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In recent years, the Beltrami equation has garnered the attention of numerous researchers for 
the study of its analytical properties. Therefore, in this paper, we investigate certain 
properties of an analogue of the Cauchy integral for A(z)-analytic functions, utilizing the 
analytical properties of the Beltrami equation. Additionally, we obtain the compactness 

conditions for a family of functions within an A(z)-lemniscate. 
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 الخلاصـة

المقالة ، نحقق . في هذه    في السنوات الأخيرة، لفتت معادلة بلترامي انتباه العديد من الباحثين لدراسة خصائصها التحليلية
شروط على   كذلك حصلنامعادلة بلترامي.   بتوظيف   A(z)ة ظير تكامل كوشي للوظائف التحليليفي بعض خصائص ن

 .𝐴 (𝑧) –𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒في   دوال  من ال  لعائلةالانضغاط  
 

INTRODUCTION 

Eugenio Beltrami [1], an Italian mathematician, 

built a local model of Lobachevski's geometry 

on the pseudo sphere in 1868, proving that 

Lobachevski's geometry is a consistent theory as 

Euclidean geometry. He was the first to consider 

the form of an elliptic system of partial 

differential equations: 

{
𝛼𝑢𝑥 + 𝛽𝑢𝑦 = 𝑣𝑦

𝛽𝑢𝑥 + 𝛾𝑢𝑦 = −𝑣𝑥
}

−  Beltrami equation 

(1) 

where 𝛼(𝑥, 𝑦)𝛾(𝑥, 𝑦) − 𝛽2(𝑥, 𝑦) = 1 .  
These equations' homeomorphic solutions 

determine quasiconformal mappings. 𝑂𝑡𝑡𝑜 

𝑇𝑒𝑖𝑐ℎ𝑚ü𝑙𝑙𝑒𝑟  solved the famous problem of the 

moduli of Riemann surfaces by employing 

quasiconformal mappings in the early forties of 

the last century [2], and thus interest in the 

Beltrami equations. The application of their 

generalizations to tomography problems has 

sparked interest in the Beltrami equation. The 

current work is devoted to the investigation of 

some properties of Beltrami equation solutions 

using recently discovered approaches. Recent 

studies have focused on the Beltrami equation in 

the theory of generalized analytic functions, for 

example, one may see [3], [4] and [5]. 

The derivatives formula for 𝑨(𝒛) −analytic 

functions. 

We can consider the basis (𝑧, 𝑧̅) in the space ℂ ≈
𝑅2 that associates the basis (x, y). Then we have   

 𝑧 =  𝑥 + 𝑖𝑦, 𝑧̅ =  𝑥 − 𝑖𝑦, and we can find the 

formal derivatives by comparing the equalities. 
𝜕

𝜕𝑧
=

𝜕

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕

𝜕𝑦

𝜕𝑦

𝜕𝑧
=

𝜕

𝜕𝑥

1

2
+

𝜕

𝜕𝑦

1

2𝑖
 , 

𝜕

𝜕𝑧̅
=

𝜕

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+

𝜕

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
=

𝜕

𝜕𝑥

1

2
+

𝜕

𝜕𝑦

−1

2𝑖
. 

Let  𝑤 = 𝑢 + 𝑖𝑣, then the Beltrami equation can 

be written in complex form:    
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𝑤𝑧̅ = 𝐴(𝑧)𝑤𝑧 (2) 

 

where   𝐴(𝑧) = −
𝑝(𝑧)−1

𝑝(𝑧)+1
𝑒2𝑖𝜃(𝑧) , 𝑝 =

𝛼+𝛾

2
+

 √(
𝛼−𝛾

2
)2 + 𝛽2  ,   𝑝 ≥ 1 , 0 ≤  𝜃 ≤ 𝜋 .   

