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INTRODUCTION
Optimal control

problems (OCPs) play an
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ABSTRACT

In this paper, our purpose is to study the classical continuous boundary optimal triple
controlvector problem (CCBOTCVP) dominating by nonlinear triple parabolic boundary
value problem (NLTPBVP). Under suitable assumptions and with given classical
continuous boundary triple control vector (CCBTCV), the existence theorem for a unique
state triple vector solution (STVS) of the weak form W.F for the NLTPBVP is stated and
demonstrated via the Method of Galerkin (MGa), and the first compactness theorem.
Furthermore, the continuity operator between the STVS of the WFO for the NLTPBVP and
the corresponding CCBTCYV is stated and demonstrated. The continuity of the Lipschitz
(LIP.) operator between the STVS of the WFo for the QNLPBVP and the corresponding
CCBTCYV is proved. The existence of a CCBOTCV is stated and demonstrated under
suitable conditions.

KEYWORDS: Classical boundary optimal triple control; Lipschitz continuity; nonlinear
triple parabolic boundary value problem; method of Galerkin.
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dominating by couple nonlinear PDEs
(CNLPDES) of these types resp., and then the

importantrole in many practical applications, such
as in medicine [1], aircraft [2], economics [3],
robotics [4], weather conditions [5] and many other
scientific fields. They are two types of OCPs; the
classical and the relax type, each one of these two
types is dominated either by nonlinear ODEs [6] or
by nonlinear PDEs (NLPDEs) [7]. The classical
continuous optimal boundary control problem (
CCOBCP) dominated by nonlinear parabolic or
elliptic or hyperbolic PDEs is studied in [8-10]
respectively (resp.). Later, the study of the
CCOBCPs dominated by the three types of PDEs
is generalized in [11-13] to deal with CCOBCPs
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studies of the second and the third types are
generalized also to deal with continuous classical
optimal control problems (CCOCPs) dominated by
triple and NLPDEs of the elliptic and the
hyperbolic types [14, 15].

All of the above-mentioned studies encouraged us
to think about generalizing the study of the CCOCP
dominated by CNLPDEs of parabolic type to a
CCOCP dominated by TNLPBVP. According to
this idea for the generalization, the mathematical
model for the dominating equation is needed to be
found, as well as the cost function, the spaces of
definition for the control and the state vectors,
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which all of them are needed to be generalized. The
study of the CCBOTCVP dominated by the
NLTPBVP which is proposed in this paper starts
with the state and proof of the existence theorem of
the STVS of the W.F for the NLTPBVP using the
MGa with the first compactness theorem, under
suitable conditions and when the CCBTCV is
known. The continuity of the Lip. operator between
the STVS of the W.F for the QNLPBVP and the
corresponding CCBTCV is proved. The existence
theorem of a CCBOCYV is stated and demonstrated
under suitable conditions.

PROBLEM DESCRIPTION:

Let Q < IR? be an open and bounded region with
Lipschitz (Lip)boundary I'=0Q,x = (x1x,) ,
Q=0xI,I=[0,T],Z=TxI.

The CCOCP consists of the TSEs which are given
by the foIIowing TNLPPDES

Vit — Aij= 1a (a4 (x, t) ) + b1y; — bay, —
bsys = f1(x, t y1),inQ (1)

Yot — Ui j=1 e (azu (x, t) ) + by, + beys +
byy, = fz(x t, J’z) inQ , (2)

Y3t — l] 16 (a3l]( t) % )+b3y3 + bsy; —
bey, = f3 (x,t, YZ) inQ (3)

With the following BCs and ICs

)

ﬁ = X7 o ay;(x, t) cos(nl, xj) =

uy(x,t) ongk, (4)
)

% = i2_j=1 az;; (x, t) 9y2 cos(nz, J) =

U, (x,t) onZX (5)
)

ﬁ = Y71 a3 (x, t) cos(ng,xj) =

us(x,t), on X (6)
y1(x,0) = y7 (x) , in Q (7)
y2(x,0) =y, (x) , in Q (8)
y3(x,0) = y3(x), in ©

Where (f1, f2, f3) € (L? (Q))3 is a vector of a given
function (x;,x;) €Q, ay;(x,t), b,(x,t) €
C*(Q), ny, (for £ = 1,2,3) is a unit vector normal
outer on the boundary X , (n,x;) is the angle
between n, and the x; — axis, i = (uy, U, u3) €
(2®)’ a CCBCV J =g =
3
(V1ugr Y2up Vau,) € (H*(Q) the TSVS

correspondingto the CCBCV.
The admissible set of the CCBCV is defined by

W,= {ﬁ € (LZ(Z))3| i el ae.inX },

is and

is
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U= (u,us,u3), U= U x Uy, x U; cR3
The cost function (CF.) is
Go(@) = Zlgzl[fQ goi (x, ¢,y )dxdt +
fz hoi(x,t,w)do] (10)
Let V=V, xV,xV;=VxXVXV={57=
(v100), v, (), v3(x)) € (H*(Q))*} .
The W.F of the TSEs (1-9) when y € (H3(2))3 is
given (Vv,,v,, v3 € V)by
(V1e,v1) + a1, y1,v1) + (b1 (DY, v1)a —
(b4 (O)y2,v1)q — (bs(D) Y5, V1) =
(f101), v + (uy, vor,
07, v1)a = (1(0), v1)q
(Var, V2) + a2 (8, y2, v2) + (b2 (£)y2,v2)q +
(bs(D)y3,v2)q + (ba (D)1, V2)q =

