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ABSTRACT
In this paper, our purpose is to study the classical continuous constraints boundary optimal triple
control vector problem dominating nonlinear triple parabolic boundary value problem. The
existence theorem for a classical continuous triple optimal control vector CCCBOTCV s stated
and proved under suitable assumptions. Mathematical formulation of the adjoint triple boundary
value problem associated with the nonlinear triple parabolic boundary value problem is discovered.
The Fréchet derivative of the Hamiltonian derived. Under proper assumptions, both theorems are
granted; the necessary conditions for optimality and the sufficient conditions for optimality of the
classical continuous constraints boundary optimal triple control vector problem are stated and
prove.
KEYWORDS: Classical constraints boundary optimal triple control, nonlinear triple parabolic
boundary value problem, necessary and sufficient optimality conditions.
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INTRODUCTION

Optimal control problems (OCPs) play an
important role in many practical applications, such
as in medicine [1], aircraft [2], economics [3],
robotics [4], weather conditions [5] and many
other scientific fields. They are two types of
OCPs; the classical and the relax type. The first
type was studied mostly in the last century, while
the second was studied in the beginning of this
century. Each one of these two types is
dominated either by nonlinear ordinary
differential equations (ODES) [6] or by nonlinear
PDEs (NLPDEs) [7]. The classical continuous
constraints boundary optimal control problem
(CCCBOTCP) dominated by nonlinear parabolic
or elliptic or hyperbolic PDEs are studied in [8-
10] respectively (resp.). Later, the study of the
CCCBOTCPs dominated by each one of these
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types of PDEs are generalized in [11-13] to deal
with CCCBOTCPs dominated by couple NLPDEs
(CNLPDES) of these types respectively, and then
the studies for the couple nonlinear elliptic and
hyperbolic PDEs types are generalized also to deal
with CCCBOTCPs dominated by triple NLPDES
of these two indicated types respectively [14, 15].
All of the studies mentioned have motivated us to
consider generalization, the study of the
CCCBOTCP dominated by CNLPDEs of
parabolic type to study the classical continuous
constraints boundary optimal triple control vector
problem (CCCBOTCVP) dominating by nonlinear
triple parabolic boundary value problem
(NLTPBVP). According to this generalization, the
mathematical model for the dominating equations
Is needed to be found, as well as the cost function,
the spaces of definition for the control and the
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state vectors, which all of them are needed to be
generalized.

In this paper, the CCCBOTCVP dominated by the
NLTPBVP is proposed. Section2 deals with
problem description, and some mathematical
concepts, In Section 3 the statement and proof of
the existence theorem of a classical continuous
triple optimal control vector (CCCBOTCV) under
suitable ~ Assumptions are  studied. The
mathematical formulation for the adjoint triple
boundary value problem (ATBVP) associated
with  TNLPBVP is investigated. The Fréchet
derivative (FD) of the Hamiltonian"(Ham)
derived. Both theorems the necessary conditions
(NCOs) for optimality (OP) and the sufficient
conditions (SCOs) for OP of the considered
CCCBOTCP are stated and proved under suitable
Assumptions.

Problem Description

Let/ = (0,T), with T < oo, O c R? be an open
and bounded region with Lipschitz boundary ' =
00, Q=axI1 , 2=TIXxI Consider the
following CCCBOTCP which is consisted of the
triple state equations (TSVEs) describe by the
following TNLPPDES'

Yie — z] 1ax (a Qij aY1) + byy1 — by, —
bsys = f1(x,¢t, 3’1) mQ )
Vot — Dij=1 Y (bu gyz) + by, + beys +
byy: = f2(x, ¢, J’z) inQ, (2)
Vit — i j=1 Y (Cu 6y3) + b3y + bsy; —
bey, = f3(x, t:)’3) m Q, 3
Z%l =2li=1 aijz—zj_cos(nl,xj) = u,(x,t), ()
y1(x,0) = yP(x) , i (5)
ZZZ ”2:1 bij == o, cos(nz,x]) = u,(x,t), ©
¥2(x,0) =y (x) ,in Q (7)
n