Note that the complex representation of the 

Cauchy-Riemann equations has the form  𝑓𝑧̅ =
0. The Beltrami equation then becomes the 

Cauchy-Riemann equations when  𝐴(𝑧) = 0. 
Green's formula can be written using formal 

derivatives as: 

1

2𝑖
∫ 𝑓(𝜁)𝑑

𝜕𝐺

𝜁 = ∬
𝜕𝑓

𝜕𝑧̅𝐺

𝑑𝑥𝑑𝑦 

 

(3’) 

1

2𝑖
∫ 𝑓(𝜁)𝑑

𝜕𝐺

𝜁 ̅ = − ∬
𝜕𝑓

𝜕𝑧𝐺

𝑑𝑥𝑑𝑦  (3”) 

 

Green's formula can be written using formal 

derivatives as, it is required that the function 

𝑓(𝑧) have continuous first-order partial 

derivatives. The Beltrami equation was 

generalized in [1] to the case where 𝑤(𝑧) is a 

vector-valued function and 𝐴(𝑧) is a linear 

operator in the corresponding vector space. The 

methodological advances discovered in [6] for 

obtaining analogues of classical results were 

used in [7] for the usual Beltrami equation (2), 

and new non-trivial results for 𝐴(𝑧) −analytic 

functions were obtained.  

Consider 𝐺 be a simply connected domain with 

boundary G a piecewise smooth closed curve.  

𝐴(𝑧) is given as anti-analytic function; that is 

the function  𝐴(𝑧)   is holomorphic in 𝐺, and in 

everywhere in this region. As a result, it satisfies 

the condition   | 𝐴(𝑧)| ≤ 𝑞 < 1, (0 < 𝑞 < 1). 

Hence the integral 

∫ 𝐴(𝑧)̅̅ ̅̅ ̅̅ dz ,
𝑎�̆�

 

where  𝑎�̆�   is an arbitrary piecewise-smooth 

path in 𝐺 connecting the points  𝑎, 𝑧 ∈ 𝐺, does 

not depend on the shape of the path and for a 

fixed point 𝑎 is a holomorphic function of 𝑧, and 

𝜕

𝜕𝑧
(∫ 𝐴(𝑧)̅̅ ̅̅ ̅̅ dz

𝑎�̆�

) = 𝐴(𝑧)̅̅ ̅̅ ̅̅  ,

𝜕

𝜕𝑧̅
(∫ 𝐴(𝑧)̅̅ ̅̅ ̅̅ dz

𝑎�̆�

) = 0 

(4) 

 

 Consider the function: 

𝜓(𝑧, 𝜁) = 𝑧 − 𝜁 + ∫ 𝐴(𝜏)̅̅ ̅̅ ̅̅
𝛾(𝜁,𝑧)

𝑑𝜏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (5) 

where 𝛾(𝜁, 𝑧) is an arbitrary piecewise smooth 

path in 𝐺 connecting the points  𝜁  and  𝑧.  Let's 

do some calculations 

𝜕𝜓

𝜕𝑧
= 1 +

𝜕

𝜕𝑧
(∫ 𝐴(𝜏)̅̅ ̅̅ ̅̅

𝛾(𝜁,𝑧)

𝑑𝜏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)

= 1 +
𝜕

𝜕𝑧̅
(∫ 𝐴(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝑧

𝛾(𝜁,𝑧)

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 1 + 0 = 1 , 

𝜕𝜓

𝜕𝑧
= 0 +

𝜕

𝜕𝑧̅
(∫ 𝐴(𝜏)̅̅ ̅̅ ̅̅

𝛾(𝜁,𝑧)

𝑑𝜏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)

=
𝜕

𝜕𝑧
(∫ 𝐴(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝑧

𝛾(𝜁,𝑧)

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝐴(𝑧). 