(11a)
(11b)

(F2002), v2)a + (uz, v2)r (12a)
(3, v2)a = (12(0), v2)q (12b)
(V3, v3) + az(t, y3,v3) + (b3(t)ys,v3)q +
(bs()y1,v3)q-(be(t)Y2,V3)q =

(f3(¥3), v3)a + (us, v3)r, (13a)
(3, v2)a = (13(0), v3)q (13b)
Where a (t' levl) f Zl Jj=1 Ayij 23’1 Zvl dx for

=123
Assumptions (A): fori = 1,2,3
(i) f; is of a Carathéodory type (C-T) on Q X R,
satisfies: |f;(x,t,y)| < n;(x, t) + ¢;ly;l
where y;,u; € R, ¢; > 0and n; € L2(Q,R).
(i) f; is LIP. w.r.t. y;, i.e.

Ifi (e, t,y:) — fix, 6, 90| < Lily; — 9il

where y;,7; €ER andL; >0
(iii) |a; (&, v, vi) | < a;lly;llo vl

|(b; @)y, vidal < Billyillollville, @ity yi) =
a; ly:llf _

(b; Oy, y)a = Billyillg,
€1 lly2llollvllo,

[(bs (D) y1,v2)al <€; lly1llollvallo :
|(bs(®)y3, vi)al <€ llysllollvyllo,
|(bs(©)y1,v3)al <€4 lly1llollvsllo,
|(bs () y3, v2)al <€E5 llysllollvallo,
|(bs ()2, v3)al <€6 lly2llollvsllo,
C(t,_’)_/), )_;) = 3=1[ai(t;yi, YL) + (bi(t)Yi; yi)ﬂ] )
with ¢c(t,y,5) = allyll; .
Where |[v]|o,and ||v]|, are denote to the norms in
the spaces L2(Q), H'(Q) resp. and ||U||5 =

iallvill?, ag, @, B Bi (Vi=123),€ (Vi=
1,2,3,4,5,6) and & are real positive constants.
Assumptions (B):
Consider g,; and hy; (foreachk = 0,1,2,3and [ =
1,2,3) isof C-T on (Q X R) and on(Z X R) resp.

|(ba(O)y2, v1)al <
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and satisfy the following (with y,; € L*(Q), 8, €
L'(Y)):

191 (6t Y| < Via (%, t) + i ()2,

|y (x, t, )| < 8 (x, £) + digg ().

MAIN RESULTS

Solvability of the TSEs

Theorem 1: With  Assumptions (A), for fixed
CCBCV ii € (12(2))’, the WFO of the ((11)-(13)
has a unique solution y = (yl,yz,yg) st. y €,

= (ylt'YZt }’3t) € (L { V))

Pr of:

Let V7, c V be the set of continuous and piecewise
affine functions in Q, and {#;,7,, 7, ..., %,} be

basis of V,, where n = 3N (N is the dimension of
each V), then the TSVS y of ((2.10)-(2.12)) is

approximated for each n by 3, = (Yin, Y2n Y2n,),
S.t.
Yin = Xj=16ij Ovij(x)  vI=1,23 (14)

where c¢;;(t) is an unknown function of t VI =
1,2,3,and j = 1,2,
The MGa is used to approximate the WFO ((2.11)
- (2.13)) w.r.t the space variable, and to get

(Vint> V1) + a1(t, yin, v1) + (b1 () Yin, V1)a

— by y2n,v1)a- (bs(O)Y3n,V1)q

= (fi1n) v1)a +(uq, v1)r (15a)
(ylonrvl)ﬂ = (:V10' vl)ﬂ ’ (le)
(Vane, V2) + @z (t, Yo, V2) + (b2 () y2n, v2)q +
(bs(®)Y3n,V2)q + (ba(t)Y1n, v2)a

= (f272n), V2)o + (U2, v2)r (16a)
V2n v2)a = (05, v2)a (16b)
(Vane, V3) + az(t, ¥an, v3) + (b3 () yzn, v3)q +
(bs(®yin,v3)a + (bs(®)Y2n, v3)q

= (f3(¥3n), v3)q + (us, v3)r (17a)
(J’.??n' 173)9 (3’3 ,V3)q (17b)
where yo = yi, (x, O) eV, cVcl?*() is the

projection (pro.) of y; for the norm |||, i.e.,

O vda= 0 vda & |y —v2ll, < v’ -
U, Vv €V vi=123

Utilizing (14) in ((15) -(17)), setting v, = v; VI =
1,2,3, the following system, which has a unique
solution y,, is obtained:

A1C () + D1C (1) — E1C,(8) — FiCy(t) =

by (V' (x)C1 (1)) (18a)
4,C,(0) = b? (18b)
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A,C, (1) + D, C, (1) + E,C3(8) + FrC1 () =

b, (%' (x)C, (D) (19a)
4,C,(0) = bg (19b)
A3C5(t) + D3C5(t) + EsC,(t) — F3C,(t) =

bs (V5" (x)C3(D)) (20a)
A3C5(0) = bY (20b)
where Al (alU)nxn all] - (vljivll)ﬂ ' Dl -

