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ABSTRACT

In this paper, we have improved solutions for two of the Multi-Criteria Machine
Scheduling Problems (MCMSP). These problems are to maximize early jobs time and
range of lateness jobs times 1//(E 45, R}.)), and the second problem is maximum tardy
jobs time and range of lateness jobs times 1//(T;,,4x, R.,) in a single machine with Multi-
Objective Machine Scheduling Problems (MOMSP) 1//(E,qx, R.)and 1//(Tpqx, RL)
which are derived from the main problems respectively. The Local Search Methods
(LSMs), Bees Algorithm (BA), and a Simulated Annealing (SA) are applied to solve all
suggested problems. Finally, the experimental results of the LSMs are compared with the
results of the Branch and Bound (BAB) method for a reasonable time. These results are
ensuring the efficiency of LSMs.

KEYWORDS: Local search Methods, Multi-Criteria Scheduling Problems, Bees Algorithm,
Simulated Annealing, Branch and Bound Method.
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INTRODUCTION

It is widely acknowledged that one of the key
areas of combinatorial optimization problems is
the machine Scheduling Problems (MSP).
Finding the best and most advantageous solution
for minimizing a function is the main goal of this
paper. The computational time requirements are
very high for large-sized problems when the
MSP is an NP-hard problem. We can make use
of heuristic techniques to get around these
drawbacks. The development of heuristic
methods has been referred to as “local search
methods” in recent years. In a reasonable amount
of time, the local search approach offers high-
quality solutions to NP-hard problems of
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realistic size. Beginning with a first solution, the
Local Search Methods (LSMs) keep looking for
better ones by searching neighborhoods [1]. In
2014, Ibraheem [2], investigated the 1//T,,q, +
E.,.x problem and found a near optimal solution
by using LSMs (Descent method (DM), and
Simulated  Annealing  (SA) algorithm),
respectively. Also, the study reported the results
of extensive computational tests of (DM), (SA).
Our experimental results indicate that the
proposed algorithms have found exact and
efficient solutions in most cases. In 2014,
Mahmood [3] discussed the multi-criteria
scheduling problem and studied on a single
machine to find efficient solutions of the
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problem, 1//F(2C;, Tmax Vinax), and used the
LSMs to find approximation solutions. She
suggested LSMs for finding approximation
solutions. These LSMs are: (DM), (SA) and a
Genetic  Algorithm  (GA)  which  are
implemented. Based on the results of
computational experiments, conclusions are
formulated on the efficiency of the local search
algorithms. In 2017, Abdulkareem [4] presented
the problem (Toax » Vinax, 2 V; ), and solved it by
using some types of local search methods:
Particle Swarm Optimization (PSO) and Bees
Algorithm (BA), and neural networks (NN) are
used to solve the origin problem. Abbas (2019)
[5] studied multi-objective single MSP. The
objective is to  minimize four cost
functions (X Cj + X U; + X T; + Tuax) by LSMs
method and provide solutions for the considered
problem. In 2022, Ahmed [6] offered some
methods to solve the MCMSP by minimizing
(1//(XC;,Tax,R.)). She deduced sub-

problems  denoted by (1//(ZC; + Tpax +

R,)) suggested (8) solving methods classified as
exact, heuristic and local search methods to find
the set of efficient, optimal, near optimal and
approximate solutions for the two problems. The
rest of the paper is organized as follows: In
Section 2, we discuss the MSP concept. In
Section 3, we introduce the mathematical
formulation of the BCMSP and BOMSP. Also,
we revisit the local search method (LSMs); Bees
Algorithm (BA) and a Simulated Annealing
(SA). In Section 4. We apply the LSMs for
solving the two BCMSP and BOMSP in Sections
5 and 6, respectively. The analysis and
discussion of the comparison results are
discussed in Section 7. Conclusions and
recommendations are introduced in Section 8.