Therefore,  

𝜕𝜓

𝜕𝑧̅
= 𝐴(𝑧). 1 = 𝐴(𝑧)

𝜕𝜓

𝜕𝑧
, (6) 

In other words, the function 𝜓(𝑧, 𝜁) fulfills the 

Beltrami equation                             
𝜕𝜓

𝜕𝑧̅
= 𝐴(𝑧)

𝜕𝜓

𝜕𝑧
    , and by the definition of  𝐴(𝑧)-

analytic function with respect to the first 

variable, we get: 

𝜓(𝜁, 𝑧) = −𝜓(𝑧, 𝜁) (7) 

then this function is  𝐴(𝑧) −analytic with 

respect to the second variable. Note that if the 

functions 𝑓(𝑧) and  𝑔 (𝑧) are 𝐴(𝑧) −analytic for 

the same function 𝐴(𝑧), then the functions 

𝑓(𝑧) ± 𝑔(𝑧), 𝑓(𝑧). 𝑔(𝑧),
𝑓(𝑧)

𝑔(𝑧)
 𝑤𝑖𝑡ℎ 𝑔(𝑧) ≠

0,  are also 𝐴(𝑧) −analytic functions. We will 

verify this for the product of functions, thus we 

have 

                     𝑓𝑧̅ = 𝐴𝑓𝑧  ,𝑔𝑧̅ = 𝐴𝑔𝑧  .  
Then, 

(𝑓𝑔)𝑧̅ = 𝑓𝑧̅𝑔 + 𝑓𝑔𝑧̅ = 𝐴(𝑓𝑧𝑔 + 𝑓𝑔𝑧 ) =
𝐴(𝑓𝑔)𝑧 . 

Therefore, 𝑓(𝑧) ∙ 𝑔 (𝑧) is an 𝐴-analytic 

function. As a consequence, it is extremely 

useful to mention the 𝐺𝑜𝑢𝑟𝑠𝑎 lemma in this 

sense. The following well-known 𝐺𝑜𝑢𝑟𝑠𝑎 

lemma is useful.  
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Lemma (1.1)  𝑮𝒐𝒖𝒓𝒔𝒂𝒕’𝒔 Lemma [3].    
If the function 𝑓(𝑧) is continuous in the domain 

𝐺 and 𝛾 is a closed piecewise-smooth Jordan 

curve lying in 𝐺, then for any given 𝜀 > 0 , we 

can indicate a polygon 𝑃 lying in 𝐺 with vertices 

on 𝛾 such that|∫ 𝑓(𝑧)𝑑𝑧 − ∫ 𝑓(𝑧)𝑑𝑧
𝛾𝑝𝛾

| < 𝜀, 

where 𝛾𝑝 is the contour of the polygon 𝑃.  

Green's formula is obviously applicable for a 

polygon, and thus it is applicable for a region 

bounded by a piecewise-smooth contour. In the 

book of I.N. Vekua ([3], Chapter 2), the 

following statement regarding the solutions of 

the Beltrami equation is made regarding the 

degree of smoothness of the functions included 

in the green formula.  

If in the domain 𝐺 the function 𝐴(𝑧) belongs to 

the space 𝐶𝑚(𝐺), then all continuous solutions 

of the Beltrami equation belong to the space  

𝐶𝑚+1(𝐺). As an antiholomorphic function 𝐴(𝑧) 

belongs to the space 𝐶∞. 

Following are some theorems that will be useful 

during our subsequent results. 

Theorem 1. ([2], Analogue of the Cauchy 

integral theorem)  

Let 𝑓(𝑧) be 𝐴(𝑧)-analytic in the domain 𝐺 and 

 𝐷 ⊂ 𝐺  is a simply connected domain bounded 

by a piecewise-smooth contour  Г = 𝜕𝐷 ⊂ 𝐺. 

Then  

∫ 𝑓(𝑧)(𝑑𝑧 + 𝐴(𝑧)𝑑𝑧̅) = 0
Γ

. 

