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Abstract 
This paper present algorithm for solving a single machine scheduling problem to minimize the 

sum of total completion times, total tardiness, maximum tardiness, and maximum earliness. The 

single machine total tardiness problem is already NP-hard, so they consider problem is strongly 

NP-hard, and several algorithms are used to solve it. Branch and bound algorithm with 

dominance rule and local search algorithms are proposed for the problem. For the Branch and 

bound algorithm results- show that using dominance rule improve the performance of the 

algorithm in both computation times and optimal values, but it needs longer times. Thus we 

tackle the problem of large sizes with local search algorithms descent method, simulated 

annealing and tabu search. The performance of these algorithms is evaluated on a large set of test 

problems and the results are compared. The computational results show that simulated annealing 

algorithm and Tabu search algorithm are better than descent method with preference to simulated 

annealing algorithm, and show that the three algorithms find optimal or near optimal solutions in 

reasonable times. 

Keywords: Multicriteria Scheduling, Branch and bound, Dominance rule, Local search 

algorithms. 

 خلاصـةال
مجموع زمن إتمام النتاجات, مجموع أزمان  ارزميات لحل مسألة الجدولة لماكنة واحدة لتصغير مجموع الدوال:قدم البحث خو

التي حسنت  (DR), مع قواعد الهيمنة (BAB)التبكير, اكبر زمن تبكير, وأكبر زمن تأخير. اقترحنا خوارزمية التفرع والتقييد 

, أظهرت النتائج  SA  ,TS ,DMوالزمن, واقترحنا خوارزميات البحث المحلي من أداء الخوارزمية من ناحية القيمة المثالية 

, وأن الخوارزميات الثلاث أوجد الحلول SAمع أفضليه لخوارزمية   DMأفضل من خوارزمية   TSو   SAأن خوارزميات

 القريبة من الحل المثالي في أزمنة مناسبة. المثالية أو

 

Introduction 
Scheduling concerns the allocation of limit 

resources to tasks over time. It is a decision-

making process that has as a goal the 

optimization of one or more objectives [11]. 

Scheduling problems in real life applications 

generally involves optimization of more than 

one criteria. These criteria are often conflicting 

in nature and quite complex, according to how 

these criteria optimized, multicriteria 

optimization can be divided into two types: 

1. Hierarchical optimization for which if one 

criteria, say f is more important than other 

one g, then the problem is to minimize 

primary criterion f while breaking ties in 

favor of the schedule that has minimum 

secondary criterion value g and denoted by 

Lex(f, g) . 

2. Simultaneous optimization for which if no 

criterion is dominant and all criteria are 

considered simultaneously. 

It is well known that the problem 1|| ∑ 𝑇𝑗𝑗  is 

NP-hard [6], so any problem containing the 

cost function ∑ 𝑇𝑗𝑗  as subproblem is also NP-

hard. Sen and Gupta[14] studies the problem of 

minimizing a linear combination of flow  times 

and maximum tardiness of a given number of 

jobs on a single machine and presents BAB 
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technique to arrive at an optimal solution. The 

first result involving 𝐸𝑚𝑎𝑥 and 𝑇𝑚𝑎𝑥 is due to 

Garey et al.[8], they study a single machine 

scheduling problem and present an O(nlogn) 

algorithm to check whether for a given 

threshold value y there exists a feasible 

schedule such that each job is executed in the 

interval[𝑑𝑖 − 𝑝𝑖 − 𝑦, 𝑑𝑖 − 𝑦]. By applying 

binary search, they find the minimum such 

value y. Gareyet al. also show that the problem 

of finding the set of starting time that 

minimizes ∑𝐸𝑗 + ∑𝑇𝑗  for a given ordering of 

the jobs on a single machine is solvable in 

O(nlogn) time. Verma and Dessouky [15] show 

that the problem 1|pj = p|∑ (αjEj + βjTj)j  is 

solvable in polynomial time if the weights are 

agreeable, that is, the jobs can be renumbered 

such that: 𝛼1 ≤ 𝛼2 ≤ ⋯ ≤ 𝛼𝑛,𝛽1 ≤ 𝛽2 ≤ ⋯ ≤
𝛽𝑛. Abdul Razaq and Ibrahim[1] studied the 