MATERIALS AND METHODS

Machine Scheduling Problem Concept

In this Section, we start by introducing some
important notations where we concentrate on the
performance criteria without elaborating on the
machine environment. It is assumed that there
are n jobs, which we denoted by 1, ..., n and these
jobs are to be scheduled on a set of machines that
are continuously available from time zero
onwards and can handle only one job at a time.
We only state here that the notations are used for
single machine, jobs j,(j = 1, ...,n) has [7]:
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p; - which mean that the job j has to processed
for a period of length p;.

d;: a due date, the date when the job j should be
completed. Even though it is permitted, there is
a cost associated with finishing the task after the
deadline. It is known as a deadline when the due
date absolutely must be met, and it is known as a
common due date when it applies to all jobs.

s;: a slack time of job j s.t. s; = d; — p;.

C;: the completion time, the time at which the

processing of job j is completed s.t.

G = {<=1 Pk -

Now for a given sequence o of jobs we can
compute for job j:

e Thelateness L; = C; —

d;

e Range of lateness: R;, = L,,ux — Limin Where
Lax = {Qjasacq{Lj} and Lyin = gljigl{Lj}.
e Thetardiness T; = max{Lj ,0}.

e The maximum tardiness: T4, = max (T}).
1<jsn

e The earliness E; = max{—Lj, 0}.

e The maximum earliness: E = maxiE;j.
max = max ()

The following sequencing rules and basic
concepts are used in this work:

Definition (1): (Earliest Due Date (EDD) rule
[7]): Sequencing the jobs in non-decreasing order
of their due dates (d, ) i.e., (dy; < d, < < d,),
which is solving the problems 1//L,,., and
1//Tmax-

Definition (2): (Minimum slack Time (MST)
rule [6]): Jobs are sequenced in non- decreasing
order of slack time (s;) i.e., (s; < 5, < - < sp).
This rule is well known for solving the problem
1//Emax

Mathematical Formulation of the Bcmsp and
Bomsp

Let N = {1,2,...,n} be a set of jobs that is wanted
to be scheduled on a BCMSP withp; < d; and
BOMSP for each NP-hard problem. The MSP
can process only one job at a time using the two
field’s classification. In the following two
subsections we will discuss the mathematical
formulation of BCMSP and BOMSP for each
problem.

Mathematical Formulation for First Problem
This MCMSP denoted by 1//(E,,4,R;) Which
can be formulated for a given schedule o =
(1,2,...,n) as:
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F = min(E,,4,, R;)

Such that

€1 = Po N

G = oy, j=12..,n

C] = Cj—l + po'(j)' j = 2,3, e, n

L] = C] - dO'(j)' j = 1,2, W n > (ER)
RL(O') = Lmax(o) - Lmin(O')

E] = do-(]) - C] j = 1,2, e,

Emax = IQF;YCL{E]}

E; >0, j=12,..,n

J

while the MOMSP of the MCMSP is denoted by

1/I(Eqx, R,) Which is formulated as follow for

the BOMSP using schedule ¢ = (1,2, ...,n) as:
F = min(E,qy + Ry)

Emax (o), R, (0) =20

Such that

Cl = pO'(l) \

Cj > po(j), j=12,..,n

C] = Cj—l + po-(]_), ] = 2,3, e, n

Lj = Cj — da(]-)f j=12,..,n >(EPR)
RL(O‘) = Lmax(a) - Lmin(a)

E] = do-(]) - C] ] = 1,2, e,

Emax = I’sljas’fl{Ej }

Ej =0, j=12,..,n
Emax(O'),RL(O') >0

J

We see [8].

Mathematical Formulation for second Problem
The MCMSP is denoted byl1//(Tyq4., R), Which
can be formulated for a given schedule o =
(1,2,...,n) as:

F = min(T,,4,, R;)

Such that
j A

C]:Zpk , j:1,2,...,n

k=1
Ci = Cm1+ Doy J = 23,.,m > ..(TR)
L] = C] - do—(j), ] = 1,2, e, n
Tj ZC]_dG(])' ]: 1,2,...,n
Tmax = max{Tj}

1<jsn

J
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RL(a) = Lmax(a) - Lmin(a)
T; 2 0, j=12,.,n
Tpax(0), R (0) = 0

while the MOMSP of the MCMSP is denoted by
U/(Tax R,) Which is formulated as follows for
the BOMSP using schedule ¢ = (1,2,...,n) as:
F = min(Ty,q, + R.)

such that
Cl = pa(l)
G = Pojy

]
¢ = Zpk, j=12..,n
k=1

j=12,..