Proof:  from the previous arguments it follows 

that the green formula can be applied to the 

integral under consideration. Then, taking into 

account the equalities  

𝑑𝑧𝑑𝑧̅ = −2𝑖𝑑𝑥𝑑𝑦 , 𝑑𝑧 ∧ 𝑑𝑧̅ = −𝑑𝑧̅ ∧ 𝑑𝑧 , 

     
𝜕𝐴(𝑧)

𝜕𝑧
= (

𝜕𝐴(𝑧)̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧̅
) 

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 0  ,   

and Green's formulas (3'), (3 "), we obtain 

∫ 𝑓(𝑧)(𝑑𝑧 + 𝐴(𝑧)𝑑𝑧̅)
Γ

= ∬ (−
𝜕𝑓

𝜕𝑧̅𝐷

+
𝜕

𝜕𝑧
(𝑓(𝑧)𝐴(𝑧)) 𝑑𝑧 ∧ 𝑑𝑧̅ = 

∬ (−
𝜕𝑓

𝜕𝑧̅
+ 𝐴(𝑧)

𝜕𝑓

𝜕𝑧
) 𝑑𝑧 ∧ 𝑑𝑧̅

𝐷

= 0 . 

An alternative of the Cauchy integral formula 

for 𝐴(𝑧) −analytic functions was proved in the 

work [2] under the conditions of Theorem 1, we 

find the following formula holds: 

        𝑓(𝑧)

=
1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧)Γ

 
(8) 

Analogue form for the Cauchy integral   

formula of 𝑨(𝒛) −analytic functions. 

In regard to formula (8), the following question 

arises: what can be said about the integral if the 

function 𝑓(𝜁)is only given on the curve 𝛤? 

Consider a piecewise smooth curve  𝛾 ⊂ ℂ,  that 

is not necessarily closed and a continuous 

function 𝑓(𝜁) on it. Then, it comes the integral. 

𝐹(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧)𝛾

 (9) 

An 𝐴(𝑧) −Cauchy type integral is one that 

exists for all 𝑧 ∉ 𝛾. In the integral on the right, 

the variable 𝑧 is a parameter. The integral can be 

differentiated with respect to the parameter in 

the neighborhood of any point 𝑧 that does not 

intersect  𝛾. As a result of differentiation, we get 

𝐴(𝑧)𝐹𝑧 =
1

2𝜋𝑖
∫ ((

1

𝜓(𝜁,𝑧)
) −

𝛾

𝐴(𝑧) (
1

𝜓(𝜁,𝑧)
)

𝑧
) 𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁 ̅) = 

=
1

2𝜋𝑖
∫

−𝐴(𝑧) + 𝐴(𝑧)

𝜓(𝜁, 𝑧)2
𝛾

𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

= 0 . 
Thus, an 𝐴(𝑧) − integral of Cauchy type is an 

𝐴(𝑧) −analytic function in the neighborhood of 

any point 𝑧 ∉ 𝛾, that does not intersect 𝛾. Since 

the point  𝑧 ∉ 𝛾 is arbitrary, the Cauchy type's 

𝐴(𝑧) −integral is an  𝐴(𝑧) −analytic function 

everywhere outside the curve 𝛾.  If   𝑧0 ∈ 𝛾, then 

the integral in (9) may not exist for 𝑧 = 𝑧0 

,because the denominator vanishes for 𝜁 = 𝑧0. 

As in the classical case, the integral can be given 

meaning by imposing additional constraints on 

the function 𝑓(𝜁). If the function 𝑓(𝜁)  satisfies 

the 𝐻ö𝑙𝑑𝑒𝑟 condition on the curve  𝛾, then the 

integral in (9) exists in the sense of the Cauchy 

principal value. This means that for sufficiently 
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small 𝛿 , we denote by 𝛾𝛿  the part of the curve  

𝛾 lying outside the circle |𝜁 −  𝑧0| ≤ 𝛿, for 

sufficiently small 𝛿.   The integral, 

               
1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁+𝐴(𝜁)𝑑�̅� )

𝜓(𝜁,𝑧0) 𝛾𝛿
      

makes sense in the usual sense. If the following 

limit exists     

               lim
𝛿→0

 
1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁+𝐴(𝜁)𝑑�̅�)

𝜓(𝜁,𝑧0) 𝛾𝛿
 , 

Then it is referred to as the integral in the sense 

of the Cauchy principal value and is denoted by 

1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0) 𝛾𝛿

  . 