problem 1||F(Emax, Tmax) they propose general 

algorithm (ET) to find the set of approximate 

efficient (Pareto optimal) solutions, and for the 

problem  1||𝐸𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥  they find the (near) 

optimal solution using BAB algorithm . Abdul-

Razaq and Mahrooz [2] study problem 

including three criteria, total completion times, 

the total tardiness and the maximum tardiness, 

they propose BAB algorithm for the problem 

1|| ∑ Cj + ∑ Tjj + Tmaxj  and find the set 

ofefficient solutions for the 

problem1||(∑ Cj,j ∑ Tj,j Tmax). Lee and Choi in 

[12], propose a genetic algorithm for solving 

the scheduling problem with distinct due dates 

in a single machine general penalty weights 

which are not necessarily proportional to the 

processing times are applied to jobs either early 

or tardy. The computational experiments show 

that the genetic algorithm finds optimal 

solutions for small instances. Wan and 

Benjamin in [16] propose a tabu search 

algorithm for the problem of minimizing the 

earliness tardiness cost on a single machine 

with due windows. Computational experiments 

indicate that the performance of the proposed 

approach is quite well, especially for the 

instances of large size. 
 

Problem formulation  
Let 𝑁 = {1,2, … , 𝑛} be the set of 𝑛 jobs that 

must be processed by a machine. Each job 𝑖 has 

a processing time𝑝𝑖, and a due date 𝑑𝑖 , for 

𝑖 = 1, … , 𝑛.Initially, all of the jobs are 

available to be processed by the machine and it 

starts processing without interrupted, and 

requires 𝑝𝑖 units of time to complete its 

processing. Thus a schedule for the machine 

can be completely specified by giving the 

sequence in which the jobs are processed.   

Let σ be a sequence of the jobs in N 

representedby the n-tuple (σ(1), σ(2),… , σ(n)) 
where σ(i) is the ith job processedby the 

machine. The completion time of jobσ(i) is 

given by Cσ(i) = ∑ pσ(j)
i
j=1  ,the tardiness of the 

job σ(i) is given by Tσ(i) = max(Cσ(i) −

dσ(i), 0), and the earliness of the job σ(i) is 

given by Eσ(i) = max(dσ(i) − Cσ(i), 0). 

We consider the following performance 

criteria: 

 the sum of completion times ∑ 𝐶𝑗𝑗  . 

 the sum of tardiness ∑ 𝑇𝑗𝑗  . 

 the maximum tardiness 𝑇𝑚𝑎𝑥 . 

 the maximum earliness 𝐸𝑚𝑎𝑥 . 

Hence this problem is denoted by 1|| ∑ 𝐶𝑗 +𝑗

∑ 𝑇𝑗 + 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥𝑗   (Q) which belong to 

type (2) of multicriteria optimization and 

written as : 

𝑧 = 𝑚𝑖𝑛 (∑𝐶𝑗
𝑗

+∑𝑇𝑗
𝑗

+ 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥)

𝑆. 𝑇
𝐶𝑖 ≥ 𝑝𝑖𝑖 = 1,2, … , 𝑛
𝐶𝑖 = 𝐶𝑖−1 + 𝑝𝑗𝑖 = 2,3, … , 𝑛

𝑇𝑖 ≥ 𝐶𝑖 − 𝑑𝑖 𝑖 = 1,2, … , 𝑛
𝑇𝑖 ≥ 0𝑖 = 1,2, … , 𝑛
𝐸𝑖 ≥ 𝑑𝑖 − 𝐶𝑖𝑖 = 1,2, … , 𝑛
𝐸𝑖 ≥ 0𝑖 = 1,2, … , 𝑛)

 
 
 

)

 
 
 
 
 
 
 
 

(𝑸) 

 

