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This paper offers a clear methodology for the characterization of cold atmospheric plasmas 
and their development. The optical emission spectra of an Ar/O2 plasma jet produced in a 

plasma jet system at constant flow rates and for various potential discharges between 14 
kV and 18 kV revealed that variations in voltage caused a significant difference in the 
intensity of the Ar/O2 emission. The plasma characteristics of electron temperature (Te), 
electron density (ne), plasma frequency (fp), Debye length (λD), and the number of particles 
in the Debye sphere (ND), were estimated using the technique of optical emission 
spectroscopy (OES). The obtained data are subject to further analysis and discussion. It was 

determined that potential discharges increased, and an electron temperature increased from 
1.34 eV to 1.54 eV. With rising potential discharges, the Debye length decreases while the 

electron density, plasma frequency, and number of particles in the Debye sphere increase. 

KEYWORDS: Plasma jet, AC plasma discharge, Ar/O2 mixture, OES, plasma 
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 الخلاصـة
يقدم هذا البحث منهجية واضحة لوصف بلازما الغلاف الجوي البارد وتكوينها. كشفت أطياف الانبعاث البصري لبلازما 

الجهد المختلفة بين  2Ar / Oالنفث  كيلو فولت أن هناك تغيير كبير  18و  14المنتجة بمعدلات تدفق ثابتة ولتفريغات 
(، تردد en(، كثافة الإلكترون )eTالبلازما لدرجة حرارة الإلكترون ). تم تقدير خصائص 2Ar / Oفي شدة الأنبعاث 

الجسيمات في كرة ديباي ) D(λ((، طول ديباي  pfالبلازما ) للانبعاثات  DN، وعدد  التحليل الطيفي  ( باستخدام تقنية 
فولت ، و  1.54  إلى 1.34(. وجد ان بزيادة جهد التفريغ هناك زيادة في درجة حرارة الإلكترون من  OESالضوئية )

 .تزداد كثافة الإلكترون, تردد البلازما  وعدد الجسيمات في كرة ديباي  بينماهناك انخفاض في طول ديباي

INTRODUCTION 
Last several decades, AC and DC cold 

atmospheric plasmas (CAPs) or non-thermal 

plasma (NTP) considered important in diverse 

fields such as food [1][2], biomaterial and 

biomedicine [3][4], material synthesis and 

processing [5][6], surface modification [7], thin 

film treatment [8], catalysts [9], and agriculture 

[10][11]. Thus CAPs have allowed the 

development of various sources of non-thermal 

plasma (NTP) close to room temperature, which 

allows previously impossible plasma 

applications [12]. Computational, experimental, 

and theoretical investigations of atmospheric 

pressure plasmas offer a range of compelling 

novel research insights into the fundamental 

aspects of these plasmas and their practical uses. 

CAPs eliminate the need for complicated and 

expensive vacuum equipment; Thus, it allows 

numerous innovative designs to meet the rising 

demand for reliable, cost-effective, and easy-to-

operate plasma sources [13]. Among other 

CAPs, the non-equilibrium plasma jets have 

attracted great interest since they are generated 

in open space rather than in the space between 

two electrodes. The evolution of the plasma is 

also driven by non-equilibrium in the internal 
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levels and in the energy distribution of free 

electrons, which activates mechanisms that can 

effectively produce the desired particular 

reaction products [14][15]. The majority of 

CAPs used in bio-applications are produced by 

delivering electrical energy to plasma-forming 

gases (helium, argon, nitrogen, oxygen, or 

combinations of these gases), which at room 

temperature produce low-energy ions and hot-

energy electrons [16]. The presence of O2 in the 

plasma is important because it promotes the 

development of reactive oxygen species (ROS), 

which are crucial to the therapeutic action of 

CAPs [17, 18]. The ROS including superoxide 

(O2
-), O, H2O2, OH radicals, and ozone (O3) is 

produced by a non-thermal atmospheric plasma 

jet (NTAPJ) [19]. In NTAPJ, acceleration-

induced electron-gas collision resulting excited 

or ionized gas depending on the energy of 

accelerated electrons [20][21]. However, the 

generation of ROS important for biomedical 

procedures like canal therapy, cancer treatment, 

wound healing, and surface sterilization 

[22][23]. 