Zzz = Z Cij Zy] cos(nl,x]) = uz(x,t)

{7=1 (8)
y3(x,0) = y3(x), in Q ©9)

where (f., o, f3) € (LZ(Q))3 is given, (xy,x,) €
Q! alij(x, t)1 bl(xl t) € C'OO(Q), n#l (for'g =
1,2,3) is a unit vector normal outer on the
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boundary Z, (n,,x;) is the angle between n, and
the x; — axis, U = (uy,uyus) € (LZ(Z))3 is a
CCCBTCV and 5]) = :)_I)u = (ylulryZuzry3u2) €

(H? (Q))3 is the triple state vector solution(TSVS)
corresponding to the CCCBTCV.

The set of admissible CCCBTCV (ACCBTCV)
is:

W,=

{ieWlie Uae.inz, G,W) =0,6,(W) < 0}
U= U, xU, x U; C R® is convex set, and W =
(2®)’,

The cost function (CF) is

Go(d) = fQ [go1(x, t,y1) +
oz(x, t,y,)]dxdt + fz[hm(X, t,uq) +

hOZ (xl tl uZ)]dO-
The state vector constraints (SVCs) are

(10)

G, (@) = J[gn(x, t,y1)

Q
+ g12(x, t,y,)]dxdt

+ J. [hy1(x, t,uq)

+ >l3112 (x,t,uy)]ldo =0
G,(u) = fQ_[gu(x, t,y1) +
922(x, t, y,)dxdt + [([hy (x, t,uy) +
h,,(x,t,u,)]do <0 (12)
Let V=V, XV, xV3=VxVxV=
(3:5 = (1,0, 1,0, 1:,) € (H (@)}, the
weak form (WFQ) of the TSVEs (1-9) when y €
(H1(2))3 is given by:
V16, v1) + a1 (&, y1,v1) +
(b1 (D)y1,v1)q — (ba(D)y2, v1)a —
(bs(£)y3,v1)q =

(11)

(i), v)a + (uy,v)r Vv, €V (13a)
(1, v)a = (11(0),v1)q (14)

(Var, 2) + ax(t, y2,v2) +

(b2 (£)y2,v2)q + (bs (D) y3, v2)q +

(by(t)y1,v2)q =

(f2(32),v2)a + (uz, v2)r, Vv, EV (15)
(3, v2)q = (72(0),v2)q (16)

(V3. v3) + asz(t, y3,v3) +

(b3(t)ys3, v3)a +

(bs(£)y1,v3)q-(be(t)y2,v3)q =

(f3(y3),v3)a + (us, v3)r,Vvs EV (17)

(¥3,v2)a = (73(0),v3)q (18)
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(X W a”lal for

Where al(t,yl,vz) i,j=1 Qiij dx; dx

=123

Assumptions (A):
(i) f; is of a Carathéodory type (C-T) on Q X R,
satisfies |f;(x,t,y;)| < n;(x, t) + |yl
Where(x,t) € Q ,y;,u; ER, ¢; >0 and n; €
L2(Q,R),Vi=123.
(i) f; is Lipschitz w.r.t y;,(, Vi = 1,2,3) i.e.:
IfiCe, t, v — filx, 6, 901 < Lily; — il
Where(x,t) € Q,y;,y; ER andL; > 0.
(iii) la; (¢, yi, vi) | < allyllallvilly,
|(b;(D)yi, vidal < Billyillollvillo,
a;(t,y,y) =@yl ,
(b;(®O)yi, y)a = Billy:ll5,
| (b4 (D) y2, vi)al <€; lly2llollvallo,
|(b4(D)y1, v2)al <€; llyallollvallo
|(bs(£)y3, v1)al <€3 llysllollvallo,
|(bs (£)y1, v3)al <€4 lly1llollvsllo,
|(be(£)y3, v2)al <Es llysllollvallo,
|(be (£)y2, v3)al <€6 lI¥21l0llvsllo,
c(t,y,¥) = Xiilait, yi, yi) + (b;(O)yi, yidal
with c(t,y,9) = a |y}
here a;, C?L', ,Biv ,Bi ( Vi= 1,2,3), €; (Vl =
1,2,3,4,5,6) and a are real positive constants.
Theorem 1 [16]: With assumptions (A), for each

