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In this paper, we have improved solutions for two of the Multi-Criteria Machine 

Scheduling Problems (MCMSP). These problems are to maximize early jobs time and 

range of lateness jobs times 1//(𝐸𝑚𝑎𝑥 , 𝑅𝐿)), and the second problem is maximum tardy 

jobs time and range of lateness jobs times 1//(𝑇𝑚𝑎𝑥 , 𝑅𝐿) in a single machine with Multi-

Objective Machine Scheduling Problems (MOMSP) 1//(𝐸𝑚𝑎𝑥 , 𝑅𝐿)and 1//(𝑇𝑚𝑎𝑥 , 𝑅𝐿) 
which are derived from the main problems respectively. The Local Search Methods 

(LSMs), Bees Algorithm (BA), and a Simulated Annealing (SA) are applied to solve all 
suggested problems. Finally, the experimental results of the LSMs are compared with the 

results of the Branch and Bound (BAB) method for a reasonable time. These results are 

ensuring the efficiency of LSMs. 

 

KEYWORDS: Local search Methods, Multi-Criteria Scheduling Problems, Bees Algorithm, 

Simulated Annealing, Branch and Bound Method. 

 الخلاصـة 
القيمة  المسالة الاولى هي مسالة   المعايير.  الماكنة متعددة  في هذا البحث، تم تحسين حل مسألتين من مسائل جدولة 

المتأخرة   المبكرة ومدى زمن الاعمال  الاعمال  لوقت  𝐸𝑚𝑎𝑥)//1 العظمى  , 𝑅𝐿) القيمة الثانية هي مسالة   مسألة 

𝑇𝑚𝑎𝑥)//1 زمن الاعمال المتأخرة    العظمى لزمن الاعمال ذات التاخير اللاسلبي ومدى , 𝑅𝐿) ،على ماكنة  واحدة

𝐸𝑚𝑎𝑥)//1  مع مسائل جدولة الماكنة متعددة الاهداف   , 𝑅𝐿)  1و//(𝑇𝑚𝑎𝑥 , 𝑅𝐿)   لمشتقة من المسالتين الرئيسية ا

 ( المحلي  البحث  من طرق  تم تطبيق نوعين  التوالي.  ) LSMsعلى  النحل  التلدين (  BA( وهي خوارزمية  ومحاكاة 

 (SA لحل جميع المسائل المقترحة. واخيرا تم مقارنة النتائج العملية بين طرق البحث المحلي مع نتائج طريقة )BAB 

 ضمن الوقت المقبول، النتائج اثبتت كفاءة طرق البحث المحلية المقترحة.

INTRODUCTION 
It is widely acknowledged that one of the key 

areas of combinatorial optimization problems is 

the machine Scheduling Problems (MSP). 

Finding the best and most advantageous solution 

for minimizing a function is the main goal of this 

paper. The computational time requirements are 

very high for large-sized problems when the 

MSP is an NP-hard problem. We can make use 

of heuristic techniques to get around these 

drawbacks. The development of heuristic 

methods has been referred to as “local search 

methods” in recent years. In a reasonable amount 

of time, the local search approach offers high-

quality solutions to NP-hard problems of 

realistic size. Beginning with a first solution, the 

Local Search Methods (LSMs) keep looking for 

better ones by searching neighborhoods [1]. In 

2014, Ibraheem [2], investigated the 1//𝑇𝑚𝑎𝑥 +
𝐸𝑚𝑎𝑥  problem and found a near optimal solution 

by using LSMs (Descent method (DM), and 

Simulated Annealing (SA) algorithm), 

respectively. Also, the study reported the results 

of extensive computational tests of (DM), (SA). 

Our experimental results indicate that the 

proposed algorithms have found exact and 

efficient solutions in most cases. In 2014, 

Mahmood [3] discussed the multi-criteria 

scheduling problem and studied on a single 

machine to find efficient solutions of the 
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problem, 1//𝐹(∑𝐶𝑗, 𝑇𝑚𝑎𝑥 , 𝑉max), and used the 

LSMs to find approximation solutions. She 

suggested LSMs for finding approximation 

solutions. These LSMs are: (DM), (SA) and a 

Genetic Algorithm (GA) which are 

implemented. Based on the results of 

computational experiments, conclusions are 

formulated on the efficiency of the local search 

algorithms. In 2017, Abdulkareem [4] presented 

the problem (𝑇𝑚𝑎𝑥  , 𝑉𝑚𝑎𝑥 , ∑ 𝑉𝑗  ), and solved it by 

using some types of local search methods: 

Particle Swarm Optimization (PSO) and Bees 

Algorithm (BA), and neural networks (NN) are 

used to solve the origin problem. Abbas (2019) 