( lij)nxnv dyj = [a (& vv) +
(b (i, vii)al, E; = (ey), ey =
(ba(O)v2), V1) F1 = (fij)nxn v fy =

(bs(t)v3]rv11)ﬂ ) Cl(t) - (Cl](t))nxl ' Ci(t)
(Clj (t))nxlf Cl (0) - (Cl] (0))n><1 ! bl - (bll)nxli
by = (i C([©), vida + (w, vi)r Vi
(Vnx1 » b = (bu) bzl 0lvida » E
(hij), o by = Ba(OV1,v2)0  Fo = (ki)
kij = (bg()v3i,v2:)q » E3 = (nij)nxn , Ny =

(bs(Ov1i,vsda  + Fa=(24),, -+ 2=
(be((O)vyi,v31)q for =123, and i,j =
1,2,..,n

The norm ”72” Is bounded: sinceforl =1, 2, 3,

yl =y’(x) € L2 (Q), then there exists {v),}, with
vy, € V,, such that v2 — y? strongly (ST) in
L2(Q) , and since

v =21, < v = will, . vvi € V thenvn
[EZ _3’10”0 < |y’ - 17131”01 vy, EV, CV,

thus y5, — v is Stin L2(Q) and ||y5 ||, <

The norm ||y"(t)||L°°(I,L2(Q)) and [[y,(®)|lo are
bounded:

Setting v; = y;,, in ((15a) - (17a)), I1.B.S of each

obtaining equationon [0, T], adding the resulting
equations, finally with Assumption (A-iii), one has
T - - T - -
fo (Vnt» Yaddt + fo c(t, Yn, Yn)dt =
T T
fo (f1(1n), Yindadt + fo (f2(2n), Yanda dt +
T T
Jo Fs(r3n), ysnda dt + [ (uy, yin)rdt +
T T
Jo (2, y2n)rdt+ [ (us, ysa)rdt (21)
Since y,. € (L2(1,V*)3 = (L2(1,V))? and y, €
(I2(1,V))3 in the 15t term of the L.H.S. of (21),
hence for this term we can use Lemma 1.2 in [16]
and since the 2™? termis positive, takingT =t €

[0, T], finally using Assum. (A-i) for the 15¢ three
terms in the R.H.S. and the Cauchy-Schwarz
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inequality (C-S-1) for the three reminder terms, we
get
t t
Jy Ggnoizde < [ [,03 + |y1n]?) dxdt +
t
2 [, [yealyinl? dxdt +
t t
f() fr(lullz + |}’1n|2)d]’dt + fo fr(lullz +
t
[yin 2 dydt + [ [, 3 + |y2n|*) dxdt
t t
+2 f() fQ CZIyanj dxdt + fo fr‘(luZlZ +
[y2n|2)dydt + [ [,3 + |ysn|?) dxdt
t t
+2 fo fQ C3|Y3n|2 dxdt + f() fr(|u3|2 +
[3n|?)dydt
Let Cy = maX( (2C1 + 1), (2C2 + 1), (2C3 + 1)),
then the above inequality becomes
17,115 — 15,0 1IF <
”771”(22 + ”772”6 + “773”(22 + llugllg + llullg +
t, > t, >
lusll + cq 15, 13dt + cs [, 17, 13dt.
since [[¥,(OIF < b, llmllg <my  lwlz < e
vl = 1,23, putting cs = ¢4 +c5, m* = b+m? +
m3 +mi + ¢ + cZ +c3,
the above inequality yields to
- * t -
17O NI < m* + c6 [ 17,115 dt .
By employing the Gronwall-Bellman Lemma
(GBL), we obtain
17, (OI§ < m e’ =c,,vte0T],
which impliesto ||y, (®)||

But

15 (D1 = Jy 15ll3de <T max 15, (O1IF <
Tcg =c5 = |Y®llg < cs.

The norm ||7n(t)||L2(1y) is bounded: once again,
by employing Lemma 1.2 in [16] for the 15¢ term
in the L.H.S. of (21), then by benefitting from the
above result which is obtained fromits R.H.S., and
3. (T3 = 0, inequality (21) with t =T , turn
into

152 (DIIZ + 2 [, 17 ]12dt < m* + c4llFll2 =

T, » (m*+cgcy)
Sy Il de < e = 3

= ||3_;n”l,2(1y) < P11
The convergence of the solution:
Consider V has a sequence (seq.) of subspaces

{IZl}:zl, forwhichv & = (vy,v,v;) € V, thereis

L°°(I,L2(Q)) s €7

a seq. {¥, = (Vi Von, van)} €%, vn , and
5, — BSTinV = 4, — 5STin (12()’.

