP9, and others. 

step 12: Data Preprocessing: The acquired data went through a preprocessing stage to prepare it for analysis. 

This stage involved several steps, including:  

a) Removing unnecessary columns: Columns that were not relevant to the analysis or contained 

redundant information were removed from the dataset. 

b) Handling missing values: If there were any (NaN) (Not a Number) values in the dataset, 

appropriate techniques were applied to handle them, such as imputation or deletion. 

c) Normalization: Numeric data was normalized to ensure all features were on a similar scale. This 

step is important to avoid biases caused by differences in magnitude among features. 

d) Filtering: A pass band filter was applied to remove unwanted frequency components from the 

EEG data. This step helps in isolating the desired brainwave activity. 

step 13: Feature Extraction: After preprocessing, feature extraction was performed to derive meaningful 

information from the EEG signals. In this process, the means, standard deviations, and entropies of 

each data point were calculated. These measurements shed light on the central tendency, variability, 

and complexity of the EEG signal: 

• Calculate statistical measures like mean, standard deviation, and entropy for each EEG channel. 

• Perform calculations separately for each EEG channel, corresponding to different scalp 

locations. 

• Combine results into feature vectors for specific time windows. 

step 14: Modeling Training The preprocessed and feature-extracted data were used to train three different 

models, namely SVM, Random Forest (RF), and Multi-Layer Perceptron (MLP). The following steps 

were part of the training process:  

a. Data splitting: To evaluate the performance of the model, the dataset was split into training and 

validation sets.  

b. Model selection: The models for classification were SVM, Random Forest, and MLP.  

c.  Model training: To reduce the classification error, the connection weights between neurons were 

iteratively modified after the preprocessed data was input into each model.  

Step 15: Performance Evaluation Several measures were used to assess how well the constructed models 

performed. Accuracy, Precision, Recall, and F1-score were some of these measurements. Precision 

calculated the percentage of genuine positive predictions among all positive predictions, whereas 

accuracy scored the classification findings' total correctness. Recall calculated the percentage of 

accurate predictions among all instances of actual success. The F1-score provided a fair evaluation 

of the effectiveness of the classification model by combining Precision and Recall into a single 

statistic. 
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RESULTS AND DISCUSSION  
This section presents the results of the 

experiments detailed. this part also includes an 

analysis of all the data acquired for each 

experiment. 

Data Acquisition 

Data was gathered using a mobile platform 

specifically designed for meditation utilizing the 

muse 2 gadget. there are several measurements 

in the database that were made at various times. 

gyroscopic measurements, head band device on 

status, battery level, and other attributes are 

among the measurements and features that are 

included in each row, which corresponds to a 

particular timestamp, shown in Table 1.  

Table 2 presents the EEG data collected from 

various channels over a period of time. It 

consists of 12,400 rows and 39 columns, 

including the Timestamp, Delta_TP9, 

Delta_AF7, Delta_AF8, Delta_TP10, 

Theta_TP9, Theta_AF7, Theta_AF8, 

Theta_TP10, Alpha_TP9, and other related 

features. Each row has a unique timestamp that 

shows when the data was recorded. The 

numerical numbers in the columns indicate the 

recorded EEG readings for the various channels. 

If there was no data available for that specific 

channel and date, the values in the table can 

contain NaN (Not a Number). 

 
 

  

Table 1. Data from muse 2 in BCI of EEG. 

TimeStamp Delta_TP9 Delta_AF7 ... HSI_AF7 HSI_AF8 HSI_TP10 

2023-02-02 11:12:57.660 NaN NaN ... 1.0 4.0 1.0 

2023-02-02 11:12:57.741 NaN NaN ... 1.0 4.0 1.0 

2023-02-02 11:12:57.762 NaN NaN ... 1.0 4.0 2.0 

2023-02-02 11:12:59.661 1.019823 -3.053491 ... 1.0 4.0 2.0 

2023-02-02 11:13:00.426 NaN NaN ... NaN NaN NaN 

... ... ... ... ... ... ... 

2023-02-22 12:45:32.884 NaN NaN ... NaN NaN NaN 

2023-02-22 12:45:33.004 0.000000 0.000000 ... 4.0 4.0 4.0 

2023-02-22 12:45:33.078 NaN NaN ... NaN NaN NaN 

2023-02-22 12:45:35.000 0.000000 0.000000 ... 4.0 4.0 4.0 

2023-02-22 12:45:36.997 0.000000 0.000000 ... 4.0 4.0 4.0 

 
Table 2.  The preprocessing of data acquisition from muse 2 in BCI of EEG data  

Delta_TP9 Delta_AF7 Delta_AF8 ... HSI_AF8 HSI_TP10 Battery 

1.019823 -3.053491 1.085578 ... 4.0 1.0 65.0 

0.971511 -3.053491 1.085578 ... 4.0 1.0 65.0 

0.207826 0.0 0.0 ... 4.0 2.0 85.0 

1.167421 0.0 0.0 ... 4.0 2.0 85.0 

0.504791 0.0 0.0 ... 4.0 2.0 85.0 

... ... ... ... ... ... ... 