Ionized and excited states have a vital role in 

plasma physics and chemistry. To make 

accurate simulation codes, it is important to 

have a detailed understanding of rate 

coefficients, cross sections, and collisional 

dynamics for fundamental processes in both the 

plasma phase and on surfaces. Plasma plumes 

produced by plasma jet devices expand into the 

air around them and can be up to several 

centimeters long. Additionally, the gas stream 

also maintains its ambient temperature [24]. 

To utilize and adjust the plasma jet in a limited 

way for applications, some characterization of 

the plasma jet, such as electron temperature (Te) 

and electron density (ne), must be carried out 

thoroughly. Previously, this information on 

plasma jets has been received using Rayleigh 

scattering [25], Thomson scattering [26], time-

resolved fast imaging [27], optical emission 

spectra (OES) [28][29], etc. 

In general, OES offers purposive and easy-to-

implement measurements for plasma diagnosis. 

OES will cover a range of wavelengths between 

200 and 1200 nm. This method relies on the 

involution of Gaussians, Lorentzians, and Stark 

profiles to achieve the stark broadening of the 

plasma spectral line [30]. Charged particles 

interacting with neutral atoms cause the Stark 

broadening of lines [31]. Atoms in diverse 

positions in the plasma are impacted by various 

electric fields that change over time due to 

relative motion of the charged particles and 

atoms. The perturbation of the electric field 

affects slightly the optical transitions' selection 

and the atomic level's degeneracy (Stark effect) 

[32]. Therefore, these changes result in an 

alteration of the line width, shape, and position. 

The controlling interaction of the atom is the 

stark effect in the plasma situation, where the 

ratio of charged particles to neutral atoms is 

greater. Thus, the measurement of stark 

broadening of the plasma spectral line is an ideal 

tool for determining the electron density (ne) 

which is given by [33]. 

ne(cm-3) = (
∆𝜆

2𝜔𝑠 (𝜆,𝑇𝑒)
 )𝑁𝑟  (1) 

Where ∆λ is the full width half maximum 

(FWHM) of the line, ωs is the stark broadening 

parameter, and Nr is the reference electron 

density. 

In local thermodynamic equilibrium (LTE), a 

Boltzmann distribution is achieved between 

energy levels, while the radiation is not in 

thermal equilibrium. The collisional transition 

should be greater than the radiative transitions 

for achieving LTE, so it is performed only in 

high-density plasmas [34]. For plasmas in LTE, 

the electron temperature is defined as follows 

[35]: 

𝑙𝑛 𝑙𝑛 (
𝐼𝑗𝑖 𝜆𝑗𝑖    

ℎ 𝑐 𝐴𝑗𝑖  𝑔𝑗  
)  

= (−
𝐸𝑗

𝑘𝑇𝑒

)

+ 𝑙𝑛( 
𝑁

𝑈(𝑇)
 

(2) 

 

Where N is the total population density, U(T) 

partition function, Ej excitation energy of one 

level (in eV), 𝑘 Boltzmann constant (1.38×10-23 

J/K), λji wavelength corresponding to the 

transmission between level j and level i, 𝐼𝑗𝑖 

spectral line intensity, 𝑔𝑗  the density of states, 

and 𝐴𝑗𝑖 transition probability between the upper-

level j and lower-level i. 



Al-Mustansiriyah Journal of Science   
ISSN: 1814-635X (print), ISSN:2521-3520 (online) Volume 34, Issue 3, 2023 DOI: http://doi.org/10.23851/mjs.v34i3.1369 

 

126 

 

Copyright © 2023 Al-Mustansiriyah Journal of Science. This work licensed under a Creative Commons Attribution 

Noncommercial 4.0 International License. 
 

 

A significant plasma property is the stability of 

its macroscopic area charge neutrality. A high 

electric field induces collective particle motions 

that restore the initial charge neutrality when 

plasma is abruptly disturbed from the 

equilibrium condition [36]. These motions are 

described by an intrinsic frequency of 

oscillation called plasma frequency, which is 

given by [37]: 

fp = √ 
𝑛𝑒  𝑒2

𝑚𝑒ɛ0
 / 2π = 8.89√𝑛𝑒 (3) 

Where, ne is the electron density, e is the 

elementary charge, me is the electron mass, and 

ɛ˳ is the permittivity of the vacuum. 