Uy, — U

Since for each n , with ¥, c V, problem ((15) —
(17)) has a unique TSVS 4y, hence corresponding
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to the seq. {17,;}:;1 the seq. of approximation
problems(app. Prs.) like ((15) — (17)) are obtained,
and by letting v = v, = (V1 Von, V3,) fOorn =
1,2,3, ..., in these app. Prs. , they yield to
Viner V1n) + a1 (6, Y10, V1) + (b1 (O Y10, V1nda —
((bs (O Y2, Vin)a — (bs(D)Y3n, Vin)a =

(fi1n) V1nda + (Uy, Vin)r (22a)
02 Vinda = V), Vin)a (22b)
(Vant,Van) + a2 (t, Yon, Van) +

(bz (t)yZn'vZn)Q + ((bé(t)y3m vZn)Q -
((b4(t)ylnv v2n)Q =

(f2(V2n ) Van) o + (Uz, Van)r (239)
(ygw 17271)9. = (yg: v2n)ﬂ (23b)

(Vane» Van) + az(t, Yan, v3n) +
(b3 () Y3n,V3n)a + ((bs(t)}’m'vm)ﬂ -

(b (©)y2n, U3n)ﬂ = (f33n), Van)a +
(U3, V3n)r (24a)

V9 Van)a = 5, V3n)a (24b)
which has a sequence of solutions {y,}>_, . From
the previous steeps, we got that ||}7n||Lz(Q) and

I¥all;2¢;yy are bounded, then by Alaoglu’s
theorem (Alth.), there is a subsequence of {y,,},cn
, say again {y,}pey Such that y, — y
weakly(WK) in (12(Q))° and in (L2(1,V))’.
Then through Assumption (A-i), and the bounded
norms results from the above steps, once get that
¥ — 7 STin (12(Q))° .

Now, consider the WFO ((22) -(24)), take any
arbitrary 7 € V, thenthere isa sequence {,},7, €
V,, vn, st B, —» vSTinV (whichgives ¥, —
v ST in (12(©))3%). M.B.S of ((22a)- (24a)), by
@, (t) € C[0,T] resp., with ¢, (T) =0, ¢,(0) #
0vl=123,1BS. wrt.t from0toT, and then
integration by parts (IBP) the 15¢ term inthe L.H.S.
of each equation, to obtain

- fOT(Yln: V1)@, (D) dt + fOT[a1 (€, Y10, V1) +

(b, (7{5)3’111 — by (1) Y2n — bs () Y3, Vin)al@1dt

= fo (f1 D1n), v1n)a @1 (D)dt +

Jy (11, v2)r@2 (Ot + (9, V1) (0)  (25)
- fOT(yZn' Von) @, () dt + fOT[az (&, Y2n, V2n) +
(b2 (1) y2n + be (O)y3n — ba (D) Y1n, Vandal@odt =
Jy (2 G2n), v2n)a @2 (Ot +

Jy iz, )02t + (55, v20)a2(0)  (26)
- fOT(Y3n» V3n) 3 () dt + fOT[a3 (6, Y3n, V3n) +
(b3 (®)y3n + bs(O)y1n — be(t)Y2n, Vandalpsdt =
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fOT(fs (V3n), V3n)a @3 (t)dt +

[, (s, v3)rps () dt + (79, v3n)a9s(0)  (27)
sinceforl = 1,2,3 y,,, — y; WKin L2(Q), v, —
y? ST in L?(Q), and since
v, — v; ST in LZ(Q)} N
vy, — U STinV

Ving; — v, STin L*(Q)

Vin@; — v, STinL2(1,V)

Then the following converges are concluded
fOT(Y1n'U1n)(Pi(t)dt + fOT[a1 (&, Y1 V1n) +
(bl (t)yln - b4 (t)YZn -
b;(t)%n' V1n)n]‘P1(g)dt —
Iy (1, v)os (B)dt + Jy Tas (t,y1,v1) + (by (£)y; -
by ()Y, — bs(8) y3, v1)ales (D) dt (28a)
ins v1n)a91(0) — (77, 7)1 (0) (28D)
Jo O2ns Von) @, () dt + Jo [az(t, ¥, v20) +
(b2 () y2n + be (O)ysn +
szL(t)%n: Vm)n]‘Pz(?)dt —
Iy G2, v2)0, ©O)dt + [ [a;(t,32,v2) + (b (8 y, +
bs(£) Y3 + by(t)y1, v2)ale2 (£)dt (29a)
2n: V2n)a92(0) — (2, v2)a 92 (0) (29b)
fo V3, V3n)@s () dt + fo [as (t, Y3n, V3n) +
(b3 (t)y3n + b5 (t)Y1n +
b?(t)hn; V3n)n]§03(i_;)dt —
Iy O3, v3)es (O)dt + [ [as(t,y5,v3) + (bs(t)ys +
bs(£)y1 + bs (£)y2, v3)ales (t) dt (30a)

V9 V) @3(0) — (19, v3)q93(0) (30b)
On the other hand, let (VI = 1,2,3)) wy,, = v @

and w; = v, @, then w;,, — w; ST in L?(Q), from
employing the Assumption (A-i), and proposition
31 in [17], the int. [ (fi (i) windadt is
continuous w.r.t. (y;,,w;,) , since y,, —y ST in
(I2(Q))2 a, then

foT(ﬁ(yln)rvln)Q¢l(t)dt —

foT(fl(YI)' v)ap(®dt, vI=12,3

From this resultand from ((28)- (30)), ((25) - (27))
become

= Jy v (Odt + f, [ay (&, y1,v) +
(b1()y1 — ba(©)y, — bs(t)y3, V1) 1 (D)dt =
(i), vD)a@a (©dt + [, (g, vy)r @1 (Ode +
07, v1)a91(0) (31)
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T . T
—J, 02,020, (Odt + [ [ay(t,y2,v2)q +
(sz(t)}’Z + b (t)y3 + by (D) y1,V2)0 102 (D) dt =
Jo 272D, v2)a g2 ()dt +
T
Jo (2, v2)r 02 (O)dt + (¥, v2)092(0)
- fOT(YB' v3) gz (t)dt + foT[a3 (t,y3,v3)0 +
(b3T(t)3’3 + bs(O)y1 — bs(O)y2,v3)ales(D)dt =
fo (fs(73), v3)aps(O)dt +
T
Jo (3, v3)r p3(O)dt + (¥, v3)a93(0) (33)
Now, the following two cases will be considered:
Casel: choose ¢, € D[0,T], ie., ¢;(0)=
¢, (T) =0, vl=1,2,3, utilizing in ((30) - (32)),
thenemploying I.B.P for the 15¢ termsinthe L.H.S.
of the obtained equations, yield