Solving the Problem (Q) Using BAB 

Algorithm 

The aim of this problem is to find the minimum 

value of the of the objective function ∑ Cj +j

∑ Tj +Tmax +Emax,j  this function include 

the cost function ∑ Tjj , as mentioned before any 

problem including this function as sub problem 

is NP-hard. Since the feasible set of solutions 

considered in our problem is finite set, so an 
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optimal solution can be obtained by a straight 

forward algorithm that enumerates all feasible 

solutions, and then outputs the one with the 

minimum objective value. Complete 

enumeration method (CEM) is hardly practical 

because the number of cases to be considered is 

usually enormous. Solving NP-hard discrete 

optimization problems to optimality is often an 

immense job requiring very efficient 

algorithms, and Branch and bound algorithm 

(BAB) is one of the main tools in construction 

of these. A BAB algorithm searches the 

complete space of solutions for a given 

problem for the best solution. However, 

explicit enumeration is normally impossible 

due to the exponentially increasing number of 

potential solutions. A BAB algorithm proceeds 

by repeatedly partitioning the class of all 

feasible solutions into smaller and smaller 

subclasses in such a way that ultimately an 

optimal solution is obtained. The BAB have the 

following general characteristics: 

 A branching rule that defines partitions of 

the set of feasible solutions into subsets. 

 A lower bounding rule that provides a 

lower bound (LB) on the value of each 

solution in a subset generated by the 

branching rule. 

 A search strategy that selects a node from 

which to branch. 

     To implement the BAB algorithm we 

decompose the problem (Q)  into sub 

problems: 

 

Decomposition of the Problem (𝑸) 
Decomposition is a general approach for 

solving a problem by breaking it up into 

smaller ones and solving each of the smaller 

ones separately, either in parallel or 

sequentially. The problem (Q) can be 

decomposed into four sub problems Qi, i =
1,2,3,4 ∶ 1||Zi, where  Z1 = min∑ Cjj ,        

Z2 = min∑ Tjj  , Z3minTmax, Z4 = minEmax. 

 

Derivation of Lower bound (LB) and  

Upper bound (UB) for the Problem (𝑸) 
Next theorem help us to derive the lower bound 

(LB) for problem (Q) using the decomposed 

problems: 

Theorem 1: Let Zi be the lower bound or the 

minimum for the objective functions of sub 

problems Qi, i = 1,2,3,4 and let Z be the 

minimum of objective function of problemQ, 
then ∑ Zi ≤ Zi  

Proof: It is clear   

 

The initial lower bound ILB = ∑ Zi
n
i=1  where 

Z1 calculated by sequencing the jobs in SPT 

order to get the minimum value of total 

completion times. Z2 calculated by sequencing 

the jobs in  EDD order to get the minimum 

maximum tardiness Tmax(EDD) using that 

Tmax(EDD) ≤ ∑ Tjj .Z3 calculated by 

sequencing the jobs in EDD order to get 

minimum maximum tardiness Tmax(EDD). Z4 

calculated by sequencing the jobs in MST order 

to get the minimum maximum earliness 

Emax(MST). Hence the initial lower bound ILB 

calculated as follwes: 

ILB = ∑ Cj(SPT)
n
j + Tmax(EDD) +

Tmax(EDD)+Emax(MST) 

The upper bound (UB) is derived as follows: 

Compute the first and second upper bound by 

sequencing the jobs in SPT and EDD order 

respectively, then 

UB1 = ∑ Cj(SPT) + ∑ Tj(SPT) +jj

Tmax(SPT) + Emax(SPT), 

UB2=∑ Cj(EDD)j + ∑ Tj(EDD) +j

Tmax(EDD) + Emax(EDD). 

The upper bound is computed by: UB =
min(UB1, UB2). 

Dominance Rule 

A dominance rule is established in order to 

reduce the solution space either by adding new 

constraints to the problem, or by writing a 

procedure that attempts to reduce the domain of 

variables, or by building interesting solutions 

directly [10]. This dominance rule is expressed 

as "There exist at least one optimal solution of 

S (the set of feasible solutions) having the 

property A". The strategy is as follows:  Any 

solution which does not satisfy A can be 
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removed from S, because there is at least one 

optimal solution of S satisfying A. 

Theorem 2: If  pi ≤ pj  and  di ≤ dj for every  

i, j = 1,2, … , n , then job i preceed job j in 

optimal solution for the problem(Q). 

