
Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 28, Issue 3, 2017 DOI: http://doi.org/10.23851/mjs.v28i3.122

200

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4. 0 International Licenses.

Research Article

Solving Composite Multi objective Single Machine Scheduling

Problem Using Branch and Bound and Local Search

Algorithms

Tariq S. Abdul – Razaq
1
, Hafed M. Motair

2

1
Department of Mathematics, College of Science, Mustansiriyah University, IRAQ

2
Department of Mathematics, Open Educational College, Al- Qadisiya, Ministry of Education, IRAQ

*Correspondent Author Email: hafedmotair@gmail.com

A r t i c l e I n f o

Received:
2 Apr. 2017

Accepted:

17 Oct. 2017

:

Abstract
This paper present algorithm for solving a single machine scheduling problem to minimize the

sum of total completion times, total tardiness, maximum tardiness, and maximum earliness. The

single machine total tardiness problem is already NP-hard, so they consider problem is strongly

NP-hard, and several algorithms are used to solve it. Branch and bound algorithm with

dominance rule and local search algorithms are proposed for the problem. For the Branch and

bound algorithm results- show that using dominance rule improve the performance of the

algorithm in both computation times and optimal values, but it needs longer times. Thus we

tackle the problem of large sizes with local search algorithms descent method, simulated

annealing and tabu search. The performance of these algorithms is evaluated on a large set of test

problems and the results are compared. The computational results show that simulated annealing

algorithm and Tabu search algorithm are better than descent method with preference to simulated

annealing algorithm, and show that the three algorithms find optimal or near optimal solutions in

reasonable times.

Keywords: Multicriteria Scheduling, Branch and bound, Dominance rule, Local search

algorithms.

 خلاصـةال
مجموع زمن إتمام النتاجات, مجموع أزمان ارزميات لحل مسألة الجدولة لماكنة واحدة لتصغير مجموع الدوال:قدم البحث خو

التي حسنت (DR), مع قواعد الهيمنة (BAB)التبكير, اكبر زمن تبكير, وأكبر زمن تأخير. اقترحنا خوارزمية التفرع والتقييد

, أظهرت النتائج SA ,TS ,DMوالزمن, واقترحنا خوارزميات البحث المحلي من أداء الخوارزمية من ناحية القيمة المثالية

, وأن الخوارزميات الثلاث أوجد الحلول SAمع أفضليه لخوارزمية DMأفضل من خوارزمية TSو SAأن خوارزميات

 القريبة من الحل المثالي في أزمنة مناسبة. المثالية أو

Introduction
Scheduling concerns the allocation of limit

resources to tasks over time. It is a decision-

making process that has as a goal the

optimization of one or more objectives [11].

Scheduling problems in real life applications

generally involves optimization of more than

one criteria. These criteria are often conflicting

in nature and quite complex, according to how

these criteria optimized, multicriteria

optimization can be divided into two types:

1. Hierarchical optimization for which if one

criteria, say f is more important than other

one g, then the problem is to minimize

primary criterion f while breaking ties in

favor of the schedule that has minimum

secondary criterion value g and denoted by

Lex(f, g) .

2. Simultaneous optimization for which if no

criterion is dominant and all criteria are

considered simultaneously.

It is well known that the problem 1|| ∑ 𝑇𝑗𝑗 is

NP-hard [6], so any problem containing the

cost function ∑ 𝑇𝑗𝑗 as subproblem is also NP-

hard. Sen and Gupta[14] studies the problem of

minimizing a linear combination of flow times

and maximum tardiness of a given number of

jobs on a single machine and presents BAB

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:hafedmotair@gmail.com

Hafid et al. Solving Composite Multi objective Single Machine Scheduling Problem Using Branch and Bound and Local