[5] studied multi-objective single MSP. The 

objective is to minimize four cost 

functions (∑ 𝐶𝑗 + ∑ 𝑈𝑗 + ∑ 𝑇𝑗 + 𝑇𝑚𝑎𝑥) by LSMs 

method and provide solutions for the considered 

problem. In 2022, Ahmed [6] offered some 

methods to solve the MCMSP by minimizing 

(1//(∑ 𝐶𝑗 , 𝑇𝑚𝑎𝑥  , 𝑅𝐿)). She deduced sub-

problems denoted by (1//(∑𝐶𝑗 + 𝑇𝑚𝑎𝑥 +

𝑅𝐿)) suggested (8) solving methods classified as 

exact, heuristic and local search methods to find 

the set of efficient, optimal, near optimal and 

approximate solutions for the two problems. The 

rest of the paper is organized as follows: In 

Section 2, we discuss the MSP concept. In 

Section 3, we introduce the mathematical 

formulation of the BCMSP and BOMSP. Also, 

we revisit the local search method (LSMs); Bees 

Algorithm (BA) and a Simulated Annealing 

(SA).  In Section 4. We apply the LSMs for 

solving the two BCMSP and BOMSP in Sections 

5 and 6, respectively. The analysis and 

discussion of the comparison results are 

discussed in Section 7. Conclusions and 

recommendations are introduced in Section 8.  

MATERIALS AND METHODS 

Machine Scheduling Problem Concept 

In this Section, we start by introducing some 

important notations where we concentrate on the 

performance criteria without elaborating on the 

machine environment. It is assumed that there 

are 𝑛 jobs, which we denoted by 1, … , 𝑛 and these 

jobs are to be scheduled on a set of machines that 

are continuously available from time zero 

onwards and can handle only one job at a time. 

We only state here that the notations are used for 

single machine, jobs 𝑗, (𝑗 = 1, … , 𝑛) has [7]: 

𝑝𝑗 : which mean that the job 𝑗 has to processed 

for a period of length 𝑝𝑗. 

𝑑𝑗: a due date, the date when the job 𝑗 should be 

completed.  Even though it is permitted, there is 

a cost associated with finishing the task after the 

deadline. It is known as a deadline when the due 

date absolutely must be met, and it is known as a 

common due date when it applies to all jobs. 

𝑠𝑗: a slack time of job 𝑗 s.t. 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 . 

𝐶𝑗 : the completion time, the time at which the 

processing of job 𝑗 is completed s.t. 

𝐶𝑗 = ∑ 𝑝𝑘 
𝑗
𝑘=1 .  

Now for a given sequence 𝜎 of jobs we can 

compute for job 𝑗: 

• The lateness 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗  

• Range of lateness: 𝑅𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛 where 

𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

{𝐿𝑗} and 𝐿𝑚𝑖𝑛 = 𝑚𝑖𝑛
1≤𝑗≤𝑛

{𝐿𝑗}. 

• The tardiness   𝑇𝑗 = max{𝐿𝑗 , 0}. 

• The maximum tardiness: 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

(𝑇𝑗). 

• The earliness   𝐸𝑗 = 𝑚𝑎𝑥{−𝐿𝑗, 0}. 

• The maximum earliness: 𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

{𝐸𝑗}. 

The following sequencing rules and basic 

concepts are used in this work: 

Definition (1): (Earliest Due Date (EDD) rule 

[7]): Sequencing the jobs in non-decreasing order 

of their due dates (𝑑𝑗 ) i.e., (𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛), 

which is solving the problems 1//𝐿𝑚𝑎𝑥 and 

1//𝑇𝑚𝑎𝑥. 

Definition (2): (Minimum slack Time (MST) 

rule [6]): Jobs are sequenced in non- decreasing 

order of slack time (𝑠𝑗 ) i.e., (𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛).  

This rule is well known for solving the problem 

1//𝐸𝑚𝑎𝑥 

Mathematical Formulation of the Bcmsp and 

Bomsp    

Let 𝑁 = {1,2, … , 𝑛} be a set of jobs that is wanted 

to be scheduled on a BCMSP with 𝑝𝑗 ≤ 𝑑𝑗 and 

BOMSP for each NP-hard problem. The MSP 

can process only one job at a time using the two 

field’s classification. In the following two 

subsections we will discuss the mathematical 

formulation of BCMSP and BOMSP for each 

problem.  