Proof: consider the sequence σ = σ1ijσ2  and 

the sequence σ́ = σ1jiσ2  which is obtained by 

interchange the position of jobs i and j.             

For the sequence σ and σ́ there are two cases  

Case 1 : If  pi ≤ pj  and  di ≤ dj  implies 

si ≤ sj for every i, j = 1,2, … , n 

From  pi ≤ pj we have :∑ Cj(σ)j ≤ ∑ Cj(σ́)j  

From the condition of slack time  si ≤ sj,  we 

have: 

            Emax(σ) ≤ Emax(σ́). 

From pi ≤ pj  and  di ≤ dj, we have:       

         Tmax(σ) ≤ Tmax(σ́) and ∑ Tj(σ)j ≤

∑ Tj(σ́)j .  

Hence we have:  

         ∑ Cj(σ)j +∑ Tj(σ)j + Tmax(σ) +

Emax(σ) ≤ ∑ Cj(σ́)j +∑ Tj(σ́)j +

Tmax(σ́) + Emax(σ́). 

Case 2: If  pi ≤ pj  and  di ≤ djimplies si ≥ sj 

for every i, j = 1,2, … , n 

From  pi ≤ pj we have:  

∑ Cj(σ)j ≤ ∑ Cj(σ́)j                                      (1) 

The condition on processing times insure that 

(1) is satisfied, and the addition in cost which is 

obtained from (1) is equal to 
j ip p  , this 

gives : 

∑ Cj(σ) + pj − pi = ∑ Cj(σ́jj )                   (2) 

From the condition of slack times si ≥ sj  

implies     Emax(σ) ≥ Emax(σ́) . 

Also the addition in cost si − sj gives: 

Emax(σ́) + si − sj = Emax(σ)                      (3) 

si − sj = (di − pi) − (dj − pj) 

= (di − dj) + (pj − pi) 

                 ≤ pj − pi                          (4) 

Adding Emax(σ́) to both side of (4) we have:  

Emax(σ́) + si − sj ≤ Emax(σ́) + pj − pi and 

from (3) we have: 

Emax(σ) ≤ Emax(σ́) + pj − pi           (5)             

Adding ∑ Cj(σ)j  to both side of (5)  and by (2) 

we have: 

          ∑ Cj(σ)j + Emax(σ) ≤ ∑ Cj(σ́)j +

Emax(σ́)                                     (6) 

From the conditions pi ≤ pj and di ≤ dj we 

have: 

          Tmax(σ) ≤ Tmax(σ́) and ∑ Tj(σ) ≤j

∑ Tj(σ́j ). 

By adding this result to (6) : 

         ∑ Cj(σ)j +∑ Tj(σ)j + Tmax(σ) +

Emax(σ) ≤ ∑ Cj(σ́)j + ∑ Tj(σ́)j +

Tmax(σ́) + Emax(σ́) 

Hence in both cases the sequence σ is better 

than the sequence σ́ . Hence job i precede job j 

in the optimal solution. 

Proposition 1: If SPT and EDD rules are 

identical in one sequence, then this sequence 

gives optimal solution for problem (Q) . 
Proof: It is clear from theorem (2) .  

 

Solving the Problem (Q) Using Local Search 

Algorithms (LSAs) 

Branch and bound algorithm (and dynamic 

programming) is based on the idea of 

intelligently enumerating all feasible solutions. 

Another possibility is to apply (LSAs). These 

algorithms produce solutions that are 

guaranteed to be within a fixed percentage of 

the actual optimum. One of the most successful 

methods of attacking hard combinatorial 

optimization problems is the discrete analog of 

“hill climbing”, known as local (or 

neighborhood) search [4]. In neighborhood 

search, a current solution is transformed into a 

new solution according to some neighborhood 
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structure. An acceptance rule decides whether 

the move from the current solution to the 

transformed solution should be accepted, 

although the decision is sometimes delayed 

until the complete neighborhood (or a subset of 

it) is explored. If a move is accepted, then the 

transformed solution replaces the previous 

solution and becomes the current solution; 

otherwise, the move is rejected and the current 

solution is retained. This process is repeated 

until some termination criterion is satisfied. 