“fixed” 7 € (L2(Z))’, the WFO ((13)-(15)) has a
unique TSVS V= (,¥,,¥3) St yEY, =

(316, ¥2e.y3e) € (L2(, V))S-

Assumptions (B):

Consider g;; and h;; (foreach!l=0,1,2,3 andi =
1,23 ) is of C -T on (Q XxR) and on(Z X R)
respectively, and satisfies the following sub
quadratic condition with respect to y; and u;
19 Ce, t, y)| < v, t) + cu(yi)?,

|hy et u)| < 6(x, t) + dy(u)?

Whereyi,ui € R with Yii € Ll(Q) ) 6“’ € Ll(Z)
Lemma 1[16]:

If assumptions (B) are held, the functional G,(u)
is continuous on (L?(X))3,v1=10,1,2.

Theorem 2 [16]:

Beside the assumptions (A) and (B). If U is

compact, W, # @, G,(%) is convex. with respect
to u for fixed (x,t,y). Then there exists a
CCCBOTCV.

Assumptions (C):
If fiy,, iy, hliui, (1l=0,1,2&i =1,2,3) are of

C-T on (@ xR), (@ xR),(ZxR) respectively,
and |fiy, (x, £, )| < Li(x,0),

|gziyi (xt, y)| < vulx O + culyil,

|hliui(x, t, ul-) < Sli(x, t) + dliluil )

Where(x,t) € Q. y;u; €R, 7(x,t),Li(x,t) €
LZ(Q) and (Sli(x, t) € LZ(E)

RESULTS

Existence of the CCCBOTCYV and the FD
This section deals with the existence of the
CCCBOTCYV and the derivation of the FD under
some suitable Assumptions after the ATBVP is
defined.

Theorem 3:

In addition to assumptions. (A) and (B), if U in
the W, is compact, W, = @. If for each i =
1,2,3,G,(W)is independent of u; , G,(u) and
G,(u) are convex w.rtu;, for fixed (x,t,v,).
Then there exists a CCCBOTCV for the
considered problem.

Proof:

From the assumptions. on U and G,(1), for I =
0,1,2, using Lemma 1 and theorem 2, one can get
that there exists a CCCBOTCV.

Theorem 4: Dropping index [ in g; ,h; and G,
The Ham H is defined by

H(X, t, yl';Zi;ui) = 2?:1(Zifi(x' ¢, yl) +

gi(x: t, yl) + hi(x’ t’ ui))

And the ATBVP z =z, (where y;=
Yu;)equation satisfy (in Q):

d d
—Zyt — 23j=1a_xi( ij3 Zl) + bz, —
byzy — bszz = z4f1, (x, t,y1) +
9y, (x, 1), (19)

n d 0z,
%2t T Lij=15, (byj Py ) + bz, +
bezs + byzy = sz2y2 (x t,yz) + (1720)
gy2 (x' t yZ)
d

—Z3t _ZU 1ax (c ij3 23) + bz, +
bszy — bz, = 23f3y, (x, t,ys) + (18)
gy3 (x’ t’ :VB)
z;(T)=0,inQVvi=1,2,3 (1921)
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aZi _

o = 0,onX Vi=

Thenthe FD of G is
Z1 + hqy,

C@bu = [,| 72+ haw,
Zy + hyy,

1,2,3 (22)
Auy
AUZ
Au,

do

Proof:
The WFO of the ATBVP is considered by:
—(21¢,v1) + a,(t, 21, v1) +
(b1 (t)z1,v1)q — (by(t)z5, V1) —
(bs(t)z3,v1)q =