Mathematical Formulation for First Problem  

This MCMSP denoted by 1//(𝐸𝑚𝑎𝑥 , 𝑅𝐿) which 

can be formulated for a given schedule 𝜎 =
(1,2, … , 𝑛) as: 
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𝐹 = min(𝐸𝑚𝑎𝑥 , 𝑅𝐿) 
Such that 

𝐶1 = 𝑝𝜎(1)
 

𝐶𝑗 ≥ 𝑝𝜎(𝑗)
,                   𝑗 = 1,2, … , 𝑛 

𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝜎(𝑗)
,     𝑗 = 2,3, … , 𝑛                     

𝐿𝑗 = 𝐶𝑗 − 𝑑𝜎(𝑗)
,         𝑗 = 1,2, … , 𝑛          … (𝐸𝑅) 

𝑅𝐿(𝜎) = 𝐿max(𝜎) − 𝐿min(𝜎) 

𝐸𝑗 ≥ 𝑑𝜎(𝑗) − 𝐶𝑗  ,      𝑗 = 1,2, … , 𝑛 

𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

{𝐸𝑗} 

𝐸𝑗 ≥ 0,                       𝑗 = 1,2, … , 𝑛 

𝐸𝑚𝑎𝑥(𝜎), 𝑅𝐿(𝜎) ≥ 0 
 

while the MOMSP of the MCMSP is denoted by 

1//(𝐸𝑚𝑎𝑥 , 𝑅𝐿) which is formulated as follow for 

the BOMSP using schedule   𝜎 = (1,2, … , 𝑛) as: 

𝐹 = min(𝐸𝑚𝑎𝑥 + 𝑅𝐿) 
Such that 

𝐶1 = 𝑝𝜎(1)
 

𝐶𝑗 ≥ 𝑝𝜎(𝑗)
,                  𝑗 = 1,2, … , 𝑛 

𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝜎(𝑗)
,     𝑗 = 2,3, … , 𝑛 

𝐿𝑗 = 𝐶𝑗 − 𝑑𝜎(𝑗)
,         𝑗 = 1,2, … , 𝑛    …(EPR)           

𝑅𝐿(𝜎) = 𝐿max(𝜎) − 𝐿min(𝜎) 

𝐸𝑗 ≥ 𝑑𝜎(𝑗) − 𝐶𝑗  ,       𝑗 = 1,2, … , 𝑛 

𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

{𝐸𝑗} 

𝐸𝑗 ≥ 0,                        𝑗 = 1,2, … , 𝑛 

𝐸𝑚𝑎𝑥(𝜎), 𝑅𝐿(𝜎) ≥ 0 
 

We see [8]. 

Mathematical Formulation for second Problem 

The MCMSP is denoted by1//(𝑇𝑚𝑎𝑥 , 𝑅𝐿), which 

can be formulated for a given schedule 𝜎 =
(1,2, … , 𝑛) as: 

𝐹 = min(𝑇𝑚𝑎𝑥 , 𝑅𝐿) 
Such that 

𝐶𝑗 = ∑ 𝑝𝑘 

𝑗

𝑘=1

 ,           𝑗 = 1,2, … , 𝑛 

𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝜎(𝑗)
,   𝑗 = 2,3, … , 𝑛            … (𝑇𝑅)                                   

𝐿𝑗 = 𝐶𝑗 − 𝑑𝜎(𝑗)
,       𝑗 = 1,2, … , 𝑛  

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎(𝑗) ,      𝑗 = 1,2, … , 𝑛 

𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

{𝑇𝑗}  

𝑅𝐿(𝜎) = 𝐿max(𝜎) − 𝐿min(𝜎) 

𝑇𝑗 ≥ 0,                       𝑗 = 1,2, … , 𝑛 

𝑇𝑚𝑎𝑥(𝜎), 𝑅𝐿(𝜎) ≥ 0 
 

while the MOMSP of the MCMSP is denoted by 

1//(𝑇𝑚𝑎𝑥 , 𝑅𝐿) which is formulated as follows for 

the BOMSP using   schedule   𝜎 = (1,2, … , 𝑛) as: 

𝐹 = min(𝑇𝑚𝑎𝑥 + 𝑅𝐿) 
such that 

𝐶1 = 𝑝𝜎(1)
  

𝐶𝑗 ≥ 𝑝𝜎(𝑗)
,             𝑗 = 1,2, … , 𝑛 

𝐶𝑗 = ∑ 𝑝𝑘

𝑗

𝑘=1

,         𝑗 = 1,2, … , 𝑛 

𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝜎(𝑗)
, 𝑗 = 2,3, … , 𝑛 

𝐿𝑗 = 𝐶𝑗 − 𝑑𝜎(𝑗)
,    𝑗 = 1,2, … , 𝑛  … (𝑇𝑃𝑅) 

𝑅𝐿(𝜎) = 𝐿max(𝜎) − 𝐿min(𝜎) 

𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑗≤𝑛

{𝑇𝑗}  

𝑅𝐿(𝜎) = 𝐿max(𝜎) − 𝐿min(𝜎) 

𝑇𝑗 ≥ 0,                   𝑗 = 1,2, … , 𝑛 

𝑇𝑚𝑎𝑥(𝜎), 𝑅𝐿(𝜎) ≥ 0. 