C;=C_1+ pg(].),j =23,..,n
Li=C—ds,, j=12,..,n ..(TPR)
RL(O‘) = Lmax(a) - Lmin(a)

Tnax = {Q%{TJ}

RL(O‘) = Lmax(a) - Lmin(a)

T; > 0, j=12,..,n

Tmax(o'); RL(O') > 0.

For more details, readers may see [8].

Local Search Methods

In this Section, we will discuss some LSMs for two
types of BCMSP and BOMSP problems and find
near-optimal solutions for such problems in
reasonable computational time to avoid solving
problems that require large computational times

[9].

Simulated Annealing

An optimization method based on trajectories is
called Simulated Annealing (SA). It is
essentially a  strategy  for  continuous
improvement with a criterion that occasionally
accepts higher cost configurations. In the 80s
century, SA was first used to resolve the COP.
The physical annealing of materials, which
involves first heating the solid and then
gradually reducing it to a lower energy state,
served as the inspiration for SA. Due to its ability
to simulate how thermodynamic systems
transition from one state to another, the
Metropolis acceptance criterion is used to
determine whether the current solution should be
accepted or rejected. [10]. The initial state of a
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thermodynamic system was selected at energy
(Cost or C) and temperature (Temperature
(Temp)). The system's initial configuration is
altered to produce a new configuration while
holding t constant, and the change in energy AC
is calculated. The new configuration is accepted
without conditions, but if AC is negative whereas
it is accepted if AC is positive with a probability
given by the Boltzmann factor shown in (1) to
avoid trapping in the local optima.

The algorithm requires a number of parameters
to be set, namely:

m: Number of scout bees.

ss: Number of sites selected out of n visited sites.
e: Number of best sites out of ss selected sites.
nep: Number of bees recruited for best e sites.
nsp: Number of bees recruited for the other (ss-
e) selected sites.

ngh: Initial size of patches which includes site
and its neighborhood and stopping criterion.

Algorithm (1): Simulated Annealing (SA)
Stepl: Input: Temp., Final Temp., cooling rate, ch;
Step2: ch’ = ch; Cost = Evaluate (ch');
Step3: while (Temp > Final Temp)do

chl = Mutate (ch’);

NewCost = Evaluate (chl);

ACost = NewCost — Cost;

if

ACost

(A Cost < 0) OR (e‘Tmp

Rand) then

Cost = NewC(Cost;
ch'=chl;
endif

Temp = cooling rate X Temp
endwhile

Step 4: Output: the best ch'.

Algorithm (2): Bees Algorithm (BA)

Step 1: INPUT: m, ss, e, nep, nsp, Maximum of
iterations.

Step 2: Initialize population with random
solutions.

Step 3: Evaluate fitness of the population.

Step 4: REPEAT

Step 5: Select sites for neighborhood search.

Step 6: Recruit bees for selected sites (more bees
for best e sites) and evaluate fitness’s.

Step 7: Select the fittest bee from each patch.

Step 8: Assign remaining bees to search randomly
and evaluate their fitness.

Step 9: UNTIL stopping criterion is met.

Step 10: OUTPUT: Optimal or near optimal
solutions.

END.

Bees Algorithm (BA)

Ant colonies, beehives, bird flocks, and animal
herds are examples of real-world swarm
intelligence (SI). The three most popular
examples of swarm intelligence systems are
marriage in honey bee’s optimization (MBO),
particle swarm optimization, and ant colony
optimization.

A novel technique known as MBO, which is
applied to a particular class of propositional
satisfiability issues, and it is based on the
haploid-diploid genetic breeding of honey bees.
The three primary MBO processes are: the queen
bee's flight to mate with drones, her production
of new broods, and her enhancement of the
fitness of the broods. The difficulty lies in
modifying the colony's self-organization
behavior to address the issues. The Bees
Algorithm (BA), a solution-finding algorithm,
draws inspiration from honey bees' normal
foraging behavior. In its most basic form, the
pseudo code for the BA is as follows [11]:
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Using Lsms for Solving the Two Bcmsp and
Bomsp

In this Section, we suggest using LSMs. These
LSM are Bees Algorithm (BA) and a Simulated
Annealing (SA) to find the most efficient
solutions for solving MCTSP. The values of

p;and d; for all examples are generated
randomly s.t. p; € [1,10] and
d; € {[1,30], 1<n<29. [140], 30<
n<99. [1,50], 100<n <

999.[1,70], n = 100.

with condition d; = p;, for j = 1,2, ...,n.