Ji O, vy (Ot + [ Ta (31,9 + (by Oy, v)q -
(by ()5, v1)q = (bs (£)y3,v4)a)e1 (O)dt =

Jy (RO vdaeu(B)de + [} (uy,vi)r g1 (Ode (34)
[y 026, v2) @, (O dt + J, [a5(t,2,v5) +

(b, (0)y2, v2)a + (bs(D)ys, v2)q +
(bs(Dy1,v2)q]@(®)dt =

o (5(32), v2)a02 ()t + [ (2, v2)r 0 (D)t (35)
Jy e v)eps (Ot + ) a5 (8,35, v5) +

(b3 () y3, v3)q + (bs(£)y1,v3)q —

(l;s (£)y2,v3)q Jo,(D)dt = ;

Iy (£505), v3)q03 (D)dt + [ (us, v3)r @3 (t)dt  (36)
i.e.,y isthe TSVS of the W.F. ((11a) — (13a)).
Case 2: choose ¢, € €1[0,T] , VI =1,2,3 such
that ¢,(T) =0 & ¢,(0) # 0, Using I.B.P for 15¢
term in the L.H.S. of ((34) - (36)), one gets
— [ G v)e (O dt + f, [ay(ty1,v1) +
(b (®)y1,v1)a — by y2,v1)q —
(bs(®)y3, v1)ale, (®)dt =

Jy (00, v2) a0 (D) dt +

fi e, v)r 91 (©dt + 31(0), 911 (0)

— i 02, )@, (O de + [ [ag (6,72, v5) +
(b, () y2, v2)q + (bs(t)y3,v2)q +
(ba(D)y1,v2)al@(t)dt =

o (02, v2)a@a (Ot + [} (u, v,)r 92 (0)dt +
(72(0),v2)q0,(0) (38)
— 1) 5,005 + [ as (&5, v3) + (b ()75, v3)q +
(bs(t)y1,v3)a — (bs(t) ¥z, v3)qale, ()dt =

Jy (F5(33), v3)a0s (D) dt +

(32)

(37)

[oNoIe)
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T
fo (u3, v3)r @3 (0) dt + (35(0), v3)003(0) (39)
The following results are obtained from subtracting
((31)-(33)) from ((37)- (29))
02, v)aei(0) = (3,(0), v) a9, (0) =

2 v)a = (1(0), v)q

i.e. the initial condition (11b)-(13b) are conclude.
The strong convergence for y,, in L2(1,V):
by substitutingv; = y; andv; = y;,, VI = 1,2,3.
in ((11a) and(15a))-((13a) and (17a)) resp,
integrating the resulting equations from t =0
tot =T, finally collecting together the equations
which are obtained from ((11a)-(13a)), and those
obtained from ((16a) -(18a)), with utilizing
Assumption (A-iii), we get

T, 5 5 T N T
Iy G 9y de + [ c(t,9,9)dt = [ [(G1) y1)a +
(f;2 02) ¥2)a + (f% (3),¥5)aldt ‘|'T
Jy Qo yrdt + [ (uz, y,)rdt + [ (uz,y3)rdt (40a)
T, - T - -
Jo Tner ¥ dt + [ c(t, Y, Yp)dt =
T
Jo lF1 1) yin) + (220 ), Yan) +
T

(f3 (y'a’n)' y3n)]dt + fO (ullyln)l"dt +

T T
fo (U2, Yan)rdt + fo (U3, y3n)rdt (40b)

Employing Lemma 1.2 in [16] for the 1% term in
the L.H.S. of (40a), to conclude that

YFDIZ - 2NFOZ + [ c(t, 7, 7)dt =
LTG0,y + (02), y2)a +

(f3(y3), y3)aldt + fOT(ul'}ﬁ)rdt +

[ (o, y)rdt + [ (s, y3)pdt (41a)
72D = 215,13 + f, c(t, Fn Fo)dt =
LA yimda +

(f;0nn), Yan)a + (5(30), Yan Do ldt +

T T T
fo (uy, yin rdt + fo (uz Yon )rdt fo (u3,Y3n )rdt (41D)
Since:

17,(T) = F(DIIZ = H15,0) — 7O 12 +
[y c(t,Fn—FFn—F)dt =A—B—C
where

A = HF (D2 =I5, 012

+ I7 e (£, 52(T), §u (T )dt,

B = 15 (T), 5(1))q — 2F(0), 7(0))q +
[ (6, 3. (T, 7(D)) dt,

C = 1GT), n(T) = F(M)g

~15(0), 7, (0) — y(0))q + J;, c(t, (T, 5u(T) —

y(T))dt .
Since

(42)