 

For more details, readers may see [8]. 

Local Search Methods 

In this Section, we will discuss some LSMs for two 

types of BCMSP and BOMSP problems and find 

near-optimal solutions for such problems in 

reasonable computational time to avoid solving 

problems that require large computational times 

[9]. 

Simulated Annealing 

An optimization method based on trajectories is 

called Simulated Annealing (SA). It is 

essentially a strategy for continuous 

improvement with a criterion that occasionally 

accepts higher cost configurations. In the 80s 

century, SA was first used to resolve the COP. 

The physical annealing of materials, which 

involves first heating the solid and then 

gradually reducing it to a lower energy state, 

served as the inspiration for SA. Due to its ability 

to simulate how thermodynamic systems 

transition from one state to another, the 

Metropolis acceptance criterion is used to 

determine whether the current solution should be 

accepted or rejected. [10]. The initial state of a 
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thermodynamic system was selected at energy 

(Cost or C) and temperature (Temperature 

(Temp)). The system's initial configuration is 

altered to produce a new configuration while 

holding t constant, and the change in energy ΔC 

is calculated. The new configuration is accepted 

without conditions, but if ΔC is negative whereas 

it is accepted if ΔC is positive with a probability 

given by the Boltzmann factor shown in (1) to 

avoid trapping in the local optima. 

Algorithm (1): Simulated Annealing (SA) 

Step1: Input: Temp., Final Temp., cooling rate, ch; 

Step2: 𝑐ℎ′ =  𝑐ℎ;  𝐶𝑜𝑠𝑡 =  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑐ℎ′); 

Step3: while (𝑇𝑒𝑚𝑝 > 𝐹𝑖𝑛𝑎𝑙 𝑇𝑒𝑚𝑝)do 

      𝑐ℎ1 = 𝑀𝑢𝑡𝑎𝑡𝑒 (𝑐ℎ′); 

𝑁𝑒𝑤𝐶𝑜𝑠𝑡 =  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑐ℎ1); 

∆𝐶𝑜𝑠𝑡 =  𝑁𝑒𝑤𝐶𝑜𝑠𝑡 − 𝐶𝑜𝑠𝑡; 

    if (∆ 𝐶𝑜𝑠𝑡 ≤  0) 𝑂𝑅  (𝑒
−

∆𝐶𝑜𝑠𝑡

𝑇𝑒𝑚𝑝  >

 𝑅𝑎𝑛𝑑) then 

       𝐶𝑜𝑠𝑡 =  𝑁𝑒𝑤𝐶𝑜𝑠𝑡; 

       ch' = ch1; 

 endif 

𝑇𝑒𝑚𝑝 = 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝑇𝑒𝑚𝑝 
endwhile 

Step 4: Output: the best ch'. 

Bees Algorithm (BA) 

Ant colonies, beehives, bird flocks, and animal 

herds are examples of real-world swarm 

intelligence (SI). The three most popular 

examples of swarm intelligence systems are 

marriage in honey bee’s optimization (MBO), 

particle swarm optimization, and ant colony 

optimization. 

A novel technique known as MBO, which is 

applied to a particular class of propositional 

satisfiability issues, and it is based on the 

haploid-diploid genetic breeding of honey bees. 

The three primary MBO processes are: the queen 

bee's flight to mate with drones, her production 

of new broods, and her enhancement of the 

fitness of the broods. The difficulty lies in 

modifying the colony's self-organization 

behavior to address the issues. The Bees 

Algorithm (BA), a solution-finding algorithm, 

draws inspiration from honey bees' normal 

foraging behavior. In its most basic form, the 

pseudo code for the BA is as follows [11]: 

The algorithm requires a number of parameters 

to be set, namely: 

m: Number of scout bees. 

ss: Number of sites selected out of n visited sites. 

e: Number of best sites out of ss selected sites. 

nep: Number of bees recruited for best e sites. 

nsp: Number of bees recruited for the other (ss-

e) selected sites. 

ngh: Initial size of patches which includes site 

and its neighborhood and stopping criterion. 

Algorithm (2): Bees Algorithm (BA) 

Step 1: INPUT: m, ss, e, nep, nsp, Maximum of 

iterations. 

Step 2: Initialize population with random 

solutions. 

Step 3: Evaluate fitness of the population. 

Step 4: REPEAT 

Step 5: Select sites for neighborhood search. 

Step 6: Recruit bees for selected sites (more bees 

for best e sites) and evaluate fitness’s. 

Step 7: Select the fittest bee from each patch. 

Step 8: Assign remaining bees to search randomly 

and evaluate their fitness. 

Step 9: UNTIL stopping criterion is met. 