The acceptance rule is usually based on the 

objective function values of the current 

solution and its neighbor. 

Descent Method ( DM) 

The simplest type of local search algorithms is 

descent method DM, which is sometimes 

known as iterative local improvement. In this 

method, only moves that result in an 

improvement in the objective function value 

are accepted. Under a first improve search, the 

first move that improves the objective function 

value is accepted [3]. On the other hand, best 

improve selects a move that yields the best 

objective function value among all neighbors. 

When no further improvement can be achieved, 

a DM terminates with a solution that is a local 

optimum. The local optimum is not necessarily 

the true global optimum. 

Simulated Annealing (SA) 

Simulated annealing is a local search algorithm 

(metaheuristics) capable of escaping from local 

optima ease of implementation and 

convergence properties. At each iteration of 

SA, the values for two solutions (the current 

solution and a newly selected solution) are 

compared. Improving solutions are always 

accepted; while a fraction of non-improving 

(inferior) solutions are accepted in the hope of 

escaping local optima in search of global 

optima. The probability of accepting non-

improving solutions depends on a temperature 

parameter, which is typically non-increasing 

with each iteration of the algorithm [13]. 

Tabu Search (TS)  

Tabu search is another example of 

neighborhood search that, like SA, is capable 

of avoiding being trapped in local optima, but 

the operation of TS is quite different than SA's. 

At each iteration of TS, a subset of the 

neighbors of the current solution is considered, 

and a best of these is chosen. This contrasts to 

SA which choses a neighboring solution at 

random and accepts or rejects it on the basis of 

a probabilistic function. The subset of 

neighboring solution considered at each step is 

made up of all the solutions in the 

neighborhood minus some set of solutions 

which are considered tabu. The tabu solutions 

(tabu list ) are usually solutions or moves that 

would bring the search back to a solution that 

has already been visited[9].The tabu list is a 

form of short term memory that guides the 

search away from areas that have already been 

seen. 

Simple Heuristic method (SH)  

We use the Simple Heuristic method (SH) to 

find initial solutions for the local search 

algorithms [7], which is the following steps: 

Step 1: order the jobs in SPT rule. 

Step 2: set k=2, chose the first two jobs in 

ordered sequence, schedule them in order to 

minimize the objective function, and set the 

better one as the current solution. 

Step 3: Increment k by 1, and generate k 

candidate sequences by inserting the first job in 

the remaining jobs into each slot of the current 

solution, select the best one from these 

solutions that minimize the objective function. 

Update the selected partial solution as the new 

current solution. 

Step 4: If k=n. stop, otherwise go to step 3. 

Materials and Methodology 

Computational Experiments: 

Test problems: All experimental design tests 

are conducted on a personal computer intel(R) 
Core TM i7 CPU @ 2.50 GHz, and 8.00GB of 

RAM. To present the efficiency and compared 

the results for the problem(Q). Instances with 

different sizes are considered. The processing 

times pi, i = 1,2, … , n for each problem is 

generated randomly from uniform distribution 

on the interval [1, 10], the due dates di, i =
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1,2, … , n is drown from uniform distribution 

on [(1 − TF −
RDD

2
) t, (1 − TF +

RDD

2
) t][5], 

where t is total processing times for all jobs. 

The valueRDD is the relative range of due 

dates, it determines the length of the interval 

from which the due dates were taken, TF the 

tardiness factor determines the relative 

positions of the center of this interval between 

0  and t , these value of TF and RDDare chosen 

from the set {0.2,0.4,0.6,0.8,1.0}. From 25 

pairs of values of  TF and  RDD we generate 10 

problem instances for each n, from n=4 to n=25 

for BAB algorithm, while for the LSAs from 

n=4 to n=23 for small size problems and from 

n=50 to n=2000 for large size problems. 

 

Results and Discussions 
Comparison of the results of the problem 

(𝑸) using BAB algorithm: 

Table 1 shows the average of experimental 

results of the two methods BAB without DR 

and BAB with DR. This table contains the 

number of jobs (n), for each of the ten 

instances, the average number of nodes, the 

average computational times, the average of 

optimal values, and the percentage of solved 

instances for problem(Q). We see that the BAB 

with DR gives fairly good results in terms of 

computational times and the number of nodes. 