82

78 = 9a(0) — 7° ST in (12 (@)’
Yo (T) — §(T) ST in(L?(Q))
then

y(T)g — 0 (43c)
17,(0) — y(0)|I§ — 0 & I3, (T) —y(DII§ —
0 (43d)

and since y, — ¥ WK in (L2(, V))2 , then

[T c(t, 5T, (1) = F(1))dt — 0
From proposition (3.1) in [17], the

Sy (FiOlin), Yin)a dt iscon. w.rt. y, , then

T

Jo 101 yinda + (2(Vzn), Yanda +
(];3 V3n), Van)al dt —
S [0, y)a + (2(02), ¥2)a +
(fs(73), ¥3)aldt .
From y,, — v, STinL?(Q), vl = 1,23.
Now, when n — oo in both sides of (42), one has
the following results:
1. The first two terms in the L.H.S. of (42) are

vanished (from (43d))
2. From Eq.(43f)

Eq.(A)T =

i1 [y [FiOin), Yin) @ + (g, yin)r] dit

— ¥ [ 1RO e+ @ y)r] dt
3. Eq.(B) —»L.H.S.of (41a)

T
= %ia [ [, y)a+ @, y)r] dt
4. From (43c) and (43e) the three terms in (C) are
vanished.

From the above steps, (42) gives that fOT c(t,y, —
}_])r)_;n - :)_/))dt — 01

which means that,

af, 5, —yl3dt > 0= 3, >3
(2a,v))’

Uniqueness of the solution:

Let ¥, § be two TSVSs of the WFO((11a)—(13a)),
substituting each equation from the other and then
settingy = 3 — 9, one obtains,

(O =Py — I +a &y — Y71 —F) +
(b ()1 —91) = ba(®) (2 = 2),¥1 — F1)a
—(bs®) (3 = ¥3),y1 —I1)a = (f1(011) —
fiG0, y1 — I)a (44)
(2 =920y, =)t ax(t,y, — 92,2 — P2) +
(b, (D) (y2 = 92) + b () (3 — $3),¥2 — P2)a
+(ba(O) (Y1 = 1), Y2 = F2)a = (2(02) —
232072 = P2)a (45)

(43a)
(43b)

(43¢)
int.

(43f)

St in
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(V3 =P3)ey3 = P3) + az(t,y3 — P3,¥3 — J3) +
(b3(t)(y3 —P3) + bs(y1 — J1),¥3 —
V3)a—(bs(®) (V2 — $2),¥3 — V3)a = (f5(y3) —

f3(F3), ¥3 — P3)a (46)
Collecting  ((44)-(46))  together, utilizing
Lemmal.2 in [16],

- R 2 | 4 2
iy =9l +ally =3l <2 (Al ) -
fi @0,y — }71)9 (47)

Since the 2"¢ term of the L.H.S. is positive, I.B.S
w.r.t. t from 0 to t, and then utilizing Assumption
(A-ii) on the R.H.S., it becomes

LR 2 t

|y —}’)(t)”() <2 213=1f0 fQle’l -
502

9 [2dxdt < [73L])5 -5 dt,
L = maX{Ll,Lz, L3}
Utilizingthe GBL V't € I, it yields

R 2 T
|G =9 D], < Oexp (f, 2Ldt) =0 ,
Again, 1.B.S. of (46) w.r.t. t from 0 to T, utilizing

using the given initial condition and the above
result for the R.H.S., one has

) & 5-5]2 de + 2a ) |7 =5 de

<Ly 7=, ar

s2afl |7-Fl,de<Lf) |5-3| ae
<0=|y —§||L2(m =0

Existence of A CCBOCV:

To study the existence of a CCBOCV, the
following theorem and lemma are important:

Theoem 2:

(a) In addition to Assumptions (A), if y , ¥ + Ay
are the TSVS corresponding to the CCBCVs 1 ,
i+ Auin (I2(%))3, then

”E”L"O(LLZ(Q)) = K”ru”z ||Ty||L2(Q) =
K||E||Z , and ||Ty||L2(”,) < K||E||z :

(b)With Assumptions (A), the operator 1 — yy
from( L2(£))? into (L*(I,L2(Q)))* , or in to
(L2(I1,V))3 ,orinto (L?(Q))3 is cont.

Proof:

(@) Let@,4 € (12(X))% ,and let Au=1% — 14,
hence by Theorem (1), there are STVSs y =
(V1 = YupY2 = Yup¥3 = Yu;) and § = (91 =
Ya, 92 = 92,93 = Ja,) of (11)-(13)),i.e.

83

P1v1) + a1 (@& 91, v1) + (b1 ()P4, V1) —
(b4(t)572, Ul)ﬂ - (be(t)}A’3,U1)Q =

(fi(x, t, 1), v1)q + ({y, v)r (482)
31(0),v1)q = ()’10' 2D (48b)
(P26, v2) + az(t, §2, v3) + (b (0) P2, v2)q +
(bs(t)P3, V2)a+(bs(O)P1,v1)q =
(f2(x,t,92),v2)0 + (lz, v2)r (49a)
(3200),v2)q0 = 3, v2)a (49Db)
(P36, v3) + az(t, 93, v3) + (b3 (£)P3,v3)q +
(bs(0)91,v3)0—(be () P2, v3)q =
(f3(x,t,93),v3)q + (U3, v3)r (50 @)
(33(0),v3)q = (¥3,v3)a (50b)