The Debye length is another physical parameter 

for the characterization of plasma. It allows a 

measure of the distance over which ions and 

electrons can be separated in plasma. The 

arrangement of the electrons and ions 

successfully shields any electrostatic forces at a 

distance of the Debye length (λD) [38][39]. It can 

be expressed as: 

λD = ( 
ɛ0 𝑘 𝑇

𝑛𝑒  𝑒2  )1/2 (4) 

Since only the charged particles that are located 

inside the Debye sphere interact collectively 

with each other in plasma physics, the number 

of electrons (ND) inside the Debye sphere is 

given by [37]:  

ND = 
4

3
 𝜋 λD

3 ne (5) 

The effect of changing potential discharge on 

the intensity of the spectral lines in Ar/O2 

plasma discharge is studied to determine the 

optimum condition of produced plasma.  

MATERIALS AND METHODS 

Experimental Setup 

This study reveals the discharge control settings 

that have the greatest impact on the plasma 

stream's length and properties outside. The 

mixture of gases was studied to determine the 

best properties of cold atmospheric plasma 

based on different voltages. Figure 1 illustrates 

the experimental setup used for cold 

atmospheric plasma (CAP) generation. The 

CAP jet consists of a 10 cm long quartz tube 

with a 7 mm inner and 10 mm outer diameter 

through which an Ar/O2 mixture gas flow was 

applied. An aluminum ring (10 mm in width) 

was wrapped around a quartz tube as a ground 

electrode with a distance of 5 mm to the orifice 

of the tube, and a copper wire inside the quartz 

tube represents a high-voltage electrode. Argon 

(Ar) was utilized as the vector gas with an 

adjusted flow rate of 15 l/min and oxygen (O2) 

was used as the reactive gas with a flow rate of 

1.5 l/min in this experiment. The discharge was 

obtained by applying a high-voltage AC power 

supply (Fanavaran Nano- Meghyas HV35P 

OV), and it was adjusted in this experiment 

between 14 kV and 18 kV. As the potential 

discharge increases, the plasma plume's length 

rises from 1.5 cm to 4 cm. The optical emission 

spectroscopy (OES) from the CAP jet was 

collected by an (Ocean Optics spectrometer, 

Flame-S-XR1) using a fiber probe. A distance 

of 0.5 cm was used to measure the plasma 

optical emissions from the plasma plume. The 

recorded spectrum was examined in accordance 

with the atomic spectra database lines (NIST), 

and as a result, the plasma parameters were 

identified. 
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Figure 1: Schematic diagram of cold atmospheric plasmas (CAPs). 

 

RESULTS AND DISCUSSION 

This study examines how the most crucial 

plasma plume parameters discharge, voltage, 

and mixed gas affect the lengthy and brilliant 

plasma plume. With varied potential discharges 

of 14 kV, 16 kV, and 18 kV, the OES spectrum 

was captured from the plasma jet produced by 

cold atmospheric plasma. Ar/O2 between 200 

nm and 1000 nm was used for the analysis of the 

discharge.  

 
Figure 2: Emission spectra of cold atmospheric plasmas 
(CAPs) for Ar/O2 mixture gas with different potential 
discharges (the inset represents cold plasma at 14, 16, and 
18 kV). 

 

Figure 2 shows the strong peaks were primarily 

acquired in the UV/visible area; However, there 

were no clearly defined peaks in the near-

infrared region.  Moreover, the optical emission 

spectrum had argon emission lines 

predominating it, which was expected given that 

argon makes up the majority of the mixture gas 

and oxygen only makes up 10% of the whole 

gas, according to comparison results with the 

NIST Atomic spectra database. In detail, the 

strong and main atomic argon was visible at 

around (203, 216, 284, and 442) nm, 

corresponding to the argon atom transitions of                                                     

ArII (3s2 3p4 (3P) 4f → 3s2 3p4 (3P2)3d),  

ArII (3s2 3p4 (1D) 4f →3s2 3p4 (3P2) 4s),  

ArII (3s2 3p4 (3P) 4p → 3s2 3p4 (1D) 4s), and  

ArII (3s2 3p4 (3P) 4p →3s2 3p4 (3P) 4s), 

respectively. Equally significant is the distinct 

atomic oxygen that is the dominant reactive 

component in the gas emissions at around (232 

and 411) nm, corresponding to the oxygen atom 

transitions of: 