For example for n=16 the BAB without DR 

failed to find optimal solution within 1800 

second for some instances and solved 60 % of 

these instances, while BAB with DR solved 

problems in average CPU Time = 2.16 seconds   

and average number of nodes = 46267.9 . Also 

Table (1) shows that the BAB without DR 

solved all problem instances from n=4 to n=14, 

and failed to solve all problems from n=21 to 

n=25, while the BAB with DR solved the 

problem in all of instances from n=4 to n=23 

and failed to solve problem in one problem 

when n=24, and two problems when n=25. 

 

Table 1: The average results of algorithms BAB without DR and BAB with DR. 

 

n 

BAB without DR. BAB with DR. 

Mean 

Best 

Mean 

Nods 

Mean 

Time 

% 

solved 

Mean 

Best 

Mean 

Nods 

Mean 

Time 

% 

solved 

4 55.5 11.5 0.015112 100 % 55.5 4.9 0.013182 100 % 

5 97 22.9 0.001144 100 % 97 8.9 0.000785 100 % 

6 110.7 52.7 0.002143 100 % 110.7 16.1 0.000951 100 % 

7 151.5 137 0.007278 100 % 151.5 31.6 0.002678 100 % 

8 195.3 373.2 0.015159 100 % 195.3 47.9 0.002585 100 % 

9 255.3 1370.9 0.052516 100 % 255.3 76.8 0.003826 100 % 

10 283.5 4383.3 0.163119 100 % 283.5 213 0.010916 100 % 

11 349.5 16626.2 0.594771 100 % 349.5 225.6 0.010774 100 % 

12 396.5 45324.6 1.671211 100 % 396.5 413.7 0.019953 100 % 

13 426.9 207839.2 7.502205 100 % 426.9 784.6 0.036156 100 % 

14 529.1 3213032 124.968 100 % 529.1 7461.5 0.353652 100 % 

15 696.3 11636173 439.4964 90   % 696.3 16595.8 0.802141 100 % 

16 693.1 20610685 764.4811 60 % 693 46267.9 2.157109 100 % 

17 716.3 21511161 912.4015 60 % 716.1 6450.9 0.334145 100 % 

18 851.4 41939475 1637.207 20 % 850.4 74039.5 3.690589 100 % 

19 967.5 43225118 1745.618 10 % 966.1 244294.5 12.30061 100 % 

20 928.8 38241525 1443.574 20 % 928.3 892527.4 39.10577 100 % 

21 1154.7 45789608 1800 0 % 1152.7 3329758 164.8119 100 % 

22 1075.4 43871985 1800 0 % 1258 3025949 142.3837 100 % 

23 1285.9 43273922 1800 0 % 1282 1696230 79.19502 100 % 

24 1336.4 44816660 1800 0 % 1335.6 14667602 662.7902 90  % 

25 1500.2 43181493 1800 0 % 1497.2 12692192 640.4201 80 % 
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Comparison of results of the problem (𝑄) 
using local search algorithms  
Computational results of (LSAs), (SA), (TS), 

and (DM) summarized in tables (2), (3). For 

the implementation of LSAs we generate the 

initial solution by SH algorithm which 

described in section 4.4, and we use arrange of 

number of iterations starts from 20000 iteration 

for small size problems where4 ≤ n ≤ 23, and 

use 50000 iterations for medium size problems 

where 50 ≤ n ≤ 400, for large size problems 

where n ≥ 500 we use 100000 iterations. The 

neighborhoods generated using two methods, 

the API (Adjacent Pairwise Interchange)  

method and insertion method, and the 

algorithm interchange between the two 

neighborhoods at each iteration according to 

wither the number of iterations is odd ore even. 

The comparison between BAB algorithm and 

LSAs is summarized in Table 2, the results 

shows that SA and TS algorithms solve all 

problems and reach the optimal solutions for all 

small size problems where DM algorithm is not 

for some instances, also the results shows that 

TS need more time than other LSAs to reach 

the optimal solutions. In Table 3 we summarize 

the results of comparison among LSAs 

themselves, for each algorithm we find the 

mean of best values and the mean of 

computation times. Also Table 3 shows that the 

performance of SA and TS algorithms is better 

than DM and that SA algorithm better than TS 

algorithm. 