Subtracting ((11)-(12)) from ((48)-(50)) resp.,
letting Ay, =9, —y;,, Ay =1, —y, for [=
1,2,3. to get

(Ay1e,v1) + a1 (8, Ayq,v1) + (b1 (DAY, v1)g —
(b4 (O)Ayz,v1)q — (bs(£)Ays, v1)g =

(fin + By, v)a = (), vi)a + (Bug, v)r (51a)
(Ay1(0),v1)q = 0 (51b)
(Ayze, v2) + ay (t, Ay, v2) + (b (£)Ay,, v2)qg +
(bs(DAY3,v2)q + (ba(D)Ay1, v2)q =

(L2 +8y2), 1) = (R (1), v2)a + (Buy,v,)r (52)
(Ay,(0),v2)q =0 (52b)
(Ayse, v3) + a3 (¢, Ays, v3) + (b3 (£)Ays, v3)g +
(bs(DAy1,v3)q — (bs(t)Ay2, v3)q =

(s (ys +83),v3)0 — (f3(y3),v3)q + (Auz, v3)r (532)
(Ay5(0),v3)q =0 (53Db)
By using v; = Ay, ,vIl =1,2,3, in ((51a)-(53a))
resp., collecting the resulting equations, utilizing
Lemma 2.1 in [16] for the 15¢term and Assumption
(A-iii) for the second term in the L.H.S. of the
equation, it yields to

— 2 2
2oyl +alldyl, < 1o + by —

fiv), AyD| + (22 + Ay,) —(f2(32), Ay2)| +
|(fs(y3 + By3) = f3(y3), Ays)| + |(Aug, Ayy)pl +
|(Auy, Ayy)rl + |(Aug, Ays )yl (54)
Since the 2™ term in L.H.S. of (54) is positive,
I.B.S w.r.t. t from 0 to ¢, using Assumption (A-ii)
for the first three terms in its R.H.S. and then the
CSIN for the last three terms in the same side, to
getvt € [0,T] :

IO < 2L, [ 1Ay, 13 de + 1y 12 de +
Ay NI dt + 2L, [ 1Ay, 113 dt +

[ 1A 12 de + [ 11Ay,lI2 de +

2L [l Ays l12de + [ lAusli2 de + [, 11 Ays |12 de

[oNoIe)
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Using the trace theorem for the last termin R.H.S.,

setting c, = max( 2L4,2L, 2L3), to get
I8 ©1, < 185 + c. 1185, de +

— 2 —2 — 2
cs fot”Ay”O dt < ||Aul|; + Ls f0t||Ay||0 dt,
where Ly = ¢, + ¢35
By using GBL, to obtain Vvt € [0,T]

B3O} < ||B]| e ket = etsT|ma| =
— 2 — N
K| B2 = By, < k|5,

Thus ||Ay||L°° ILZ(Q) = K”—A—ﬂ”z

—_— 2
20 = [, 1550 jdt <
max 85, fy de < Tk?|[Bl

Then |51z, < K|l where K2 = TK?2,

and K denotes to various constants.

Repeating the same manner that is utilized in the
above steps for the R.H.S. of (54), witht =T, to
get

Jy &5, + 2a ) [, e < (] +

And,[| 35

Ls fo ||Ay||0 dt = ||Ay(T)||0 + 2@ fo ||Ay||1 dt

—s2 —2 —q 2 2T 2
< [18ully + s 18yl = l18¥1 12,y < K2[ U]l
where K2 = 7(“;’{2)

189[l 2,y < Kl|Auf|, . where K denote to
various constants.

(b) Let Au =4 — 4 and Ay = § — y where§
are the correspond STVSs to the CCBCVs T

utilizing the first result in part (a) of this theorem,
to conclude
-]

15 - 5oy 2y = K1

Then§ —§ in (L""(I,L2 (Q)))3 when &L — % in
(12(2))’, hence i —  is Lip. Con. from (12 (%))’
in to( L= (1,17 (Q)))3 ,

The other two results in this part are obtained using
the same manner.

Lemma 1:

With Assumptions (B), the CF. G,(d) is cont.
on (L2(%))3, foreach k =10,1,2,3.

Proof:

From Assumptions (B)

g0 e, £, YOI < v (. 8) + cyillyill?,

o Ce t, u)ll < 8 (x, 1) + dy Mg |17

84

Using proposition 3.lin  [17], the ints
fQ 9 (x,t, ;) dxdt and [; hy; (x, t,u;) do are conts

on L?(Q) and on L*(X) resp. VIl =1,2,3, Vk =
0,1,2,3, hence G, (i) is cont. on (L?(Z))3.

Theorem 3:

Beside the Assumptions (A), and (B). If U is
compact, W, #= @, G,(1) is convex w.r.t. i for
fixed (x,t, y). Then there existsa CCBOCV.
Proof: From the assumptions on U; (I = 1,2,3),
then W; x W, xW; is WK compact (WKC).
Since W, # @, then there is €W, and a
minimizingseq. {@, € W}, vk, st.

lim G, () = inf Go(1)

k—co TeW,

Since 7, € W , Vk and W is WKC, then the seq.
{1, } has a seubseq. say again {1} , s.t.

U, »deW WKin (I2(Z))3, and ||Tlls < c,
Vk.