(21f1y,, Vl)ﬂ + (glyl'vl)ﬂ
—(Z21,V2) + a,(t, z, 1) +

(by(t)z5,v5)q + (bg(t) 2y, v5)q +
(by(t)z1,v3)q =

(22fay,v2) o + (923, v2)
_<Z3t’ V3) + a3 (t, Z3, v3) +
(b3(t)z3,v3)q + (bs(t)z1,v3)q +
(b (t)z3,v3)q =

(23f3y, ”3)9 + (93y3'”3)ﬂ (25)
Substituting v; = Ay; , Vi = 1,2,3 in ((21)- (23))
respectively, finally integrating both sides w.r.t
from 0 to T, then using integration by parts (IBP)
for the 1% obtained term in each equation, finally
adding these three equations, to get:
fOT(Ayt,Z)dt + fOT[al(t, z1,Ay;) +
(b1 (t)z1,Ay1)q — (by(t) 25, Ay1) o —
(l;s(t)Z&A}ﬁ)Q]dt +
fo [az(t, 22, Ay,) + (by(t)zp, Ay, ) +
(bg(t)z3,Ay3)q + (by(t)z1, Ay;)q +
as;(t, z3, Ays)]dt +

T
fo [(b5(t)z3, Ay3)q +

T
(bs(t)z,,Ay3)qldt = fo (Z1f1y1 +
T
g1y1»A3’1)th + fo (ZZnyZ +

92y2:AJ’2)th + foT(Z3f3y3 +

93y, Ay3)qdt (26)
Now, substituting y; = Ay; and v; = z; in ((13)-
(15)) respectively, Vi =1,2,3, integrating both
sides from 0 to T then adding three obtained
equations to get.

[} By, Z)dt + [ [ay (t, Ayy, 20) +
(by()Ayy,21)q — (by(t)Ay,, z1) g —
(bs(t)Ays, z1) g tay(t, Ay, z;) +
(b2 (t)Ay3, z5)q + (bs(t)Ay3, 23)q +
(by()Ay1, z2)q + a3 (t, Ay, z3) +

(23)

(24)

(27)
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(b3 (t)Ays, 23)q + (bs(t)Ayy, 23)q —
(b6 ()Ayy, z)aldt = [ (i (71 +
Ay1) = fi(y1),21)adt + fOT(fz (2 +
Ay,) — f2(y2), 22)dt +

[} (Buy, z))pdt +

fOT(Auz; zy)rdt + fOT(f3 (vs + Ays) —

f3(y3),23)qdt + fOT(Au3: z3)rdt

Now, from the assumptions(A-i), the FD of f;
exists for each i = 1,2,3, then from theorem 2- a
[16], and the inequality of Minkowski, adding the
obtained results, to get:

L (it y + Ay) —
fi(x, t,y:),2)dt =

La(fy (fiybys zddt + & () ||
Where Y3 e, (Ay) =& (du) — 0,
[Au|, — 0
By using (26) in R.H.S. of (25), to get:
[ (Byr, Z)dt + [ [ay (¢, Ayy, 2,) +
(b1 ()Ay1,21)q — (ba(t)Ay,, 21) g —
(bs(t)Ays,21)q + ay(t, Ay,, v2) +
(b (t)Ay,, v2)q + (be(t)Ays, z3)q +
(b4 (t)Ay1,22)q + a3(t, Ays, z3) +
(b3 (t)Ays, 23)q + (bs(t)Ayy, 23)q —
(be(t)Ay,, z5)qldt =

fOT(flylAYLZl)th +

fOT(nyZAYZ»Zz)th +

foT(f3y3Ay3, z3) dt + fOT(Aul,zl)th +
fOT(AuZ, zy)rdt + fOT(Au3,Z3)th +

ex (Bu)||Bull,

Now, by subtracting (24) from (27).one get:
fOT(gly1: A)ﬁ)ndt + fOT(QZyzf AYZ)th +
fOT(g3)/3’Ay3)th =

fOT(Aul,Zl)F dt + fOT(AuZ, Zy)rdt +
fOT(Au3,Z3)th + & (H)”E”2 (28)
Now, let G,() = fQ ki(x,t,v1,v,, y3)dxdt,
Gp() = [; ko (x, t, Uy, up, uz)do