 

Table 2: The average results of BAB and local search algorithms for small size problems. 

 

n 

BAB SA TS DM 

Mean optimal 
Mean 

Time 
Mean  value 

Mean 

Time 
Mean  value 

Mean 

Time 
Mean  value 

Mean 

Time 

4 55.5 0.0170 55.5 0.6663 55.5 0.6566 55.5 0.6412 

5 97 0.0008 97 0.7883 97 0.6372 97 0.6318 

6 110.7 0.0009 110.7 0.6472 110.7 0.6441 110.7 0.6411 

7 151.5 0.0016 151.5 0.6544 151.5 0.6541 151.5 0.6353 

8 195.3 0.0026 195.3 0.6548 195.3 0.6720 195.3 0.6559 

9 255.3 0.0037 255.3 0.6650 255.3 0.6714 255.3 0.6422 

10 283.5 0.0099 283.5 0.6499 283.5 0.6471 283.5 0.6329 

11 349.5 0.0109 349.5 0.7321 349.5 0.7101 349.5 0.6853 

12 396.5 0.0185 396.5 0.6624 396.5 0.6616 396.5 0.6456 

13 426.9 0.0359 426.9 0.7122 426.9 0.7076 427 0.6905 

14 529.1 0.3167 529.1 0.6637 529.1 0.6717 529.1 0.6466 

15 696.3 0.7606 696.3 0.6981 696.3 0.6900 696.3 0.6804 

16 693 1.9578 693 0.6631 693 0.6917 693.2 0.6589 

17 716.1 0.3007 716.1 0.6602 716.1 0.7506 716.2 0.6463 

18 850.4 3.5619 850.5 0.7051 850.5 0.8422 850.9 0.6883 

19 966.1 11.164 966.1 0.6789 966.1 1.0168 966.1 0.6635 

20 928.3 38.04 928.4 0.6771 928.4 1.0115 928.5 0.6625 

21 1152.7 160.24 1152.7 0.6788 1152.7 0.8426 1153 0.6619 

22 1073.7 198.12 1073.7 0.6822 1073.7 0.9717 1073.8 0.6640 

23 1282 82.756 1282 0.7448 1282 1.3327 1282.1 0.7540 
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Table 3: The average results of local search algorithms for large size problems. 

 

n 

SA TS DM 

Mean Best 
Mean 

Time 
Mean Best 

Mean 

Time 
Mean Best 

Mean 

Time 

50 5654.7 1.8871 5654.9 4.9127 5656.6 1.8518 

100 20078 2.3228 20079.1 7.6682 20079.9 2.2943 

150 46948.4 2.4242 46946.2 10.604 46957.9 2.4356 

200 81334.5 5.9961 81335.5 73.222 81340.8 6.0744 

250 124500.8 7.4341 124491.8 90.313 124502.1 7.4767 

300 174800.5 8.9283 174795.3 118.92 174809.8 8.8176 

400 312125.8 9.0340 312146.1 101.38 312191.7 8.9497 

500 501303.4 12.290 501319.3 126.61 501410.6 12.209 

600 716888.5 16.435 716878.1 152.47 716983.3 16.372 

700 985236.6 21.683 985328.1 181.93 985365.5 21.617 

800 1259230.2 28.439 1259180.1 215.35 1259230.7 28.379 

900 1610269.8 36.401 1610361 245.78 1610416 36.297 

1000 1956879.4 46.160 1956764.1 284.86 1956735.2 46.007 

1500 4439021.1 125.85 4439195.6 767.05 4439669.1 125.45 

2000 7868336 272.65 7868393.4 1464.2 7868473.6 272.92 

 

Conclusions  

It is well known that the sizes and the results of 

multicriteria scheduling problems are generally 

affected by a number of cost functions, and our 

problem (𝑄) is the sum of four cost functions. 

Therefore BAB algorithm failed to solve 

problems up to 25 jobs, on the other hand the 

comparison between BAB without and with 

dominance rule shows that dominance rule 

improve the performance of the BAB algorithm 

in both computation times and optimal values. 