Theorem 2. If the function 𝑓(𝜁) satisfies the 

𝐻ö𝑙𝑑𝑒𝑟 condition |𝑓(𝜁1) − 𝑓(𝜁2)| ≤ 𝐿|𝜁1 −
𝜁2|𝛼 with exponent    𝛼 ∈ (0,1]   on the curve  𝛾, 

then the integral in (9) exists in the sense of the 

Cauchy principal value. 

Proof:  It must be proved that the above limit 

exists. To begin, instead of using the circle 
|𝜁 − 𝑧0| ≤ 𝛿 in the definition of the curve 𝛾, we 

can use the 𝐴(𝑧) − lemniscate 𝐿(𝑧0, 𝛿) =
{𝑧: |𝜓(𝑧, 𝑧0)| ≤  𝛿} centered at 𝑧0 and radius  𝛿. 

Taking into account that the equality 𝑑𝜓(𝑧, 𝜁) =
𝑑𝑧 + 𝐴(𝑧)𝑑𝑧̅   holds, we obtain 

∫
𝑑𝜁 + 𝐴(𝜁)𝑑𝜁 ̅

𝜓(𝜁, 𝑧0)𝜕𝐿(𝑧0 ,𝛿)

= ∫
𝑑𝜓(𝜁, 𝑧0)

𝜓(𝜁, 𝑧0)
= 2𝜋𝑖 .

  |𝜓(𝜁,𝑧0)|=𝛿

 

We can substitute any curve homotopic to the 

boundary of the 𝐴(𝑧) −lemniscate 𝜕(𝑧0,𝛿)  by 

using the analogue of the Cauchy theorem for 

𝐴(𝑧) −analytic functions in the last integral. As 

a result, the equality 

1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0)
𝛾𝛿

=
1

2𝜋𝑖
∫

[𝑓(𝜁) − 𝑓(𝑧0)](𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0)𝛾𝛿

 

          +𝑓(𝑧0) − 𝑓(𝑧0)
1

2𝜋𝑖
∫

𝑑𝜁 +𝐴(𝜁)𝑑�̅�

𝜓(𝜁,𝑧0)𝛾1
 , 

where  γ1 is the part of the boundary of the 

A(z) − lemniscate  ∂L(z0,δ), lying outside the 

finite region bounded by  𝛾. By assumption, the 

function 𝐴(𝑧) satisfies the inequality 

 | 𝐴(𝑧)| ≤ 𝑞 < 1;  |𝜓(𝜁, 𝑧0)| = |𝜁 − 𝑧0 +

∫ 𝐴(𝜏)̅̅ ̅̅ ̅̅
𝑧0𝜁̅̅ ̅̅ ̅ 𝑑𝜏

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
| ≥ |𝜁 − 𝑧0| − |∫ 𝐴(𝜏)̅̅ ̅̅ ̅̅

𝑧0𝜁̅̅ ̅̅ ̅ 𝑑𝜏| ≥

(1 − 𝑞)|𝜁 − 𝑧0|, 

 from which we derive using the 𝐻𝑜𝑙𝑑𝑒𝑟 

condition on the function  𝑓(𝜁), we have the 

estimate  

|
𝑓(𝜁) − 𝑓(𝑧0)

𝜓(𝜁, 𝑧0)
| ≤

𝐿

1 − 𝑞
|𝜁 − 𝑧0|𝛼−1. 

Therefore, the improper integral  

1

2𝜋𝑖
∫

[𝑓(𝜁) − 𝑓(𝑧0)](𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0)𝛾

 

converges uniformly and 

𝑙𝑖𝑚
𝛿→0

{
1

2𝜋𝑖
∫

[𝑓(𝜁) − 𝑓(𝑧0)](𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0)𝛾𝛿

}

=
1

2𝜋𝑖
∫

[𝑓(𝜁) − 𝑓(𝑧0)](𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0)
 .