OII (2s2 sp2 (3P) 4d → 2s2 2p2 (3P) 3p) and  

OII (2s2 2p2 (3P) 3d → 2s2 2p2 (3P) 3p), 

respectively. The atomic oxygen in the plasma 

was produced as a result of the dissociation of O 

molecules by Ar metastable (Ar* + O2 →  O (3p 
3P) + O + Ar) or electrons (e- + O2 →  O (3p 3P) 

+ O + e-). However, from the emission spectral 

results noticed that the increase of discharge 

potential effected the intensity of the excited 

species.  

Figure 3 shows the electron temperature (Te) 

was calculated by Boltzmann plot taking four 

lines of ArII lines at (284.53, 418, 439.59, 

442.66) nm. The electron temperature (Te) 

values were calculated by plotting between 

𝑙𝑛 𝑙𝑛 (
𝐼𝑗𝑖  𝜆𝑗𝑖   

ℎ 𝑐 𝐴𝑗𝑖  𝑔𝑗  
)  versus the upper energy level 
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(Ej). The equation of the fitting and the R2 are 

illustrated in the figure. R2, a statistical 

coefficient, measures the accuracy of the linear 

fit and ranges in value from (0-1). 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Boltzmann plot for cold atmospheric plasmas 

(CAPs) at different potential discharges: (a) 14 kV, (b) 
16kV, and (c) 18 kV. 

As can be seen in Figure 4, when the potential 

discharge intensifies from 14 kV to 18 kV, both 

the electron temperature (Te) and the electron 

density (ne) increase.  

 

 
Figure 4: Variation of (Te) and (ne) versus the potential 
discharges (14, 16, and 18 kV). 

 

The electron temperature (Te) increases from 

(1.34 to 1.54) eV, while the electron density (ne) 

increases from (3.5*1017 to 4.7*1017) cm-3. This 

is due to the increase in kinetic energy of the 

electrons caused by the higher potential 

discharge, which in turn results in an increase of 

electron temperature (Te) and electron density 

(ne). Table 1 illustrates the electron plasma 

temperature (Te), electron plasma density (ne), 

plasma frequency (fp), Debye length (λD), and 

number of particles in the Debye sphere (ND) of 

cold atmospheric plasma at the potential 

discharge voltages of 14 kV, 16 kV and 18 kV. 

Criteria plasma is satisfied, exhibiting a 

decrease in λD with increased potential 

discharge due to its proportionality to electron 

density (ne). At the same time, fp and ND showed 

an upward trend with increasing potential 

discharge.

Table 1 Plasma parameters for cold atmospheric plasmas (CAPs) with different potential discharges. 

V (kV) Tₑ (eV) FWHM ne*1017(cm-3) fp *1012(Hz) λD*10-5(cm) ND*103 

14 1.34 0.460 3.5 5.3 1.464 4.5 

16 1.44 0.56 4.2 5.8 1.375 4.6 

18 1.54 0.62 4.7 6.1 1.352 4.8 

CONCLUSIONS 
The Optical Emission Spectroscopy technique 

(OES) proves to be adequate for determining 

plasma characteristics. Our exploration has 

focused on how various potential discharges 

affect the plasma characteristics of cold 

atmospheric plasmas (CAPs). We have 

observed a significant impact on emission 

intensity due to changes in potential discharge at 

constant flow rates, implying an increase in the 
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number of ionized particles. This observation 

suggests that the majority of molecules passing 

through the plasma tube become ionized, owing 

to the sufficient energy supplied by the potential 

discharge, leading to secondary ionization of the 

molecules. 

Consequently, the plasma state is influenced by 

the potential discharge, resulting in the intensity 

appearing to reach its lowest point at 14 kV and 

its highest point at 18 kV. This leads us to the 

conclusion that an increase in potential 

discharge substantially affects the density and 

temperature of electrons as well as other plasma 

characteristics. As the potential discharge 

increases, the plasma frequency decreases, the 

number of particles on the surface of the Debye 

sphere diminishes, and the Debye length 

increases. 
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