Search Algorithms
2017

201

technique to arrive at an optimal solution. The

first result involving 𝐸𝑚𝑎𝑥 and 𝑇𝑚𝑎𝑥 is due to

Garey et al.[8], they study a single machine

scheduling problem and present an O(nlogn)

algorithm to check whether for a given

threshold value y there exists a feasible

schedule such that each job is executed in the

interval[𝑑𝑖 − 𝑝𝑖 − 𝑦, 𝑑𝑖 − 𝑦]. By applying

binary search, they find the minimum such

value y. Gareyet al. also show that the problem

of finding the set of starting time that

minimizes ∑𝐸𝑗 + ∑𝑇𝑗 for a given ordering of

the jobs on a single machine is solvable in

O(nlogn) time. Verma and Dessouky [15] show

that the problem 1|pj = p|∑ (αjEj + βjTj)j is

solvable in polynomial time if the weights are

agreeable, that is, the jobs can be renumbered

such that: 𝛼1 ≤ 𝛼2 ≤ ⋯ ≤ 𝛼𝑛,𝛽1 ≤ 𝛽2 ≤ ⋯ ≤
𝛽𝑛. Abdul Razaq and Ibrahim[1] studied the

problem 1||F(Emax, Tmax) they propose general

algorithm (ET) to find the set of approximate

efficient (Pareto optimal) solutions, and for the

problem 1||𝐸𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥 they find the (near)

optimal solution using BAB algorithm . Abdul-

Razaq and Mahrooz [2] study problem

including three criteria, total completion times,

the total tardiness and the maximum tardiness,

they propose BAB algorithm for the problem

1|| ∑ Cj + ∑ Tjj + Tmaxj and find the set

ofefficient solutions for the

problem1||(∑ Cj,j ∑ Tj,j Tmax). Lee and Choi in

[12], propose a genetic algorithm for solving

the scheduling problem with distinct due dates

in a single machine general penalty weights

which are not necessarily proportional to the

processing times are applied to jobs either early

or tardy. The computational experiments show

that the genetic algorithm finds optimal

solutions for small instances. Wan and

Benjamin in [16] propose a tabu search

algorithm for the problem of minimizing the

earliness tardiness cost on a single machine

with due windows. Computational experiments

indicate that the performance of the proposed

approach is quite well, especially for the

instances of large size.

Problem formulation
Let 𝑁 = {1,2, … , 𝑛} be the set of 𝑛 jobs that

must be processed by a machine. Each job 𝑖 has

a processing time𝑝𝑖, and a due date 𝑑𝑖 , for

𝑖 = 1, … , 𝑛.Initially, all of the jobs are

available to be processed by the machine and it

starts processing without interrupted, and

requires 𝑝𝑖 units of time to complete its

processing. Thus a schedule for the machine

can be completely specified by giving the

sequence in which the jobs are processed.

Let σ be a sequence of the jobs in N

representedby the n-tuple (σ(1), σ(2),… , σ(n))
where σ(i) is the ith job processedby the

machine. The completion time of jobσ(i) is

given by Cσ(i) = ∑ pσ(j)
i
j=1 ,the tardiness of the

job σ(i) is given by Tσ(i) = max(Cσ(i) −

dσ(i), 0), and the earliness of the job σ(i) is

given by Eσ(i) = max(dσ(i) − Cσ(i), 0).

We consider the following performance

criteria:

 the sum of completion times ∑ 𝐶𝑗𝑗 .

 the sum of tardiness ∑ 𝑇𝑗𝑗 .

 the maximum tardiness 𝑇𝑚𝑎𝑥 .

 the maximum earliness 𝐸𝑚𝑎𝑥 .

Hence this problem is denoted by 1|| ∑ 𝐶𝑗 +𝑗

∑ 𝑇𝑗 + 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥𝑗 (Q) which belong to

type (2) of multicriteria optimization and

written as :

𝑧 = 𝑚𝑖𝑛 (∑𝐶𝑗
𝑗

+∑𝑇𝑗
𝑗

+ 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥)

𝑆. 𝑇
𝐶𝑖 ≥ 𝑝𝑖𝑖 = 1,2, … , 𝑛
𝐶𝑖 = 𝐶𝑖−1 + 𝑝𝑗𝑖 = 2,3, … , 𝑛

𝑇𝑖 ≥ 𝐶𝑖 − 𝑑𝑖 𝑖 = 1,2, … , 𝑛
𝑇𝑖 ≥ 0𝑖 = 1,2, … , 𝑛
𝐸𝑖 ≥ 𝑑𝑖 − 𝐶𝑖𝑖 = 1,2, … , 𝑛
𝐸𝑖 ≥ 0𝑖 = 1,2, … , 𝑛)