0.0 0.0 0.0 ... 4.0 4.0 85.0 

0.0 0.0 0.0 ... 4.0 4.0 85.0 

0.0 0.0 0.0 ... 4.0 4.0 85.0 

0.0 0.0 0.0 ... 4.0 4.0 85.0 

0.0 0.0 0.0 ... 4.0 4.0 85.0 
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Preprocessing 

This may happen if the EEG measurement 

wasn't captured or if there was a data collecting 

issue. These techniques include removing 

unnecessary columns that are not relevant to the 

analysis, normalizing the numeric data to ensure 

all features are on a similar scale, handling 

missing values, and applying a band-pass filter 

to remove unwanted frequency components 

from the EEG data. These steps are crucial for 

preparing the EEG data for further analysis and 

feature extraction in brain-computer interface 

(BCI) experiments. By performing these 

preprocessing steps, the data quality and 

reliability are improved, leading to more 

accurate and meaningful results in subsequent 

stages of EEG data analysis. 

Table 2 shows the dataset after the 

preprocessing. It consists of 4800 rows and 37 

columns. During the preprocessing stage, any 

NaN values (representing missing data), from 

Table 1, may have been dropped. Other 

preprocessing steps may have included 

normalization of the data to bring all features to 

a similar scale, reducing the impact of variations 

in magnitude and filtering by Fourier transform 

and band pass filter.  

Feature Extraction 

In the feature extraction process, the mean, 

standard deviation, and entropy values are 

calculated for each row of the EEG data. This 

step aims to uncover meaningful information 

and characterize the underlying patterns within 

the raw EEG signals. The extracted features 

provide insights into the statistical properties, 

variability, and complexity of the EEG signals, 

The results of the feature extraction are 

summarized in Table 3. 

Table 3 presents above provides statistical 

measures, including mean, standard deviation, 

and entropy, for each entry in the database. The 

table consists of 4800 rows and three columns: 

mean, STD (standard deviation), and entropy. 

The mean column represents the average value 

of the corresponding feature across the database. 

It provides an indication of the central tendency 

of the data. For example, in the first row, the 

mean values for the features are -0.888126, -

0.281312, and -0.616305, respectively. The 

standard deviation (STD) column represents the 

variability or dispersion of the data around the 

mean. It quantifies how much the values deviate 

from the average. In the first row, the standard 

deviation values for the features are 9  825029, 

23.501442, and 44.461825, respectively. 

The entropy column measures the amount of 

information or uncertainty present in the data. 

Features characterizes the complexity or 

randomness of the feature values. Higher 

entropy values indicate greater uncertainty or 

more diverse patterns in the data. In the first 

row, the entropy values for the features are -

139.487132, -727.673235, and -1481.483241, 

respectively.  

 
Training Procedure 

The training of the SVM, Random Forest (RF), 

and Multi-Layer Perceptron (MLP) model 

involves two main steps: data preprocessing and 

model training. In the data preprocessing step, 

the recorded EEG and EMG signals are 

Table 3. The Feature extraction of data acquisition from muse 2 in BCI of EEG data 

Data Point Mean Standard Deviation Entropy 

3 -2.233401 10.956679 -75.772270 

7 -1.624145 23.902905 -529.397990 

17 -1.955298 44.808705 -1275.504747 

21 -3.775101 60.218001 -1141.448122 

25 -20.051053 88.403643 -465.200813 

... ... ... ... 

12393 84.466635 226.285910 -29161.326863 

12394 78.032281 239.451187 -27564.114406 

12396 64.707731 173.432776 -21503.242473 

12398 45.212987 146.412815 -14689.795372 

12399 4.429889 12.496414 -861.804302 
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preprocessed to remove noise, artifacts, and 

baseline drift. The signals are then divided into 

training and validation sets. The training model 

tuned as shown in Table 4 by feeding the 

preprocessed signals into the SVM, Random 

Forest (RF), and Multi-Layer Perceptron (MLP) 

and iteratively adjusting the connection weights 

between neurons to minimize the classification 

error as of the training process, while each 

column represents the training loss for a 

particular model.  

 
Table 4.  Hiper parameter tuning of Different Models 
(Multi-Layer Perceptron (MLP), SVM, Random Forest) 

Model Hyper parameters Tuned 

SVM Regularization parameter (C)=1.1 

RF 
Number of trees = 100, 200, 300 

Maximum tree depth =30 

MLP 

Number of hidden layers= 3 

No. Nerouns per layer= 32, 64, 128 

Learning rate= 0.01 

Activation functions is Sigmoid 

 

For example, in the first row, the training 

processing of models SVM, Random Forest 

(RF), and Multi-Layer Perceptron (MLP) loss 

values for SVM, RF, and MLP are 0.65180434, 

0.58347524, and 0.5444727, respectively. 