𝛾

 

The smoothness of the curve  𝛾  ensures the 

equality 

𝑙𝑖𝑚𝛿→0 {
1

2𝜋𝑖
∫

𝑑𝜁 + 𝐴(𝜁)𝑑𝜁 ̅

𝜓(𝜁, 𝑧0)𝛾1

} =
1

2
. 

Therefore, we get: 

𝑙𝑖𝑚
𝛿→0

1

2𝜋𝑖
∫

𝑓(𝜁)(𝑑𝜁 + 𝐴(𝜁)𝑑𝜁 ̅)

𝜓(𝜁, 𝑧0)𝛾𝛿

=
1

2
𝑓(𝑧0)

+
1

2𝜋𝑖
∫

[𝑓(𝜁) − 𝑓(𝑧0)](𝑑𝜁 + 𝐴(𝜁)𝑑𝜁)̅

𝜓(𝜁, 𝑧0)𝛾

 . 

Compactness of the family of 𝑨(𝒛) −analytic 

functions 

First, we provide supporting information about 

𝐴(𝑧) −analytic functions that will be needed 

later. An analog of the Taylor formula for 

𝐴(𝑧) −analytic functions is obtained in [2]as 

follows: f the function 𝑓 (𝑧)  is 𝐴(𝑧) −analytic 

in the 𝐴(𝑧) − 𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒 𝐿(𝑎, 𝑅) = {𝑧: | 

𝜓(𝑧, 𝑎) | < 𝑅}    and continuous on its closure, 
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then it can be expanded into a Taylor series 

analog of the form: 

∑ 𝐶𝑘

∞

𝑘=0

𝜓𝑘(𝑧, 𝑎) (10) 

where    𝐶𝑘 =
1

2𝜋𝑖
∫

𝑓(𝜁)

[𝜓(𝜁,𝑎)]𝑘𝜕𝐿(𝑎,𝜌)  (𝑑𝜁 +

𝐴(𝜁)𝑑𝜁)̅ ,    0 < 𝜌 < 𝑅   , 𝑘 = 0,1, …      

The generalized power series (10) converges in 

𝑡ℎ𝑒 𝐴 − 𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒 𝐿(𝑎, 𝑟) and the radius of 

convergence is found by the  𝐶𝑎𝑢𝑐ℎ𝑦 −
𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 formula     

1

𝑟
= lim

𝑘→∞
̅̅ ̅̅ ̅ √|𝐶𝑘|𝑘 . 

The Cauchy inequality for the coefficients of the 

series (10) was also proved there. 

|𝐶𝑘| ≤
𝑚𝑎𝑥{|𝑓(𝑧)|: 𝑧 ∈ 𝜕𝐿(𝑎, 𝜌)}

𝜌𝑘  (11) 

Where,  0 < 𝜌 < 𝑟  , 𝑘 = 0,1,2, …   

A collection of functions {𝑓}, defined in some 

domain 𝐷 is said to be compact in 𝐷 if from each 

sequence {𝑓𝑛} of functions of this collection one 

can extract a subsequence  {𝑓𝑛𝑘
}    converging 

uniformly on any compact set 𝐾 ⊂ 𝐷 [8]. 

Theorem 3.  If the set of 𝐴(𝑧)-analytic functions 

{𝑓(𝑧)} is uniformly bounded in the 𝐴(𝑧) −
𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒  𝐿(𝑎, 𝑟), that is, there exists a 

positive number 𝑀 such that the inequalities 

 | 𝑓 ∗(𝑧) | < 𝑀 holds at all points of   the 𝐴(𝑧) −
𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒  𝐿(𝑎, 𝑟) and for all functions 𝑓 ∗(𝑧) 
from a given collection {𝑓(𝑧)}, then this 

collection is compact in the 𝐴(𝑧) −
𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒  𝐿(𝑎, 𝑟). 
Proof:  Consider an arbitrary sequence of 

functions  {𝑓𝑛 (𝑧)}  from a given collection 

{𝑓(𝑧)} and the corresponding Taylor series (10)   