Step 10: OUTPUT: Optimal or near optimal 

solutions. 

END. 

Using Lsms for Solving the Two Bcmsp and 

Bomsp 

In this Section, we suggest using LSMs. These 

LSM are Bees Algorithm (BA) and a Simulated 

Annealing (SA) to find the most efficient 

solutions for solving MCTSP. The values of 

𝑝𝑗  𝑎𝑛𝑑 𝑑𝑗 for all examples are generated 

randomly s.t. 𝑝𝑗 ∈ [1,10] and 

 𝑑𝑗 ∈ {[1,30],        1 ≤ 𝑛 ≤ 29.   [1,40],     30 ≤

𝑛 ≤ 99.    [1,50],   100 ≤ 𝑛 ≤
999. [1,70],           𝑛 ≥ 100.       
with condition 𝑑𝑗 ≥ 𝑝𝑗 , for 𝑗 = 1,2, … , 𝑛. 

Now we introduce the following important 

abbreviations: 

𝐸𝑥: Example Number. 

𝐴𝑣: Average. 

𝐴𝐴𝐸: Average Absolute Error. 
𝑇

𝑆
: Average of Time per second. 

𝐴𝑣: Average. 

𝑅: 0 < 𝑅𝑒𝑎𝑙 < 1. 

𝐹: Objective Function value for ER problem. 
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𝐹1: Objective Function value for EPR problem. 

𝐺: Objective Function value for TR problem. 

𝐺1: Objective Function value for TPR problem. 

𝐸𝑆: efficient solution. 

𝑂𝑆: optimal solution. 

Applying LSM’s for Solving the Two Problems 

In this Section, we demonstrate the results of 

applying the two suggested algorithms (SA and 

BA) on the two problems (ER and TR).  

Applying LSM’s for Solving Problem (ER) 

Before showing the results of applying the two 

LSM’s for problem (ER), it is important to mention 

that the MST rule will be applied as: 

1. Starting solution for SA. 

2. One solution is the population of BA.   

Table 1 shows the comparison results  

between CEM(ER, EPR) with SA(ER,EPR) and 

BA(ER,EPR) for 𝑛 = 3: 2: 11. Table 2 shows  

the comparison results between BAB(ER, EPR) 

with SA(ER,EPR) and BA(ER,EPR) for  

𝑛 = 30: 30: 300. Table 3 shows the comparison 

results between DR(ER, EPR) and  

SA(ER,EPR) and BA(ER,EPR) for  

𝑛 = 20,50,100,300,500,1000,2000,3000,4000. 

Table 4 shows the comparison results between 

SA(ER, EPR) with BA (ER,EPR) for 𝑛 =
5000: 1000: 8000. 

Table 1. Comparison results between BAB(ER,EPR) with SA(ER,EPR) and BA(ER,EPR) for  

𝑛 = 3: 2: 11. 

n 

CEM(ER,EPR) SA(ER,EPR) BA(ER,EPR) 

F 𝐹1 
𝑇

𝑆
 F 𝐹1 

𝑇

𝑆
 AAE F 𝐹1 

𝑇

𝑆
 AAE 

3 (7.0,5.6) 12.6 R (7.0,5.6) 12.6 R 0 (7.0,5.6) 12.6 R 0 

5 (5.8,14.2) 20 R (5.8,14.2) 20.0 R 0 (5.8,14.2) 20.0 R 0 

7 (6.4,18.2) 24.6 R (6.4,18.2) 24.6 R 0 (6.4,18.2) 24.6 R 0 

9 (3.4,20.0) 23.4 R (3.4,20.0) 23.4 R 0 (3.4,20.0) 23.4 R 0 

11 (6.0,37.4) 43.4 R (6.0,37.4) 43.4 R 0 (6.0,37.4) 43.4 R 0 

Av (5.8,18.9) 24,8 R (5.8,18.9) 24.8 R 0 (5.8,18.9) 24,8 R 0 

 

Table 2. Comparison results between BAB(ER,EPR) and SA(ER,EPR) and BA(ER,EPR) for 𝑛 = 30: 30: 300. 

n 

BAB(ER,EPR) SA(ER,EPR) BA(ER,EPR) 