Now we introduce the following important
abbreviations:

Ex: Example Number.

Av: Average.

AAE: Average Absolute Error.

g: Average of Time per second.

Av: Average.
R: 0 < Real < 1.
F: Objective Function value for ER problem.
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F;: Objective Function value for EPR problem.
G Objective Function value for TR problem.

G,: Objective Function value for TPR problem.
ES: efficient solution.

0S: optimal solution.

Applying LSM’s for Solving the Two Problems

1. Starting solution for SA.
2. One solution is the population of BA.

Table 1 shows the comparison results
between CEM(ER, EPR) with SA(ER,EPR) and
BA(ER,EPR) for n=3:2:11. Table 2 shows
the comparison results between BAB(ER, EPR)

In this Section, we demonstrate the results of  with SA(ER,EPR) and BA(ER,EPR) for
applying the two suggested algorithms (SA and  n = 30:30:300. Table 3 shows the comparison
BA) on the two problems (ER and TR). results between DR(ER, EPR) and

SA(ER,EPR) and BA(ER,EPR) for

Applying LSM’s for Solving Problem (ER)
Before showing the results of applying the two
LSM’s for problem (ER), it is important to mention

n = 20,50,100,300,500,1000,2000,3000,4000.
Table 4 shows the comparison results between
SA(ER, EPR) with BA (EREPR) for n =

that the MST rule will be applied as:

5000:1000:8000.

Table 1. Comparison results between BAB(ER,EPR) with SA(ER,EPR) and BA(ER,EPR) for

n=3:2:11.
CEM(ER,EPR) SA(ER,EPR) BA(ER,EPR)
n T T T
F F; 3 F F; 3 AAE F F; T AAE

3 (7.0,5.6) 12.6 R (7.0,5.6) 12.6 R 0 (7.0,5.6) 12.6 R 0

5 (5.8,14.2) 20 R (5.8,14.2) | 20.0 R 0 (5.8,14.2) | 20.0 R 0

7 (6.4,18.2) | 24.6 R (6.4,18.2) | 24.6 R 0 (6.4,18.2) | 24.6 R 0

9 (3.4,20.0) | 23.4 R (3.4,20.0) | 23.4 R 0 (3.4,20.0) | 23.4 R 0
11 | (6.0,37.4) | 43.4 R (6.0,37.4) | 43.4 R 0 (6.0,37.4) | 434 R 0
Av | (5.8,18.9) | 24,8 R (5.8,18.9) | 24.8 R 0 (5.8,18.9) | 24,8 R 0

Table 2. Comparison results between BAB(ER,EPR) and SA(ER,EPR) and BA(ER,EPR) for n = 30: 30: 300.
BAB(ER,EPR) SA(ER,EPR) BA(ER,EPR)

: F F, g F F, g AAE F 7 g AAE
30 (2.8,127.8) |130.6| R (2.8,127.8) | 130.6 R 0 (3.0,128.4) | 128.8 6.5 1.8
60 (1.0,294.8) |295.8| R (1.0,295.0) | 296.0 R 0.2 | (1.0,295.6) | 296.6 | 11.3 | 0.8
90 (1.2,469.6) |470.8| 1.6 (1.2,469.8) | 471.0 R 0.2 | (1.2,470.0) | 4712 | 121 | 0.4
120 | (0.6,622.6) |623.2| 3.4 (0.6,622.8) | 623.4 R 0.2 | (0.6,622.8) | 623.4 | 154 | 0.2
150 | (1.4,786.4) |787.8| 12.1 | (1.4,786.8) | 788.2 R 04 | (1.5,787.7) | 788.0 | 19.9 | 0.2
180 | (0.6,905.2) |905.8| 9.5 (0.6,905.4) | 906.0 R 0.2 | (0.6,905.4) | 906.0 | 229 | 0.2
210 | (1.0,1094.0) | 1095 | 14.7 | (1.0,1094.0) | 1095.0| R 0 (1.0,1094.0) | 1095.0 | 19.5 0
240 | (0.6,1298.6) [1299.2| 38.1 | (0.6,1298.8) | 12994 | R 0.2 |(0.6,1299.0) | 1299.6 | 53.3 | 0.4
270 | (0.4,1454.4) |1454.8| 33.8 | (0.4,1454.8) | 1455.2| R 0.4 |(0.4,1455.0)| 1455.4 | 31.4 | 0.6
300 | (1.0,1620.4) |1621.4| 415 | (1.0,1620.4) | 16214 | R 0 (1.0,1620.4) | 1621.4 | 29.8 0
Av | (1.1,705.4) |868.4| 15.5 | (1.1,867.6) | 868.7 R 0.2 | (1.1,867.8) | 868.9 | 22.2 | 0.5