𝑓𝑛(𝑧) = ∑ 𝐶𝑘
(𝑛)∞

𝑘=0 𝜓𝑘(𝑧, 𝑎). By the Cauchy 
inequality (11) and the uniform boundedness of 

the set of functions, we have estimates for each 

𝜌, 0 < 𝜌 < 𝑟: |𝐶𝑘
(𝑛)| ≤

𝑀𝑛(𝜌)

𝜌𝑘  , where 

𝑀𝑛 (𝜌 )  = 𝑚𝑎𝑥 {|𝑓𝑛 (𝑧)|: 𝑧 ∈ 𝜕𝐿(𝑎, 𝜌} < 𝑀. 

Tending  𝜌  to the limit 𝑟, we obtain for any non-

negative integer 𝑘 the inequality, 

|𝐶𝑘
(𝑛)

| ≤
𝑀

𝑟𝑘  , 𝑛 = 1,2, … (12) 

Thus, for a fixed  𝑘, the numerical sequence 

{𝐶𝑘
(𝑛)

} is bounded and a convergent 

subsequence can be extracted from it. For 𝑘 =
0, from the sequence {𝑓𝑛(𝑧)}, we choose a 

subsequence {𝑓
𝑛𝑗

(0) (𝑧)}such that the numerical 

subsequence {𝐶
0

𝑛𝑗
(0)

(𝑧)} converges. For  𝑘 = 1, 

from the chosen subsequence {𝑓
𝑛𝑗

(0) (𝑧)} we 

extract a new subsequence {𝑓
𝑛

𝑗
(1) (𝑧)}such that 

the numerical subsequence {𝐶1

𝑛𝑗
(1)

(𝑧)}  

converges. And so on, if for 𝑘 = 𝑚 a 

subsequence {𝑓
𝑛𝑗

(𝑚) (𝑧)} is chosen such that the 

numerical subsequences  

{𝐶0

𝑛𝑗
(𝑚)

}. {𝐶1

𝑛𝑗
(𝑚)

}, … , {𝐶𝑚

𝑛𝑗
(𝑚)

(𝑧)} 

converge,  then we extract from it a subsequence 

{𝑓
𝑛𝑗

(𝑚+1) (𝑧)} such that the subsequence  

{𝐶
𝑚+1

𝑛𝑗
(𝑚+1)

}   converges. Let the subsequences 

{𝑓
𝑛

𝑗

(𝑚) (𝑧)}  be constructed for all 𝑚. We now 

make a diagonal sampling, i.e. in the new 

sequence, the 𝑚 − 𝑡ℎ element of the 𝑚 − 𝑡ℎ 

subsequence will stand at 𝑚 − 𝑡ℎ  place. Denote 

the resulting sequence by {𝑓𝑣𝑘(𝑧)}, where 𝑣𝑘 =

𝑛𝑘
(𝑘)

. By construction, we have 𝑓𝑣𝑘(𝑧) =

∑ 𝐶𝑗

(𝑣𝑘)
𝜓𝑗∞

𝑗=0 (𝑧, 𝑎) and for any fixed 𝑗 the 

sequence {𝐶𝑗

(𝑣𝑘)
} is converge as  𝑘 → ∞. Denote 

lim
𝑘→∞

𝐶𝑗

(𝑣𝑘)
= 𝐶𝑗. From the Cauchy inequality 

(12) we obtain the estimate: 

             |𝐶𝑗 | ≤
𝑀

𝑟𝑗 (13) 

When follows    lim̅̅ ̅̅
𝑗→∞

√ |𝐶𝑗 |
𝑗

≤
1

𝑟
.  Therefore, the 

radius of convergence of the series 

∑ 𝐶𝑗 𝜓𝑗∞
𝑗=0 (𝑧, 𝑎) is not less than 𝑟 and the sum 

of  𝐹(𝑧) of this series represents an 𝐴-analytic 



Radhi and Lyan The Compactness of the Family of 𝑨(𝒛)−Analytic Functions 2023 

 