F 𝐹1 
𝑇

𝑆
 F 𝐹1 

𝑇

𝑆
 AAE F 𝐹1 

𝑇

𝑆
 AAE 

30 (2.8,127.8) 130.6 R (2.8,127.8) 130.6 R 0 (3.0,128.4) 128.8 6.5 1.8 

60 (1.0,294.8) 295.8 R (1.0,295.0) 296.0 R 0.2 (1.0,295.6) 296.6 11.3 0.8 

90 (1.2,469.6) 470.8 1.6 (1.2,469.8) 471.0 R 0.2 (1.2,470.0) 471.2 12.1 0.4 

120 (0.6,622.6) 623.2 3.4 (0.6,622.8) 623.4 R 0.2 (0.6,622.8) 623.4 15.4 0.2 

150 (1.4,786.4) 787.8 12.1 (1.4,786.8) 788.2 R 0.4 (1.5,787.7) 788.0 19.9 0.2 

180 (0.6,905.2) 905.8 9.5 (0.6,905.4) 906.0 R 0.2 (0.6,905.4) 906.0 22.9 0.2 

210 (1.0,1094.0) 1095 14.7 (1.0,1094.0) 1095.0 R 0 (1.0,1094.0) 1095.0 19.5 0 

240 (0.6,1298.6) 1299.2 38.1 (0.6,1298.8) 1299.4 R 0.2 (0.6,1299.0) 1299.6 53.3 0.4 

270 (0.4,1454.4) 1454.8 33.8 (0.4,1454.8) 1455.2 R 0.4 (0.4,1455.0) 1455.4 31.4 0.6 

300 (1.0,1620.4) 1621.4 41.5 (1.0,1620.4) 1621.4 R 0 (1.0,1620.4) 1621.4 29.8 0 

Av (1.1,705.4) 868.4 15.5 (1.1,867.6) 868.7 R 0.2 (1.1,867.8) 868.9 22.2 0.5 

 

Table 3. Comparison results between DR(ER,EPR) and SA(ER,EPR) and BA(ER,EPR) for  

𝑛 = 20,50,100,300,500,1000,2000,3000,4000. 

n 

MST-SPT-ERL SA(ER,EPR) BA(ER,EPR) 

F 𝐹1 
𝑇

𝑆
 F 𝐹1 

𝑇

𝑆
 AAE F 𝐹1 

𝑇

𝑆
 AAE 

20 (2.8,90.6) 93.4 R (3.0,89.8) 92.8 R 0.6 (2.8,89.2) 92.0 R 1.4 

50 (2,235.4) 237.4 R (2.0,234.0) 236.0 R 1.4 (2.2,235.0) 237.2 11.5 2.6 
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100 (0.8,505.6) 506.4 R (0.8,505.2) 506.0 R 0.4 (0.8,505.6) 506.4 22.2 0 

300 (1,1620.4) 1621.4 2.2 (1.0,1620.4) 1621.4 R 0 (1.0,1620.4) 1621.4 30.2 0 

500 (0.2,2680.6) 2680.8 14.5 (0.2,2679.8) 2680.0 R 0.8 (0.2,2679.8) 2680.0 43.7 0.8 

1000 (0.2,5435.6) 5435.8 15.5 (0.2,5435.6) 5435.8 R 0 (0.2,5435.6) 5435.8 105.5 0 

2000 (0,10969.8) 10969.8 122.8 (0.0,10969.8) 10969.8 1.3 0 (0.0,10969.8) 10969.8 142.5 0 

3000 (0.0,16447.6) 16598.0 61.9 (0.0,16447.6) 16447.6 1.7 150.4 (0.0,16447.6) 16447.6 133.3 150.4 

4000 (0.0,21909.4) 21862.0 120.3 (0.0,21909.4) 21909.4 2.4 47.4 (0.0,21909.4) 21909.4 433.3 47.4 

Av (0.8,6655) 6667.2 37.5 (0.8,6654.6) 6655.4 0.6 22.3 (0.8,6654.7) 6655.5 102.5 22.5 

 

Table 4. Comparison results between SA(ER,EPR) with BA (ER,EPR) for  

𝑛 = 5000: 1000: 8000. 

n 

SA (ER,EPR) BA (ER,EPR) 

F 𝐹1 
𝑇

𝑆
 F 𝐹1 

𝑇

𝑆
 

5000 (0.0,27395.8) 27395.8 3.0 (0.0,27395.8) 27395.8 516.1 

6000 (0.0,32901.8) 32901.8 3.4 (0.0,32901.8) 32901.8 502.3 

7000 (0.0,38468.4) 38468.4 3.9 (0.0,38468.4) 38468.4 353.7 

8000 (0.0,44006.0) 44006.0 4.4 (0.0,44006.0) 44006.0 616.8 

Av (0,35693) 35693 3.7 (0,35693) 35693 497.2 

 

Applying LSM’s for Solving Problem (TR) 

Before showing the results of applying the two 

LSM’s for problem (TR), it important to mention 

that the EDD rule will be applied as: 

1. Starting solution for SA. 

2. One solution is the population of BA.  

Table 5 shows the comparison results between 

BAB(TR,TPR) with SA(TR,TPR) and 

BA(TR,TPR) for 𝑛 = 3: 2: 11. Table 6 shows the 

comparison results between BAB(TR,TPR) and 

SA(TR,TPR) and BA(TR,TPR) for 𝑛 =
30: 30: 300. Table 7 shows the comparison  

results between DR(TR,TPR) and  

SA(TR,TPR) and BA(TR,TPR) for  

𝑛 = 20,50,100,300,1000,2000,3000,4000. 