Observe a downward trend in the training loss 

values for each of the three models. This process 

is typically performed using back propagation, 

where the error is propagated backward through 

the network to update the weights. 

Figure 4 shows the training loss values for three 

distinct models SVM, Random Forest (RF), and 

Multi-Layer Perceptron (MLP).  

 
Figure 4. The training loss values for three distinct 
models SVM, Random Forest (RF), and Multi-Layer 
Perceptron (MLP). 

For various training iterations or epochs, the 

training loss values are supplied. The mistake or 

difference between the model's anticipated 

outputs and the actual outputs during the 

training phase is represented by the training loss. 

The model's optimization goal is to reduce this 

loss and boost its ability to forecast the future. 

Lower training loss levels suggest higher 

accuracy and model fitting. In Figure 4, each 

row corresponds specific iteration or epoch.  

Performance Metrics 

Table 5 shows that the models are increasingly 

performing better and more correctly fitting the 

training data Accuracy, precision, recall, and 

F1-score are just a few of the measures used to 

gauge how well the generated SVM, Random 

Forest (RF), and Multi-Layer Perceptron (MLP) 

model performs. Accuracy gauges how 

accurately the categorization outcomes are 

overall. The proportion of accurate positive 

forecasts among all positive predictions is 

measured by precision, whereas the proportion 

of accurate positive examples is measured by 

recall. The F1-score provides a fair evaluation of 

the performance of the classification model by 

combining accuracy and recall into a single 

parameter. 

Performance statistics for the Multi-Layer 

Perceptron (MLP), SVM, and Random Forest 

models are shown in Table 5. 

  
Table 5.  Performance metrics of different models (Multi-
Layer Perceptron (MLP), SVM, Random Forest) 

Model Acc. P. Recall F1-score 

MLP 0.9958333 0.995861 0.995833 0.9958287 

SVM 0.959375 0.961858 0.959375 0.9588555 

Random 
Forest 

0.9989583 0.998961 0.998958 0.9989586 

*Acc: Accuracy, P.: Precision 

 

These metrics include the frequently used 

assessment metrics for machine learning, 

Accuracy, Precision, Recall, and F1-score. 

Accuracy represents the overall correctness of 

the model's predictions, indicating the 

proportion of correctly classified instances out 
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of the total number of instances. Table 5 

showing the results of MULTI-LAYER 

PERCEPTRON (MLP) model, the SVM model, 

and the Random Forest model which obtained 

accuracy values of 0.9958333, 0.959375, and 

0.99989583 respectively. Precision measures 

the proportion of true positive predictions out of 

all positive predictions made by the model. It 

represents the model's ability to avoid false 

positives. The Precision values for the Multi-

Layer Perceptron (MLP), SVM, and Random 

Forest models are 0.995861, 0.9618583, and 

0.9989612, respectively. Recall, also known as 

sensitivity or true positive rate, measures the 

proportion of true positive predictions out of all 

actual positive instances in the database. It 

indicates the model's ability to find all relevant 

instances. The Recall values for the Multi-Layer 

Perceptron (MLP), SVM, and Random Forest 

models are 0.995833, 0.959375, and 0.998958, 

respectively.  

F1-score is the harmonic mean of precision and 

recall. It provides a balanced measure of a 

model's performance, considering both 

precision and recall simultaneously. The F1-

score values for the Multi-Layer Perceptron 

(MLP), SVM, and Random Forest models are 

0.9958287, 0.9588555, and 0.9989586, 

respectively. 

 

CONCLUSIONS 
This study employs an extensive approach, 

pairing a Muse 2 device with a meditation app 

via Bluetooth to analyze EEG data. The process 

encompasses data collection, preprocessing, 

feature extraction, and model training. The 

Muse 2 records EEG signals from multiple 

electrodes on a mobile meditation platform, 

yielding diverse metrics over time. 

Preprocessing enhances data quality by 

removing irrelevant columns, managing missing 

values, normalizing data for consistent scaling, 

and applying a band pass filter for focused 

brainwave activity. Feature extraction calculates 

statistical measures (mean, standard deviation, 

entropy) for each data point, revealing EEG 

signal complexity, variability, and central 

tendencies. Model training, utilizing SVM, 

Random Forest, and Multi-Layer Perceptron 

(MLP), adjusts neuron connection weights 

iteratively to minimize classification error. 

Performance metrics like accuracy, precision, 

recall, and F1-score gauge model effectiveness. 

Results indicate MLP achieved an accuracy of 

0.9958, SVM scored 0.9594, and Random 

Forest excelled with 0.9990 accuracy, 

outperforming others. The study demonstrates 

the feasibility of using machine learning and the  

Muse 2 for enhanced meditation practices, 

offering insights into brain functioning during 

meditation. 
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