107 

function in the 𝐴(𝑧) − 𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒  𝐿(𝑎, 𝑟). Let 

us show that the sequence {𝑓𝑣𝑘(𝑧)} converges 

uniformly to 𝐹(𝑧) on any compact in 𝐿(𝑎, 𝑟).  
To do this, it is enough to show the  uniform 

convergence on any 𝐴(𝑧) −
𝑙𝑒𝑚𝑛𝑖𝑠𝑐𝑎𝑡𝑒  𝐿(𝑎, 𝜌), 𝜌 < 𝑟.  For any  𝜀 > 0, 

we find an integer  𝑛0  such that the inequality  

∑ 𝑀 (
𝜌

𝑟
)

𝑛

<
𝜀

3
∞
𝑛=𝑛0+1

. Then we have from (12) 

and (13)   

 ∑ |𝐶𝑛
(𝑣𝑘)

|∞
𝑛=𝑛0+1 𝜌𝑛 ≤ ∑ 𝑀 (

𝜌

𝑟
)

𝑛

<
𝜀

3
∞
𝑛=𝑛0+1  , 

and                                                      

 ∑ |𝐶𝑛|∞
𝑛=𝑛0+1 𝜌𝑛 ≤ ∑ 𝑀 (

𝜌

𝑟
)

𝑛

<
𝜀

3
.∞

𝑛=𝑛0+1   

Thus, for 𝑧 ∈  𝐿(𝑎, 𝜌), i.e. for | 𝜓(𝑧, 𝑎) |  < 𝜌 , 

We obtain 

 |𝑓𝑣𝑘(𝑧) − 𝐹(𝑧)| = |∑(|𝐶𝑛
𝑣𝑘 − 𝐶𝑛)𝜓𝑛(𝑧, 𝑎)

∞

𝑛=0

| 

≤ ∑|𝐶𝑛
𝑣𝑘 − 𝐶𝑛|𝜌𝑛

𝑛0

𝑛=0

+ ∑ |𝐶𝑛
𝑣𝑘|𝜌𝑛

∞

𝑛=𝑛0+1

+ ∑ |𝐶𝑛|𝜌𝑛

∞

𝑛=𝑛0+1

< ∑|𝐶𝑛
𝑣𝑘 − 𝐶𝑛|𝜌𝑛

∞

𝑛=0

+
2

3
𝜀 . 

Since 𝑛0 is fixed and 𝐶𝑛
𝑣𝑘 → 𝐶𝑛   as 𝑘 → ∞, for 

sufficiently large 𝑘 > 𝑘0 ,we have  ∑ |𝐶𝑛
𝑣𝑘 −𝑛0

𝑛=0

𝐶𝑛|𝜌𝑛 <
𝜀

3
. Therefore, |𝑓𝑣𝑘(𝑧) − 𝐹(𝑧)| < 𝜀  for 

all 𝑧 ∈ 𝐿(𝑎, 𝜌), ∀ 𝑚 > 𝑚0, 𝑖. 𝑒. {𝑓𝑣𝑘(𝑧)} 

converges uniformly to 𝐹(𝑧) on  𝐿(𝑎, 𝜌), ∀ 𝜌 <
𝑟,  which means the uniform convergence of 

{𝑓𝑣𝑘(𝑧)} to 𝐹(𝑧) on any compact set   𝐾 ⊂
𝐿(𝑎, 𝑟). 

CONCLUSION 

This paper aims to study some properties of 

A(z)-analytic functions by employing the well-

known Beltrami equation and its analytical 

properties. It is widely known that there is a 

connection between the Beltrami equation and 

quasiconformal mappings. We have analytically 

derived a solution to the Beltrami equation and 

identified an analogue of the A(z)-analytic 

function. Additionally, we have investigated the 

compactness of the family of A(z)-analytic 

functions and have uncovered some valuable 

properties. 
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