Table 8 shows the comparison results between 

SA(TR, TPR) with BA(TR,TPR) for 

Table 5. The comparison results between BAB (TR,TPR) with SA (TR,TPR) and BA (TR,TPR) for 𝑛 = 3: 2: 11. 

n 

CEM(TR,TPR) SA(TR,TPR) BA(TR,TPR) 

G 𝐺1 
𝑇

𝑆
 G 𝐺1 

𝑇

𝑆
 AAE G 𝐺1 

𝑇

𝑆
 AAE 

3 (0.4,5.6) 6 R (0.4,5.6) 6.0 R 0 (0.4,5.6) 6.0 R 0 

5 (8.4,14.2) 22.6 R (8.4,14.2) 22.6 R 0 (8.4,14.2) 22.6 R 0 

7 (11.8,18.2) 30 R (11.8,18.2) 30.0 R 0 (11.8,18.2) 30.0 R 0 

9 (16.6,20.0) 36.6 R (16.6,20.0) 36.6 R 0 (16.6,20.0) 36.6 R 0.2 

11 (31.4,37.4) 68.8 R (31.4,37.4) 68.8 R 0 (31.4,37.4) 68.8 1.4 0.2 

Av (13.7,19.1) 32.8 R (13.7,19.1) 32.8 R 0 (13.7,19.1) 32.8 0.3 0.1 

 
Table 6. Comparison results between BAB (TR,TPR) and SA(TR,TPR) and BA(TR,TPR) for 𝑛 = 30: 30: 300. 

n 

BAB(TR,TPR) SA(TR,TPR) BA(TR,TPR) 

G 𝐺1 
𝑇

𝑆
 G 𝐺1 

𝑇

𝑆
 AAE G 𝐺1 

𝑇

𝑆
 AAE 

30 (125.0,127.8) 252.8 R (125.0,127.8) 252.8 R 0 (125.1,128.1) 245.6 7.4 7.2 

60 (293.8,294.8) 588.6 R (294.1,295.6) 589.7 R 1.1 (294.2,296.9) 591.1 11.3 2.5 

90 (468.4,469.6) 938 1.47 (468.4,470.0) 938.4 R 0.4 (468.6,471.2) 944.3 13.2 6.3 

120 (622.0,622.6) 1244.6 3.21 (622.0,622.6) 1244.6 R 0 (622.0,622.6) 1244.6 19.1 0 

150 (785.0,786.4) 1571.4 5.5 (785.0,786.4) 1571.4 R 0 (785.0,788.2) 1573.2 22.6 1.8 
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180 (904.6,905.2) 1809.8 16.8 (904.6,905.8) 1810.4 R 0.6 (904.6,906.8) 1811.4 20.0 1.6 

210 (1093.0,1094.0) 2187 14.1 (1093.0,1094.0) 2187.0 R 0 (1093.0,1094.2) 2187.2 16.9 0.2 

240 (1298.0,1298.6) 2596.6 21.7 (1298.0,1299.0) 2597.0 R 0.4 (1298.0,1299.0) 2597.0 39.7 0.4 

270 (1454.0,1454.4) 2908.4 29.0 (1454.0,1454.4) 2908.4 R 0 (1454.0,1454.4) 2908.4 55.9 0 

300 (1619.4,1620.4) 3239.8 35.8 (1619.4,1620.8) 3240.2 R 0.4 (1619.4,1621.0) 3240.4 39.8 0.6 

Av (866.3,867.4) 1733.7 12.8 (866.3,867.6) 1734.0 R 0.3 (866.4,868.2) 1734.3 24.6 2.1 
 

 

Table 7. Comparison results between DR (TR,TPR) and SA(TR,TPR) and BA(TR,TPR) for  

𝑛 = 20,50,100,300,1000,2000,3000,4000. 

n 

EDD-SPT-TRL SA(TR,TPR) BA(TR,TPR) 