Where ki (x,t,¥1,¥2,¥3) = g1(x, t,y1) +
92(x,t,y2)+g5(x,t,y3), and

k,(x, t,uq,uy) = hy(x, t,uy) + hy(x, t,uy) +

h3 (.X', t, u3)|

From the definition of the FD and the result of
Theorem (2-(a)) [16] and from the assumptions on

(28)
as

(29)
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gi (Vi =1,2,3), and then using the inequality of
Minkowski once obtains:

G(E@+Bu) = 6@ = [,(g1y, Ays +

92y,8Y2 + 3y,4Y3)

+ [ (R, Duy + hoy, Au, +

hau, Muz)do + &, (Bw) || Au| (29)
Using (28) in (29), give

G@+Mu)—G@) = [,(Auy,z)do+
J(Auy, z,) do + [ (Aus, z3) do

+ fz(hml Auq + hyy, Auy + hgy Auz)do +

5 (Bu)||Bull

where, el(ﬁ) + 84(R) = es(ru) — 0, as
18], — 0

From the FD of G , we get that

z; + h1u1 Au1
(G,(ﬁ),ﬁ) = fZ Z; + hZuz (Auz) do.m

Z3 + hgy, ) \AUz
The NCOs and the SCOs
The NCOs and the SCOs theorems under suitable
assumptions are considered in this section.
Theorem 5: The NCOs
(i) In addition to the assumptions (A), (B), and
(C), if L € W, is a CCBOTCV, then there exist
multipliers 4, e R ,[ =0,1,2 with4,=>0,4, >
0,Y% 4 =1st
Y2 A, 6@)Mu@—-0)=0, VieW ,

Au = (4 —1) (30)
(i)The inequality (30) is equivalent to the

minimum WFO (MWFO)
Hy(x, t, 9,2, = min Hy(x, t, §,Z, W)

nel
a.eonX (32)
Proof:
From lemma (1), the functionals G,() & G,;(%)
(for each [ = 0,1,2) are continuous with respect
to (% — %) and liner with respect to (% — @), then
G,(W) is p —differential ateach € W, Vp, then
by the Kuhn-Tucker-Lagrange theorem, there
exist multipliers ; e R, = 0,1,2, with 15,1, =
0, Y241 =1 st(30)&(31) hold , and by

utilizing the result of the theorem 4, then (30)
gives

Yo Xier Js iz + huiy, ) (i =

u;)do = 0 (33)
Let z =Y oAzy , ho, = XisoM hii,, Vi=
1,2,3 and [ =0,1,2.

Now, let {1/, } be a dense sequence in W , and let
S c X be a meab set with u is Lebesgue measure

onx,st:

> (U, t), if(x,t)ES

) = {ﬁ(x, 0, if(x0) s

Therefore (33) becomes

JoHa(x,t,9,2,10) (d — 1) 2 0

Since u(Z;) = 0,Vk, then the inequality holds in
¥ — X, and since u(Uy Zx) = 0, thus it holds in
%/ Uk Zk. But {ii,} is a dense sequence in W ,
then there is% € W, s.t

=

Ha(x,t,7,20) @ — %) = 0,ae.inT =

Hz(x, t,%,2,%)% = min Hz(x, t, 7, Z, @)1, a.e. on
uel
X

Conversely, let

Hy(x,t, ¥, 7)1 = min Hy(x,t, 9,704, ae. on
uel

S = Ha(x,t,9,28) @ — @) > 0Vi € W, ae on

2= [ Hy(xt,5,ZW)Audo >0, Vi €W .

Theorem 6: The SCOs

In addition to the assumptions (A), (B) and (C),

suppose for each i = 1,2,3, f;, g4; are affine with

respect to y; for each (x,t) € Q and hy; is affine

with respect to u; for each(x,t) € 2, goi , g2i(hoi

, hy)are convex with respect to y; for

each (x,t) € Q (u; for each (x,t) € Z). Then

NCOs in theorem 5 with A, >0 are also

sufficient.