)

(𝑸)

Solving the Problem (Q) Using BAB

Algorithm

The aim of this problem is to find the minimum

value of the of the objective function ∑ Cj +j

∑ Tj +Tmax +Emax,j this function include

the cost function ∑ Tjj , as mentioned before any

problem including this function as sub problem

is NP-hard. Since the feasible set of solutions

considered in our problem is finite set, so an

Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 28, Issue 3, 2017 DOI: http://doi.org/10.23851/mjs.v28i3.122

202

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4. 0 International Licenses.

optimal solution can be obtained by a straight

forward algorithm that enumerates all feasible

solutions, and then outputs the one with the

minimum objective value. Complete

enumeration method (CEM) is hardly practical

because the number of cases to be considered is

usually enormous. Solving NP-hard discrete

optimization problems to optimality is often an

immense job requiring very efficient

algorithms, and Branch and bound algorithm

(BAB) is one of the main tools in construction

of these. A BAB algorithm searches the

complete space of solutions for a given

problem for the best solution. However,

explicit enumeration is normally impossible

due to the exponentially increasing number of

potential solutions. A BAB algorithm proceeds

by repeatedly partitioning the class of all

feasible solutions into smaller and smaller

subclasses in such a way that ultimately an

optimal solution is obtained. The BAB have the

following general characteristics:

 A branching rule that defines partitions of

the set of feasible solutions into subsets.

 A lower bounding rule that provides a

lower bound (LB) on the value of each

solution in a subset generated by the

branching rule.

 A search strategy that selects a node from

which to branch.

 To implement the BAB algorithm we

decompose the problem (Q) into sub

problems:

Decomposition of the Problem (𝑸)
Decomposition is a general approach for

solving a problem by breaking it up into

smaller ones and solving each of the smaller

ones separately, either in parallel or

sequentially. The problem (Q) can be

decomposed into four sub problems Qi, i =
1,2,3,4 ∶ 1||Zi, where Z1 = min∑ Cjj ,

Z2 = min∑ Tjj , Z3minTmax, Z4 = minEmax.

Derivation of Lower bound (LB) and

Upper bound (UB) for the Problem (𝑸)
Next theorem help us to derive the lower bound

(LB) for problem (Q) using the decomposed

problems:

Theorem 1: Let Zi be the lower bound or the

minimum for the objective functions of sub

problems Qi, i = 1,2,3,4 and let Z be the

minimum of objective function of problemQ,
then ∑ Zi ≤ Zi

Proof: It is clear

The initial lower bound ILB = ∑ Zi
n
i=1 where

Z1 calculated by sequencing the jobs in SPT

order to get the minimum value of total

completion times. Z2 calculated by sequencing

the jobs in EDD order to get the minimum

maximum tardiness Tmax(EDD) using that

Tmax(EDD) ≤ ∑ Tjj .Z3 calculated by

sequencing the jobs in EDD order to get

minimum maximum tardiness Tmax(EDD). Z4

calculated by sequencing the jobs in MST order

to get the minimum maximum earliness

Emax(MST). Hence the initial lower bound ILB

calculated as follwes:

ILB = ∑ Cj(SPT)
n
j + Tmax(EDD) +

Tmax(EDD)+Emax(MST)

The upper bound (UB) is derived as follows:

Compute the first and second upper bound by

sequencing the jobs in SPT and EDD order

respectively, then

UB1 = ∑ Cj(SPT) + ∑ Tj(SPT) +jj

Tmax(SPT) + Emax(SPT),

UB2=∑ Cj(EDD)j + ∑ Tj(EDD) +j

Tmax(EDD) + Emax(EDD).

The upper bound is computed by: UB =
min(UB1, UB2).