Table 3. Comparison results between DR(ER,EPR) and SA(ER,EPR) and BA(ER,EPR) for
n = 20,50,100,300,500,1000,2000,3000,4000.
MST-SPT-ERL SA(ER,EPR) BA(ER,EPR)

: F F, g F 7, g AAE F F, g AAE
20 (2.8,90.6) 93.4 R (3.0,89.8) 92.8 R | 0.6 (2.8,89.2) 92.0 R 14
50 (2,235.4) 237.4 R (2.0,234.0) 2360 | R | 14 (2.2,235.0) 237.2 | 11. 2.6
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100 | (0.8,505.6) | 506.4 R (0.8,505.2) | 506.0 | R | 0.4 | (0.8,505.6) 506.4 | 22.2| O
300 | (1,1620.4) | 16214 | 2.2 | (1.0,1620.4) | 16214 | R | O (1.0,1620.4) | 1621.4 | 30.2| O
500 | (0.2,2680.6) | 2680.8 | 14.5 | (0.2,2679.8) | 2680.0 | R | 0.8 | (0.2,2679.8) | 2680.0 | 43.7 | 0.8
1000| (0.2,5435.6) | 5435.8 | 15.5 | (0.2,5435.6) | 54358 | R | 0 (0.2,5435.6) | 5435.8 |105.5| O

2000| (0,10969.8) |10969.8|122.8| (0.0,10969.8)

10969.8| 1.3| 0 | (0.0,10969.8) | 10969.8 |142.5| 0

3000/ (0.0,16447.6) | 16598.0| 61.9 | (0.0,16447.6)

16447.6 | 1.7 |150.4| (0.0,16447.6) | 16447.6|133.3|150.4

4000| (0.0,21909.4) |21862.0(120.3| (0.0,21909.4)

21909.4| 2.4 | 47.4 | (0.0,21909.4) | 21909.4 |433.3| 47.4

Av | (0.8,6655) | 6667.2 | 37.5| (0.8,6654.6)

6655.4 | 0.6 | 22.3 | (0.8,6654.7) | 6655.5 |102.5| 22.5

Table 4. Comparison results between SA(ER,EPR) with BA (ER,EPR) for
n = 5000: 1000: 8000.

SA (ER,EPR) BA (ER,EPR)

T T
5000 (0.0,27395.8) 27395.8 3.0 (0.0,27395.8) 27395.8 516.1
6000 (0.0,32901.8) 32901.8 3.4 (0.0,32901.8) 32901.8 502.3
7000 (0.0,38468.4) 38468.4 3.9 (0.0,38468.4) 38468.4 353.7
8000 (0.0,44006.0) 44006.0 4.4 (0.0,44006.0) 44006.0 616.8
Av (0,35693) 35693 3.7 (0,35693) 35693 497.2

Applying LSM’s for Solving Problem (TR)

Before showing the results of applying the two
LSM’s for problem (TR), it important to mention
that the EDD rule will be applied as:

1. Starting solution for SA.
2. One solution is the population of BA.

Table 5 shows the comparison results between
BAB(TR,TPR) with SA(TR,TPR) and

BA(TR,TPR) for n = 3:2:11. Table 6 shows the
comparison results between BAB(TR,TPR) and
SA(TR,TPR) and BA(TRTPR) for n=
30:30:300. Table 7 shows the comparison
results between DR(TR,TPR) and
SA(TR,TPR) and BA(TR,TPR) for
n = 20,50,100,300,1000,2000,3000,4000.
Table 8 shows the comparison results between
SA(TR, TPR) with BA(TR,TPR) for

Table 5. The comparison results between BAB (TR, TPR) with SA (TR, TPR) and BA (TR,TPR) forn = 3:2: 11.