G 𝐺1 
𝑇

𝑆
 G 𝐺1 

𝑇

𝑆
 AAE G 𝐺1 

𝑇

𝑆
 AAE 

20 (86.4,89.2) 175.6 R (86.4,89.2) 175.6 R 0 (86.4,89.2) 175.6 1.3 0 

50 (231.6,233.6) 465.2 R (231.6,233.8) 465.4 R 0.2 (231.6,235.0) 466.6 10.9 1.4 

100 (504.4,505.2) 1009.6 R (504.5,506.6) 1011.1 R 1.5 (504.4,506.6) 1011.0 29.1 1.4 

300 (1619.4,1620.4) 3239.8 1.1 (1619.4,1620.8) 3240.2 R 0.4 (1619.4,1621.0) 3240.4 49.7 0.6 

500 (2679.6,2679.8) 5359.4 2.5 (2679.6,2679.8) 5359.4 R 0 (2679.6,2679.8) 5359.4 64.1 0 

1000 (5435.4,5435.6) 10871 13.2 (5435.4,5435.6) 10871.0 R 0 (5435.4,5435.6) 10871.0 76.4 0 

2000 (10969.8,10969.8) 21939.6 73.6 (10969.8,10969.8) 21939.6 1.2 0 (10969.8,10969.8) 21939.6 211.5 0 

3000 (16447.6,16447.6) 32895.2 40.4 (16447.6,16447.6) 32895.2 1.7 0 (16447.6,16447.6) 32895.2 256.8 0 

4000 (21909.4,21909.4) 43818.8 69.6 (21909.4,21909.4) 43818.8 2.0 0 (21909.4,21909.4) 43818.8 361.5 0 

Av (6653.7,6654.5) 13308.2 22.3 (6653.7,6654.7) 13308.4 0.6 0.2 (6653.7,6654.9) 13308.6 117.9 0.4 
 

Table 8. Comparison results between SA (TR, TPR) with BA(TR,TPR) for 𝑛 = 5000: 1000: 8000. 

n 

SA(TR,TPR) BA(TR,TPR) 

G 𝐺1 
𝑇

𝑆
 G 𝐺1 

𝑇

𝑆
 

5000 (27395.8,27395.8) 54791.6 3.0 (27395.8,27395.8) 54791.6 147.2 

6000 (32901.8,32901.8) 65803.6 3.4 (32901.8,32901.8) 65803.6 133.0 

7000 (38468.4,38468.4) 76936.8 3.8 (38468.4,38468.4) 76936.8 173.9 

8000 (44006.0,44006.0) 88012.0 4.3 (44006.0,44006.0) 88012.0 221.7 

Av (35693,35693) 71386 3.6 (35693,35693) 71386 169.0 

RESULTS AND DISCUSSION 

 Problems (𝑬𝑹)𝒂𝒏𝒅 (𝑬𝑷𝑹) 

1. According to the results, the SA is more 

precise in results than the BA when compared 

to the BAB method for 30 ≤ 𝑛 ≤ 300 (see 

Table 2). 

2. The SA is better than MST-SPT-ERL and BA 

in terms of time and good results for 

20 ≤ 𝑛 ≤ 4000 (see table 3). 

3. From Table 4, we see that the SA and BA 

outcomes are similar, but the SA performs 

better in terms of time for all n. 

Problems (𝑻𝑹)𝒂𝒏𝒅 (𝑻𝑷𝑹) 

1. According to the results, the SA method is 

more precise than the BA method when 

compared to the BAB method for 30 ≤ 𝑛 ≤
300 (see table 6). 

2. The SA method is superior to the 

approximation method EDD-SPT-TRL in 

terms of time and good results for 20 ≤ 𝑛 ≤
4000  (see table 7). 

3. From table 8, we can see that the SA and BA 

methods produce outcomes that are similar, 

but the SA method performs better in terms 

of time. 

CONCLUSIONS 
In this research, we addressed the resolution of 

two classes of Multiple Constraints Multiple 

Sequence Problems (MCMSP), namely ER and 

TR, alongside two instances of Multiple 
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Objective Multiple Sequence Problems 

(MOMSP), denoted as EPR and ETR, employing 

Latent Semantic Models (LSMs). Our 

investigation underscored the commendable 

efficacy of two specific LSMs, denoted as SA 

and BA, in resolving both MCMSP and 

MOMSP. Comparative analyses against 

established benchmarks such as CEM, BAB, and 

various heuristic methods revealed the superior 

performance of our proposed LSMs.  Throughout 

our experimentation, we observed the 

noteworthy influence of initial solutions on the 

attainment of optimal outcomes for SA and BA 

across varying parameters denoted as 'n', a trend 

evident across all result tables. Notably, SA 

exhibited heightened precision in results and 

consumed lesser CPU time in comparison to BA 

and other methodologies under evaluation. To 

further enhance the performance and efficacy of 

Latent Semantic Models, we advocate for the 

development of a hybrid approach integrating 

the strengths of both SA and BA, specifically 

tailored to address the discussed problem sets. 

Additionally, we propose the integration and 

exploration of additional LSMs, such as Tabu 

Search and Particle Swarm Optimization, to 

tackle and resolve the complexities inherent in 

the studied case problems. 
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