Dominance Rule

A dominance rule is established in order to

reduce the solution space either by adding new

constraints to the problem, or by writing a

procedure that attempts to reduce the domain of

variables, or by building interesting solutions

directly [10]. This dominance rule is expressed

as "There exist at least one optimal solution of

S (the set of feasible solutions) having the

property A". The strategy is as follows: Any

solution which does not satisfy A can be

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Hafid et al. Solving Composite Multi objective Single Machine Scheduling Problem Using Branch and Bound and Local

Search Algorithms
2017

203

removed from S, because there is at least one

optimal solution of S satisfying A.

Theorem 2: If pi ≤ pj and di ≤ dj for every

i, j = 1,2, … , n , then job i preceed job j in

optimal solution for the problem(Q).

Proof: consider the sequence σ = σ1ijσ2 and

the sequence σ́ = σ1jiσ2 which is obtained by

interchange the position of jobs i and j.

For the sequence σ and σ́ there are two cases

Case 1 : If pi ≤ pj and di ≤ dj implies

si ≤ sj for every i, j = 1,2, … , n

From pi ≤ pj we have :∑ Cj(σ)j ≤ ∑ Cj(σ́)j

From the condition of slack time si ≤ sj, we

have:

 Emax(σ) ≤ Emax(σ́).

From pi ≤ pj and di ≤ dj, we have:

 Tmax(σ) ≤ Tmax(σ́) and ∑ Tj(σ)j ≤

∑ Tj(σ́)j .

Hence we have:

 ∑ Cj(σ)j +∑ Tj(σ)j + Tmax(σ) +

Emax(σ) ≤ ∑ Cj(σ́)j +∑ Tj(σ́)j +

Tmax(σ́) + Emax(σ́).

Case 2: If pi ≤ pj and di ≤ djimplies si ≥ sj

for every i, j = 1,2, … , n

From pi ≤ pj we have:

∑ Cj(σ)j ≤ ∑ Cj(σ́)j (1)

The condition on processing times insure that

(1) is satisfied, and the addition in cost which is

obtained from (1) is equal to
j ip p , this

gives :

∑ Cj(σ) + pj − pi = ∑ Cj(σ́jj) (2)

From the condition of slack times si ≥ sj

implies Emax(σ) ≥ Emax(σ́) .

Also the addition in cost si − sj gives:

Emax(σ́) + si − sj = Emax(σ) (3)

si − sj = (di − pi) − (dj − pj)

= (di − dj) + (pj − pi)

 ≤ pj − pi (4)

Adding Emax(σ́) to both side of (4) we have:

Emax(σ́) + si − sj ≤ Emax(σ́) + pj − pi and

from (3) we have:

Emax(σ) ≤ Emax(σ́) + pj − pi (5)

Adding ∑ Cj(σ)j to both side of (5) and by (2)

we have:

 ∑ Cj(σ)j + Emax(σ) ≤ ∑ Cj(σ́)j +

Emax(σ́) (6)

From the conditions pi ≤ pj and di ≤ dj we

have:

 Tmax(σ) ≤ Tmax(σ́) and ∑ Tj(σ) ≤j

∑ Tj(σ́j).

By adding this result to (6) :

 ∑ Cj(σ)j +∑ Tj(σ)j + Tmax(σ) +

Emax(σ) ≤ ∑ Cj(σ́)j + ∑ Tj(σ́)j +

Tmax(σ́) + Emax(σ́)

Hence in both cases the sequence σ is better

than the sequence σ́ . Hence job i precede job j

in the optimal solution.

Proposition 1: If SPT and EDD rules are

identical in one sequence, then this sequence

gives optimal solution for problem (Q) .
Proof: It is clear from theorem (2) .

Solving the Problem (Q) Using Local Search

Algorithms (LSAs)

Branch and bound algorithm (and dynamic

programming) is based on the idea of

intelligently enumerating all feasible solutions.