From Theorem (1), for each CCBCV 1, , the WK
of the TSEs has a unique TSVS y, = yy, and

”37k”L°°(1,L2(Q))1 “}_’)k”LZ(Q) and ”3_’)k||L2(1,V) are
bounded, then by Alth. the seq. {y} has a subseq.
say again {y,} for which y, -y WK in
(L™ (1, 2(@)) )%, (12(@))* and (L2(1,V) )3
Also, from the same above indicated theorem we
got that ||37tk||L2(1,V*) is bounded and since
LPUA,V))? e (P(Q))® = ((L*(@))) c
(L2(I1,V*))3 . Hence by the
by Alth. the seq. {y,} has a subsequence say again
{yx} forwhich y, — ¥ STin (12(Q) )3.
Now, since for any k, y; is the TSVS
corresponding to the CCBCV wyy, VI =1,2,3,
therefore
(V1ke» V1) + a1 (& Vi, v1) + (b1 (D) Y1k, V10
— (b (O Y21, V1)
— (bs® Y31, v =

(fl (X, L, 3’1k)’ vl)ﬂ + (ulk' 171)r, (55)
(Vare, V2) + a2 (8, Y21, v2) + (b2 () Y2k, V2)a
+(bs (V) Y3k, v2)a + (b4 (O) Y1k, V2)o =

(20, 6, y21),v2) 0 + (Ui, V2)r (56)

(V3kerv3) + as(t, y5x,v3) + (b3(O) Y3k, v3)a +
(bs () y1k,v3) = (bg(O)Y2k) V3)ag =

(s, 8,31 ),v3)0 + (Usk, v3)r (57)
M.B.S of ((55)- (57)) by ¢,(t) € C*[I] resp, with
¢, (T)=0, vli=12,3 and then I.B.S w.rt. t
from 0 to T, and using 1.B.P for the 15¢ terms in the
L.H.S. of each equation, i.e.
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T 3 T
— Joy Qo v @dt + [ [ay(t, yueve) +
(b1(®) Y1k — ba(O) Y2k —
b%(t)Y3k' v1)o J@1(D)dt =
Jo (0t y1), v) a1 (B)dt +

T
Jo @i vre1 (®) dt + (v14(0), v1)a 91 (0) (58)

T , T

— [y B2k, v2) @, (O)dt + [ [az(t, yauv2) +
(b, gt)yZR + b () Y3 + ba (D) Y11, V2)al@2 (DAt
= fo (fZ(x»t! ka)JUZ)Q(pZ (t) dt +

T
fo (e, v2)r@2 () dt + (21 (0), v2)a 92 (0) (59)

T , T

- fo (V3k, v3) @3 (B)dt + fo [as (¢, ysrv3) +
(bs (tr)y3k + bs (D) Y1k — b () Y21, V3)a] @3 (£)dt
= fo (fs (e, 6, y31), v3) s (O) dt +

T
fo (usk, v3)r@z (t) dt + (¥3,(0), v3)as (0) (60)
Now, since uy, — w; WK in L2(Z), then

T T
Jo Qe v)ro (8) dt — [ (uye, v)re, (0) dt,
vi=12,3 (61)
Now, to proof the above WFO((58)-(60))
convergence to the WFO((11)-(13)), we note that
except the terms that include the controls(L.H.S. of
(61)) in ((58)-(60)), all other terms are similar to
their corresponding term in the ((25)-(27)) in the
proof of Theorem (1), therefore to avoid the
reputations for the steps, the same manner which
were used to proof the convergence ((25)-(27)), can
be used also here to get that y is a SVS of the
WFO((11)-(13)).
From Lemma (1), the int. fQ o1 (x, t, vy ) dxdt
fz hoi (x, t,u )do are cont. w.r.t. y; and u; resp.,
since y, — y ST in (LZ(Q))3 , hence
fQ o (x,t, yy ) dxdt — fQ Jor (x, t, y;) dxdt, for
each [ = 1,2,3. (62)
From the hypotheses on hy; , ho; (x, t, u;) iIs WK
lower semi cont. w.r.t. u;, for each [ = 1,2,3 then
with using (62), to obtain

fQ g (x, t,y) dxdt + [ ho (x,t,u) do <
’li_)ngoinffz ho; (x, t,uy )do + fQ o1 (x, t, y;) dxdt

~ lim inf( fz(hoz (x,t,uy)do +
Jo 9ou(x, £,y ) dxde)

+ klig info(goz G, t, 7)) = gou(x, t, yu) dxdt
= lim inf (J; hot (x, t, uy) do +

Jo 901 (%, t, ) dxdt

= G,() < ’lim inf G, (), hence

inf GO (l:i )

—

‘l:,iEWA
= Go(@) = min Go(a)
UEW 4

= u isa CCBOCV.

CONCLUSIONS

In this paper, the existence theorem for a unique
STVS of the WFO for the NLTPBVP is stated and
demonstrated via the MGa , and the first
compactness theorem under suitable assumptions
and with given CCBTCV. Furthermore, the
continuity operator between the STVS of the WFO
for the NLTPBVP and the corresponding
CCBTCV is stated and demonstrated. The
continuity of the LIP. Operator between the STVS
of the WFO for the QNLPBVP and the
corresponding CCBTCV is proved. The existence
of a CCBOTCYV is stated and demonstrated under
suitable conditions.
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