Proof:

Suppose u is satisfied the Kuhn-Tucker-Lagrange

conditions, and % € W,, i.e.

JyHa(x, t,3,2,)Mudo > 0, Vi € W

A,G,@@) = 0

Let () = X%, A,G, (1) , then from theorem 4
G - Mu = X3 4,6, () - A =

Ao J5 Y31 (2oi + ho,) Augdo + 44 J5 Yia(z +
hliui) Au;do + 1, fz Yy (z + hziui) Au; do

@ @ @ Copyright © 2023 Al-Mustansiriyah Journal of Science. This work licensed under a Creative Commons Attribution \‘isi
Noncommercial 4.0 International License. A.,,._., A



Rashid et al. Classical Continuous Constraint Boundary Optimal Control Vector Problem for Triple Nonlinear Parabolic System 2023
Now, consider the three functions in the R.H.S. of  f5,(x,t)(0y; + (1 — 0)¥3) + f5,(x, t)

TSVEs ((1)-(3)) are affine with respect to 0ys(x,0) + (1 — 0)y5(x,0) = y9(x) (36b41)
Y1,¥2, Y3 respectively, for each (x,t) € Q , i.e. 99(0ys+(1-6)y3) _

fl(x'f’ Yi) = fubath + fa(x, 1), Vi = 1,23 oy +1-0)7) _

Let ¥ = (uy,uy,u3) and u = (uy, u,, uz) be two i,j=1Cij on COS(Tl3,xj) =

given CCBTCV, then 3= (v, )=  Ous(x,t) +(1—0)u; (36c42)

(y1,¥2,y3) and 32’ = (37171'37172'37173) = 1, Y2,¥3)
(by Theorem (1) are their corresponding TSVs,
i.e. for the first componentsy, andy; ,we have

0
Vit = 2ij= 16 (a aij yl) + byy1 — byy, — bsys =

fi1(x, Oy, + f12 (x, t)
y1(x,0) = y; (X) in Q

dy
_1 = Zl] 1al] ox COS(nl,x]) = uy(x,t),onZ

d
Yie — Zi,j:la_xi( i3 yl) + b1y — byy, —

bsy; = f11(x; )y, + f12 (x,t)
gl(x 0) =y; (x)
i = Zl] 1au % COS(nl,x]) = U, (x,t), onZ

By MBS the TSEs ((1)-(9)) by 6 €[0,1] , and
then MBS of these equalities (1 —8) after

substituting ¥ instead of %, one has
(93’1 + (1 — )y, )t -
(6y1+(1-6)y1)

‘{L] 1ax ( Qij %) +
b, (6y, + (1 — 6)y;) — by(8y, +
(1-6)y,) — bs(6ys + (1 —6)y3) =
f11 G, )0y + (1 = 0)yy) + fi2(x, t)

0y, (x,0) + (1 — 8)y,(x,0) = y2(x)
90(8y,1+(1-6)y1) _

ong -

n - 0(8y1+(1-6)31)

i,j=1%ij an
Hul(x, t) + (1 - 6)17.1
6y, + (1 —0)y; ) —

A(0y,+(1-0)y,)

?] 16x ( ij %) +
b,(8y, + (1 —0)¥,) + bs(0ys +
(1-6)y3) + b6y, + (1 - 0)y;) =
2106, )0y, + (1 = 0)y,) + fr2(x, t)

93’2(35: O) + (1 - 6))72(95' O) = yg(x)
0(0y,+(1-0)y,

ong -
noop 9(0y2+(1-6)3>)
i,j=1%ij an
Ou,(x,t) + (1 - 0)u,,
(6ys + (1 —0)y3 ) —
a(e (1-0)y3)

Bty (cy TG ) +
bs(8ys + (1 —0)¥3) + bs(Oy; +
(1-6)y,) —bs(6y, + (1 = 0)y,) =

(34a)
(35)

cos(ny, x;) =
(36)