CEM(TR,TPR) SA(TR,TPR) BA(TR,TPR)

n G Gy g G Gy g AAE G G, g AAE

3 (0.4,5.6) 6 R (0.4,5.6) 6.0 R 0 (0.4,5.6) 6.0 R 0

5 (8.4,14.2) 22.6 R (8.4,14.2) 22.6 R 0 (8.4,14.2) 22.6 R 0

7 (11.8,18.2) 30 R (11.8,18.2) | 30.0 R 0 (11.8,18.2) | 30.0 R 0

9 (16.6,20.0) | 36.6 R (16.6,20.0) | 36.6 R 0 (16.6,20.0) | 36.6 R 0.2

11 | (31.4,37.4) | 68.8 R (31.4,37.4) | 68.8 R 0 (31.4374) | 688 | 1.4 0.2
Av | (13.7,19.1) | 32.8 R (13.7,19.1) | 32.8 R 0 (13.7,19.1) | 328 | 0.3 0.1

Table 6. Comparison results between BAB (TR, TPR) and SA(TR,TPR) and BA(TR,TPR) for n = 30: 30: 300.
BAB(TR,TPR) SA(TR,TPR) BA(TR,TPR)

n G Gy g G Gy g AAE G G, g AAE
30 | (125.0,127.8) | 252.8 | R | (125.0,127.8) | 252.8 R 0 | (125.1,128.1) | 2456 | 7.4 | 7.2
60 | (293.8,294.8) | 588.6 | R | (294.1,295.6) | 589.7 R 1.1 | (294.2,296.9) | 591.1 | 11.3 | 2.5
90 | (468.4,469.6) | 938 | 1.47 | (468.4,470.0) | 938.4 R | 0.4 | (468.6,471.2) | 944.3 | 13.2 | 6.3
120| (622.0,622.6) | 1244.6| 3.21 | (622.0,622.6) | 12446 | R 0 | (622.0,622.6) |1244.6|19.1| O
150| (785.0,786.4) | 1571.4| 5.5 | (785.0,786.4) | 15714 | R 0 | (785.0,788.2) | 1573.2| 22.6 | 1.8
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180| (904.6,905.2) | 1809.8 | 16.8 | (904.6,905.8) | 1810.4

0.6 | (904.6,906.8) | 1811.4] 20.0 | 1.6

210((1093.0,1094.0)| 2187 | 14.1 |(1093.0,1094.0)| 2187.0

0 (1093.0,1094.2)| 2187.2| 16.9 | 0.2

240(1298.0,1298.6)| 2596.6 | 21.7 |(1298.0,1299.0)| 2597.0

0.4 |(1298.0,1299.0)| 2597.0| 39.7 | 0.4

270((1454.0,1454.4)| 2908.4 | 29.0 |(1454.0,1454.4)| 2908.4

0 [(1454.0,1454.4)[ 2908.4] 55.9| 0

300(1619.4,1620.4)| 3239.8 | 35.8 |(1619.4,1620.8)| 3240.2

0.4 |(1619.4,1621.0)| 3240.4| 39.8 | 0.6

Av | (866.3,867.4) | 1733.7| 12.8 | (866.3,867.6) | 1734.0

(00|00

0.3 | (866.4,868.2) | 1734.3| 24.6 | 2.1

Table 7. Comparison results between DR (TR, TPR) and SA(TR,TPR) and BA(TR,TPR) for
n = 20,50,100,300,1000,2000,3000,4000.