Another possibility is to apply (LSAs). These

algorithms produce solutions that are

guaranteed to be within a fixed percentage of

the actual optimum. One of the most successful

methods of attacking hard combinatorial

optimization problems is the discrete analog of

“hill climbing”, known as local (or

neighborhood) search [4]. In neighborhood

search, a current solution is transformed into a

new solution according to some neighborhood

Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 28, Issue 3, 2017 DOI: http://doi.org/10.23851/mjs.v28i3.122

204

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4. 0 International Licenses.

structure. An acceptance rule decides whether

the move from the current solution to the

transformed solution should be accepted,

although the decision is sometimes delayed

until the complete neighborhood (or a subset of

it) is explored. If a move is accepted, then the

transformed solution replaces the previous

solution and becomes the current solution;

otherwise, the move is rejected and the current

solution is retained. This process is repeated

until some termination criterion is satisfied.

The acceptance rule is usually based on the

objective function values of the current

solution and its neighbor.

Descent Method (DM)

The simplest type of local search algorithms is

descent method DM, which is sometimes

known as iterative local improvement. In this

method, only moves that result in an

improvement in the objective function value

are accepted. Under a first improve search, the

first move that improves the objective function

value is accepted [3]. On the other hand, best

improve selects a move that yields the best

objective function value among all neighbors.

When no further improvement can be achieved,

a DM terminates with a solution that is a local

optimum. The local optimum is not necessarily

the true global optimum.

Simulated Annealing (SA)

Simulated annealing is a local search algorithm

(metaheuristics) capable of escaping from local

optima ease of implementation and

convergence properties. At each iteration of

SA, the values for two solutions (the current

solution and a newly selected solution) are

compared. Improving solutions are always

accepted; while a fraction of non-improving

(inferior) solutions are accepted in the hope of

escaping local optima in search of global

optima. The probability of accepting non-

improving solutions depends on a temperature

parameter, which is typically non-increasing

with each iteration of the algorithm [13].

Tabu Search (TS)

Tabu search is another example of

neighborhood search that, like SA, is capable

of avoiding being trapped in local optima, but

the operation of TS is quite different than SA's.

At each iteration of TS, a subset of the

neighbors of the current solution is considered,

and a best of these is chosen. This contrasts to

SA which choses a neighboring solution at

random and accepts or rejects it on the basis of

a probabilistic function. The subset of

neighboring solution considered at each step is

made up of all the solutions in the

neighborhood minus some set of solutions

which are considered tabu. The tabu solutions

(tabu list) are usually solutions or moves that

would bring the search back to a solution that

has already been visited[9].The tabu list is a

form of short term memory that guides the

search away from areas that have already been

seen.

Simple Heuristic method (SH)

We use the Simple Heuristic method (SH) to

find initial solutions for the local search

algorithms [7], which is the following steps:

Step 1: order the jobs in SPT rule.

Step 2: set k=2, chose the first two jobs in

ordered sequence, schedule them in order to

minimize the objective function, and set the

better one as the current solution.

Step 3: Increment k by 1, and generate k

candidate sequences by inserting the first job in

the remaining jobs into each slot of the current

solution, select the best one from these

solutions that minimize the objective function.

Update the selected partial solution as the new

current solution.

Step 4: If k=n. stop, otherwise go to step 3.

Materials and Methodology

Computational Experiments:

Test problems: All experimental design tests

are conducted on a personal computer intel(R)
Core TM i7 CPU @ 2.50 GHz, and 8.00GB of

RAM. To present the efficiency and compared

the results for the problem(Q). Instances with

different sizes are considered. The processing

times pi, i = 1,2, … , n for each problem is

generated randomly from uniform distribution

on the interval [1, 10], the due dates di, i =

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Hafid et al. Solving Composite Multi objective Single Machine Scheduling Problem Using Branch and Bound and Local

Search Algorithms
2017

205

1,2, … , n is drown from uniform distribution

on [(1 − TF −
RDD

2
) t, (1 − TF +

RDD

2
) t][5],

where t is total processing times for all jobs.

The valueRDD is the relative range of due

dates, it determines the length of the interval

from which the due dates were taken, TF the

tardiness factor determines the relative

positions of the center of this interval between

0 and t , these value of TF and RDDare chosen

from the set {0.2,0.4,0.6,0.8,1.0}. From 25

pairs of values of TF and RDD we generate 10

problem instances for each n, from n=4 to n=25

for BAB algorithm, while for the LSAs from

n=4 to n=23 for small size problems and from

n=50 to n=2000 for large size problems.