In LSAs if we don’t focus our attention on 

computation times we see that SA is better than 

TS and DM to solve our problem(𝑄). Because 

of its structure TS need more time than other 

algorithms to find best solution, but this time 

remain less than 1800 seconds. 

References 
[1] R. Tavakkoli-Moghaddam, G. Moslehi, M. 

Vasei, and A. Azaron, "Optimal 

scheduling for a single machine to 

minimize the sum of maximum earliness 

and tardiness considering idle insert," 

Applied Mathematics and Computation, 

vol. 167, pp. 1430-1450, 2005. 

[2] T. S. Abdul-Razaq and Z. M. Ali, 

"Minimizing the Total Completion Times, 

the Total Tardiness and the Maximum 

Tardiness," Ibn AL-Haitham Journal For 

Pure and Applied Science, vol. 28, pp. 

155-170, 2017. 

[3] B. Chen, C. N. Potts, and G. J. Woeginger, 

"A review of machine scheduling: 

Complexity, algorithms and 

approximability," in Handbook of 

combinatorial optimization, ed: Springer, 

1998, pp. 1493-1641. 

[4] P. Brucker and P. Brucker, Scheduling 

algorithms vol. 3: Springer, 2007. 

[5] H. Crauwels, C. N. Potts, and L. N. Van 

Wassenhove, "Local search heuristics for 

the single machine total weighted tardiness 

scheduling problem," INFORMS Journal 

on computing, vol. 10, pp. 341-350, 1998. 

[6] J. Du and J. Y.-T. Leung, "Minimizing 

total tardiness on one machine is NP-hard," 

Mathematics of operations research, vol. 

15, pp. 483-495, 1990. 

[7] T. Eren, "A multicriteria scheduling with 

sequence-dependent setup times," Applied 

Mathematical Sciences, vol. 1, pp. 2883-

2894, 2007. 

[8] M. R. Garey, R. E. Tarjan, and G. T. 

Wilfong, "One-processor scheduling with 

symmetric earliness and tardiness 

penalties," Mathematics of Operations 

Research, vol. 13, pp. 330-348, 1988. 

[9] J. D. Knowles, "Local-search and hybrid 

evolutionary algorithms for Pareto 



Al-Mustansiriyah Journal of Science  
ISSN: 1814-635X (print), ISSN: 2521-3520 (online) Volume 28, Issue 3, 2017 DOI: http://doi.org/10.23851/mjs.v28i3.122 

 

208 
 

 

Copyright © 2017 Authors and Al-Mustansiriyah Journal of Science.  This work is licensed under a Creative Commons 
Attribution-NonCommercial 4. 0 International Licenses.  

 

optimization," University of Reading UK, 

2002. 

[10] A. Jouglet and J. Carlier, "Dominance 

rules in combinatorial optimization 

problems," European Journal of 

Operational Research, vol. 212, pp. 433-

444, 2011. 

[11] V. T'kindt and J.-C. Billaut, Multicriteria 

scheduling: theory, models and 

algorithms: Springer Science & Business 

Media, 2006. 

[12] C.-Y. Lee and J. Y. Choi, "A genetic 

algorithm for job sequencing problems 

with distinct due dates and general early-

tardy penalty weights," Computers & 

Operations Research, vol. 22, pp. 857-

869, 1995. 

[13] M. Gendreau and J.-Y. Potvin, Handbook 

of metaheuristics vol. 2: Springer, 2010. 

[14] T. Sen and S. K. Gupta, "A branch-and-

bound procedure to solve a bicriterion 

scheduling problem," AIIE Transactions, 

vol. 15, pp. 84-88, 1983. 

[15] S. Verma and M. Dessouky, "Single-

machine scheduling of unit-time jobs 

with earliness and tardiness penalties," 

Mathematics of Operations Research, 

vol. 23, pp. 930-943, 1998. 

[16] G. Wan and B. P.-C. Yen, "Tabu search 

for single machine scheduling with 

distinct due windows and weighted 

earliness/tardiness penalties," European 

Journal of Operational Research, vol. 

142, pp. 271-281, 2002. 
 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