EDD-SPT-TRL SA(TR.TPR) BA(TR,TPR)
: G G, g G G, g AAE G G, g AAE
20| (864892 |1756| R | (86.4,892) |1756 | R | 0 | (86.4.892) |1756| 13| 0
50 | (231.6,233.6) | 4652 | R | (231.6,2338) | 4654 | R | 02 | (231.6,235.0) | 466.6 |10.9] 1.4
100| (504.4,505.2) |1009.6] R | (504.5,506.6) |1011.1] R | 1.5 | (504.4,506.6) |1011.0|29.1| 1.4
300| (1619.4,1620.4) |3239.8| 1.1 | (1619.4,1620.8) |3240.2| R | 0.4 | (1619.4,1621.0) |3240.4|49.7| 0.6
500 | (2679.6,2679.8) |5359.4| 2.5 | (2679.6,2679.8) |5359.4] R | 0 | (2679.6,2679.8) |5359.4|64.1| 0
1000| (5435.4,5435.6) | 10871 | 13.2| (5435.4,5435.6) [10871.0 R | 0 | (5435.4,5435.6) [10871.0 76.4| 0
2000{(10969.8,10969.8)21939.6 73.6 |(10969.8,10969.8)21939.6 1.2 | 0 |(10969.8,10969.8)21939.6211.5 0
3000|(16447.6,16447.6)32895.2 40.4 |(16447.6,16447.6)32895.2| 1.7 | 0 |(16447.6,16447.6)32895.2256.8 0
4000/(21909.4,21909.4)43818.8 69.6 |(21909.4,21909.4)43818.8 2.0 | 0 |(21909.4,21909.4)43818.8361.5 0
Av | (6653.7,6654.5) [13308.222.3 | (6653.7,6654.7) [13308.4 0.6 | 0.2 | (6653.7,6654.9) [13308.6117.9 0.4

Table 8. Comparison results between SA (TR, TPR) with BA(TR,TPR) for n = 5000: 1000: 8000.

SA(TR,TPR) BA(TR,TPR)

: G G, g G G, g
5000 (27395.8,27395.8) 547916 | 3.0 (27395.8,27395.8) 54791.6 | 147.2
6000 (32901.8,32901.8) 65803.6 | 3.4 (32901.8,32901.8) 65803.6 | 133.0
7000 (38468.4,38468.4) 76936.8 | 3.8 (38468.4,38468.4) 76936.8 | 173.9
8000 (44006.0,44006.0) 880120 | 4.3 (44006.0,44006.0) 88012.0 | 221.7
Av (35693,35693) 71386 3.6 (35693,35693) 71386 | 169.0

RESULTS AND DISCUSSION

Problems (ER)and (EPR)

1. According to the results, the SA is more
precise in results than the BA when compared
to the BAB method for 30 <n < 300 (see
Table 2).

2. The SAis better than MST-SPT-ERL and BA
in terms of time and good results for
20 < n <4000 (see table 3).

3. From Table 4, we see that the SA and BA
outcomes are similar, but the SA performs
better in terms of time for all n.

Problems (TR)and (TPR)
1. According to the results, the SA method is
more precise than the BA method when
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compared to the BAB method for 30 <n <
300 (see table 6).

2. The SA method is superior to the
approximation method EDD-SPT-TRL in
terms of time and good results for 20 < n <
4000 (see table 7).

3. From table 8, we can see that the SA and BA
methods produce outcomes that are similar,
but the SA method performs better in terms
of time.

CONCLUSIONS

In this research, we addressed the resolution of
two classes of Multiple Constraints Multiple
Sequence Problems (MCMSP), namely ER and
TR, alongside two instances of Multiple

ey
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Objective  Multiple  Sequence  Problems
(MOMSP), denoted as EPR and ETR, employing
Latent Semantic Models (LSMs). Our
investigation underscored the commendable
efficacy of two specific LSMs, denoted as SA
and BA, in resolving both MCMSP and
MOMSP. Comparative analyses  against
established benchmarks such as CEM, BAB, and
various heuristic methods revealed the superior
performance of our proposed LSMs. Throughout
our experimentation, we observed the
noteworthy influence of initial solutions on the
attainment of optimal outcomes for SA and BA
across varying parameters denoted as 'n’, a trend
evident across all result tables. Notably, SA
exhibited heightened precision in results and
consumed lesser CPU time in comparison to BA
and other methodologies under evaluation. To
further enhance the performance and efficacy of
Latent Semantic Models, we advocate for the
development of a hybrid approach integrating
the strengths of both SA and BA, specifically
tailored to address the discussed problem sets.
Additionally, we propose the integration and
exploration of additional LSMs, such as Tabu
Search and Particle Swarm Optimization, to
tackle and resolve the complexities inherent in
the studied case problems.
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