Results and Discussions
Comparison of the results of the problem

(𝑸) using BAB algorithm:

Table 1 shows the average of experimental

results of the two methods BAB without DR

and BAB with DR. This table contains the

number of jobs (n), for each of the ten

instances, the average number of nodes, the

average computational times, the average of

optimal values, and the percentage of solved

instances for problem(Q). We see that the BAB

with DR gives fairly good results in terms of

computational times and the number of nodes.

For example for n=16 the BAB without DR

failed to find optimal solution within 1800

second for some instances and solved 60 % of

these instances, while BAB with DR solved

problems in average CPU Time = 2.16 seconds

and average number of nodes = 46267.9 . Also

Table (1) shows that the BAB without DR

solved all problem instances from n=4 to n=14,

and failed to solve all problems from n=21 to

n=25, while the BAB with DR solved the

problem in all of instances from n=4 to n=23

and failed to solve problem in one problem

when n=24, and two problems when n=25.

Table 1: The average results of algorithms BAB without DR and BAB with DR.

n

BAB without DR. BAB with DR.

Mean

Best

Mean

Nods

Mean

Time

%

solved

Mean

Best

Mean

Nods

Mean

Time

%

solved

4 55.5 11.5 0.015112 100 % 55.5 4.9 0.013182 100 %

5 97 22.9 0.001144 100 % 97 8.9 0.000785 100 %

6 110.7 52.7 0.002143 100 % 110.7 16.1 0.000951 100 %

7 151.5 137 0.007278 100 % 151.5 31.6 0.002678 100 %

8 195.3 373.2 0.015159 100 % 195.3 47.9 0.002585 100 %

9 255.3 1370.9 0.052516 100 % 255.3 76.8 0.003826 100 %

10 283.5 4383.3 0.163119 100 % 283.5 213 0.010916 100 %

11 349.5 16626.2 0.594771 100 % 349.5 225.6 0.010774 100 %

12 396.5 45324.6 1.671211 100 % 396.5 413.7 0.019953 100 %

13 426.9 207839.2 7.502205 100 % 426.9 784.6 0.036156 100 %

14 529.1 3213032 124.968 100 % 529.1 7461.5 0.353652 100 %

15 696.3 11636173 439.4964 90 % 696.3 16595.8 0.802141 100 %

16 693.1 20610685 764.4811 60 % 693 46267.9 2.157109 100 %

17 716.3 21511161 912.4015 60 % 716.1 6450.9 0.334145 100 %

18 851.4 41939475 1637.207 20 % 850.4 74039.5 3.690589 100 %

19 967.5 43225118 1745.618 10 % 966.1 244294.5 12.30061 100 %

20 928.8 38241525 1443.574 20 % 928.3 892527.4 39.10577 100 %

21 1154.7 45789608 1800 0 % 1152.7 3329758 164.8119 100 %

22 1075.4 43871985 1800 0 % 1258 3025949 142.3837 100 %

23 1285.9 43273922 1800 0 % 1282 1696230 79.19502 100 %

24 1336.4 44816660 1800 0 % 1335.6 14667602 662.7902 90 %

25 1500.2 43181493 1800 0 % 1497.2 12692192 640.4201 80 %

Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 28, Issue 3, 2017 DOI: http://doi.org/10.23851/mjs.v28i3.122

206

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4. 0 International Licenses.

Comparison of results of the problem (𝑄)
using local search algorithms
Computational results of (LSAs), (SA), (TS),

and (DM) summarized in tables (2), (3). For

the implementation of LSAs we generate the

initial solution by SH algorithm which

described in section 4.4, and we use arrange of

number of iterations starts from 20000 iteration

for small size problems where4 ≤ n ≤ 23, and

use 50000 iterations for medium size problems

where 50 ≤ n ≤ 400, for large size problems

where n ≥ 500 we use 100000 iterations. The

neighborhoods generated using two methods,

the API (Adjacent Pairwise Interchange)

method and insertion method, and the

algorithm interchange between the two

neighborhoods at each iteration according to

wither the number of iterations is odd ore even.