(37)
(38)

cos(ng, x;) =
(39)

(36a40)
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From equations ((34)-(36)), we conclude that the
TSVS!.V = (37113721373)’ 37 = 95;+ (1 - 9))_1 iS the
corresponding CCBTCV @t = (ily, Ui, Ti3) , With
=01+ 1-0)i,ie
- ] oy
Yie — Z?j:la_xi( ij yl) + b1 Y1 — by, — bsJs
fu1 (6, OF1 + fia(x, t)
1(x,0) =7 Y1 (x)
Zl] 1Qij—— on Uy,
oy
YZt - Zl] 18 (blj ayz
fo1(x, )5, + fzz (x, t)
yZ(xl 0) =a}/g(x)
Pimiby 52 =1,
- ] oy
Y3t — Zﬁj=1a_xi( ij ys) + b3¥3 + b5y, — be Y
f31(x, )5 + f32 (x, t)
73(x,0) = y3(x)
8y3 ~
Zl} 1Cij 5> on U3
Hence the operator i — ¥ is convex-linear (con-
1) with respect to (¥, ) for each(x,t) .
Also, since for each i=123, g4;(xty)
(hyi(x, t,u;)) is affine w.rt y; V(x,t) € Q (is
affine with respectto u; V(x,t) € ¥), i.e.
gli(x; t, yl) = Ili(xl t)yl + IZi(x’ t)a
hli(x, t, ul-) = Ili(x, t)ui + I3i(x, t)
Since u — yjy is con-l, then
G 6+ (1 —-0)u)=
?:1{ fQ[ Iu‘(x, t)Gyi+(1—9)}7i) +
(Li(x,t)] dxdt +
Pl [ i ) (ura-0yay + lai(x, )] do
=G (0u+ 1 -0)u) =0%L, [ [Lilx, Oy +
L (x, t)]dxdt +(1-10)
?=1 fQ[Ili(xﬂ t)yl + IZi(x’ t)]dxdt +
02? 1f Ilt(x t)u'l + I3l(x t)]dO' +
(1—0) ¥, [i[ 1 (e, O + I3 (x, ©)]do
=G (08 +(1—0)u) =06, +
(1-6)G, ()
=~ G, (W) is con-l with respect to (y,u) , (V(x,t) €

) + byY, + bgY3 + byFy
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Also, from Lemma (1), the
i1 fQ Joi dxdt&Yy7_, fQ goi dxdt
(X7o1 [ hoi do&Y7, [ hydo ) are convex with
respect to y; V(x,t) € Q (with respect to u;
V(x,t) € T ), then Gy(w)and G,(u) are convex
with respect to (,1) , (V(x,t) € Q) , i.e. G(1) is
convex with respect to (¥, @), (V(x,t) € Q) .
On the other hand, since W; is convex, and the
FD of G,@) , (1=0,1,2,3) exists and is
continuous for each % € W (by Theorem (4)), then
G (@)Au = 0, which means G (@) has a minimum
at i, i.e.
Yi1 AlGlg) < Y MG (W) W)
Let w € W, , with 1, > 0, then from (31), once
get

integrals

AoGo (@) < 2,Go(W) , VWEW = Go() <
G,(W) ,vw e W,since (1, >0)

Hence u isa CCCBOTCV.

CONCLUSIONS

In this article, the classical continuous constraint
boundary optimal control vector problem

dominated by the triple nonlinear parabolic
boundary value problem is studied. The existence
theorem of a classical continuous constraint
boundary optimal control vector is stated and
proved under suitable assumptions. Mathematical
formulation of the adjiont triple boundary value
problem associated with the triple nonlinear
parabolic boundary value problem is investigated.
The Fréchet derivative of the Hamiltonian is
derived. Both theorems of necessary conditions
and sufficient condition for the optimality of the
classical continuous constraint boundary optimal
control vector problem are stated and proved
under suitable assumptions.
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