The comparison between BAB algorithm and

LSAs is summarized in Table 2, the results

shows that SA and TS algorithms solve all

problems and reach the optimal solutions for all

small size problems where DM algorithm is not

for some instances, also the results shows that

TS need more time than other LSAs to reach

the optimal solutions. In Table 3 we summarize

the results of comparison among LSAs

themselves, for each algorithm we find the

mean of best values and the mean of

computation times. Also Table 3 shows that the

performance of SA and TS algorithms is better

than DM and that SA algorithm better than TS

algorithm.

Table 2: The average results of BAB and local search algorithms for small size problems.

n

BAB SA TS DM

Mean optimal
Mean

Time
Mean value

Mean

Time
Mean value

Mean

Time
Mean value

Mean

Time

4 55.5 0.0170 55.5 0.6663 55.5 0.6566 55.5 0.6412

5 97 0.0008 97 0.7883 97 0.6372 97 0.6318

6 110.7 0.0009 110.7 0.6472 110.7 0.6441 110.7 0.6411

7 151.5 0.0016 151.5 0.6544 151.5 0.6541 151.5 0.6353

8 195.3 0.0026 195.3 0.6548 195.3 0.6720 195.3 0.6559

9 255.3 0.0037 255.3 0.6650 255.3 0.6714 255.3 0.6422

10 283.5 0.0099 283.5 0.6499 283.5 0.6471 283.5 0.6329

11 349.5 0.0109 349.5 0.7321 349.5 0.7101 349.5 0.6853

12 396.5 0.0185 396.5 0.6624 396.5 0.6616 396.5 0.6456

13 426.9 0.0359 426.9 0.7122 426.9 0.7076 427 0.6905

14 529.1 0.3167 529.1 0.6637 529.1 0.6717 529.1 0.6466

15 696.3 0.7606 696.3 0.6981 696.3 0.6900 696.3 0.6804

16 693 1.9578 693 0.6631 693 0.6917 693.2 0.6589

17 716.1 0.3007 716.1 0.6602 716.1 0.7506 716.2 0.6463

18 850.4 3.5619 850.5 0.7051 850.5 0.8422 850.9 0.6883

19 966.1 11.164 966.1 0.6789 966.1 1.0168 966.1 0.6635

20 928.3 38.04 928.4 0.6771 928.4 1.0115 928.5 0.6625

21 1152.7 160.24 1152.7 0.6788 1152.7 0.8426 1153 0.6619

22 1073.7 198.12 1073.7 0.6822 1073.7 0.9717 1073.8 0.6640

23 1282 82.756 1282 0.7448 1282 1.3327 1282.1 0.7540

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Hafid et al. Solving Composite Multi objective Single Machine Scheduling Problem Using Branch and Bound and Local

Search Algorithms
2017

207

Table 3: The average results of local search algorithms for large size problems.

n

SA TS DM

Mean Best
Mean

Time
Mean Best

Mean

Time
Mean Best

Mean

Time

50 5654.7 1.8871 5654.9 4.9127 5656.6 1.8518

100 20078 2.3228 20079.1 7.6682 20079.9 2.2943

150 46948.4 2.4242 46946.2 10.604 46957.9 2.4356

200 81334.5 5.9961 81335.5 73.222 81340.8 6.0744

250 124500.8 7.4341 124491.8 90.313 124502.1 7.4767

300 174800.5 8.9283 174795.3 118.92 174809.8 8.8176

400 312125.8 9.0340 312146.1 101.38 312191.7 8.9497

500 501303.4 12.290 501319.3 126.61 501410.6 12.209

600 716888.5 16.435 716878.1 152.47 716983.3 16.372

700 985236.6 21.683 985328.1 181.93 985365.5 21.617

800 1259230.2 28.439 1259180.1 215.35 1259230.7 28.379

900 1610269.8 36.401 1610361 245.78 1610416 36.297

1000 1956879.4 46.160 1956764.1 284.86 1956735.2 46.007

1500 4439021.1 125.85 4439195.6 767.05 4439669.1 125.45

2000 7868336 272.65 7868393.4 1464.2 7868473.6 272.92

Conclusions

It is well known that the sizes and the results of

multicriteria scheduling problems are generally

affected by a number of cost functions, and our

problem (𝑄) is the sum of four cost functions.

Therefore BAB algorithm failed to solve

problems up to 25 jobs, on the other hand the

comparison between BAB without and with

dominance rule shows that dominance rule

improve the performance of the BAB algorithm

in both computation times and optimal values.

In LSAs if we don’t focus our attention on

computation times we see that SA is better than

TS and DM to solve our problem(𝑄). Because

of its structure TS need more time than other

algorithms to find best solution, but this time

remain less than 1800 seconds.

References
[1] R. Tavakkoli-Moghaddam, G. Moslehi, M.

Vasei, and A. Azaron, "Optimal

scheduling for a single machine to

minimize the sum of maximum earliness

and tardiness considering idle insert,"

Applied Mathematics and Computation,

vol. 167, pp. 1430-1450, 2005.

[2] T. S. Abdul-Razaq and Z. M. Ali,

"Minimizing the Total Completion Times,

the Total Tardiness and the Maximum

Tardiness," Ibn AL-Haitham Journal For

Pure and Applied Science, vol. 28, pp.

155-170, 2017.

[3] B. Chen, C. N. Potts, and G. J. Woeginger,

"A review of machine scheduling:

Complexity, algorithms and

approximability," in Handbook of

combinatorial optimization, ed: Springer,

1998, pp. 1493-1641.

[4] P. Brucker and P. Brucker, Scheduling

algorithms vol. 3: Springer, 2007.

[5] H. Crauwels, C. N. Potts, and L. N. Van

Wassenhove, "Local search heuristics for

the single machine total weighted tardiness

scheduling problem," INFORMS Journal

on computing, vol. 10, pp. 341-350, 1998.

[6] J. Du and J. Y.-T. Leung, "Minimizing

total tardiness on one machine is NP-hard,"

Mathematics of operations research, vol.

15, pp. 483-495, 1990.

[7] T. Eren, "A multicriteria scheduling with

sequence-dependent setup times," Applied

Mathematical Sciences, vol. 1, pp. 2883-

2894, 2007.

[8] M. R. Garey, R. E. Tarjan, and G. T.

Wilfong, "One-processor scheduling with

symmetric earliness and tardiness

penalties," Mathematics of Operations

Research, vol. 13, pp. 330-348, 1988.

[9] J. D. Knowles, "Local-search and hybrid

evolutionary algorithms for Pareto

Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 28, Issue 3, 2017 DOI: http://doi.org/10.23851/mjs.v28i3.122

208

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons
Attribution-NonCommercial 4. 0 International Licenses.

optimization," University of Reading UK,

2002.

[10] A. Jouglet and J. Carlier, "Dominance

rules in combinatorial optimization

problems," European Journal of

Operational Research, vol. 212, pp. 433-

444, 2011.

[11] V. T'kindt and J.-C. Billaut, Multicriteria

scheduling: theory, models and

algorithms: Springer Science & Business

Media, 2006.

[12] C.-Y. Lee and J. Y. Choi, "A genetic

algorithm for job sequencing problems

with distinct due dates and general early-

tardy penalty weights," Computers &

Operations Research, vol. 22, pp. 857-

869, 1995.

[13] M. Gendreau and J.-Y. Potvin, Handbook

of metaheuristics vol. 2: Springer, 2010.

[14] T. Sen and S. K. Gupta, "A branch-and-

bound procedure to solve a bicriterion

scheduling problem," AIIE Transactions,

vol. 15, pp. 84-88, 1983.

[15] S. Verma and M. Dessouky, "Single-

machine scheduling of unit-time jobs

with earliness and tardiness penalties,"

Mathematics of Operations Research,

vol. 23, pp. 930-943, 1998.

[16] G. Wan and B. P.-C. Yen, "Tabu search

for single machine scheduling with

distinct due windows and weighted

earliness/tardiness penalties," European

Journal of Operational Research, vol.

142, pp. 271-281, 2002.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

